Effects of N, P, K Nutrition Levels on the Growth, Flowering Attributes and Functional Components in Chrysanthemum morifolium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Measurement of Parameters
2.2.1. Plant Height, Stem Diameter, and Leaf Area
2.2.2. Flower Diameter and Size
2.2.3. Yield
2.2.4. Chlorophyll Content
2.2.5. Antioxidant Enzyme Activity
2.2.6. Flavonoids and Chlorogenic Acid
2.3. Data Analysis
3. Results
3.1. Influence on the Growth of Chrysanthemum with Different Treatments at Seedling Stage
3.2. Influence on the Growth of Chrysanthemum with Different Treatments at Branching Stages
3.3. Influence of Different Treatments on the Chrysanthemum Flowering Period
3.4. Influence on the Biomass and Yield of Chrysanthemum under Different Fertilization Levels
3.5. Effects on the Chlorophyll Content
3.6. Effects on POD and PAL Activities
3.7. Effects on Contents of Flavonoids and Chlorogenic Acids
4. Discussion
4.1. Different Treatments’ Effects on the Growth of Chrysanthemum
4.2. Fertilization Effects on the Fresh and Dry Weight of Chrysanthemum
4.3. The Effect of Fertilizer Doses on Chlorophyll Content of Chrysanthemum
4.4. The Effect of NPK Treatment on the Defense Benefit System of Chrysanthemum
4.5. The Effect of Various Fertilizers on Antioxidant Levels in Chrysanthemum
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karik, Ü.; Tunçtürk, M. Production, Trade and Future Perspective of Medicinal and Aromatic Plants in Turkey. Anadolu J. AARI 2019, 2, 154–163. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus Vulgaris. Int. J. Clin. Med. 2015, 6, 635–642. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Zandi, P.; Cheng, Q. A Review of Chrysanthemum, the Eastern Queen in Traditional Chinese Medicine with Healing Power in Modern Pharmaceutical Sciences. Appl. Ecol. Environ. Res. 2019, 17, 13355–13369. [Google Scholar] [CrossRef]
- Gu, J.; Scotti, F.; Reich, E.; Kirchhof, R.; Booker, A.; Heinrich, M. Chrysanthemum Species Used as Food and Medicine: Understanding Quality Differences on the Global Market. S. Afr. J. Bot. 2022, 148, 123–134. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L.L. Chemical Compositions of Chrysanthemum Teas and Their Anti-Inflammatory and Antioxidant Properties. Food Chem. 2019, 286, 8–16. [Google Scholar] [CrossRef]
- Chaitra, G.S.; Seetharamu, G.K.; Kumar, R.; Munikrishnappa, P.M.; Shivanna, M. Effect of Different Levels of Macro Nutrients (NPK) and Mulching on Growth, Quality and Yield of Chrysanthemum (Dendranthema grandiflora) cv. Marigold. Indian J. Agric. Sci. 2018, 88, 871–876. [Google Scholar] [CrossRef]
- Rajan, K.; Bhatt, D.S.; Chawla, S.L.; Bhatt, S.T.; Priya, S.S. Effect of Nitrogen and Phosphorus on Growth, Flowering and Yield of Cut Chrysanthemum cv. Thai Chen Queen. Curr. Agric. Res. J. 2019, 7, 337–342. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, A.; Kumar, U.; Choudhary, R.; Kumar, R.; Jat, R.; Nidhibahen, P.; Hatamleh, A.A.; Al-Dosary, M.A.; Al-Wasel, Y.A.; et al. Various Fertilization Managements Influence the Flowering Attributes, Yield Response, Biochemical Activity and Soil Nutrient Status of Chrysanthemum (Chrysanthemum morifolium Ramat.). Sustainabilty 2022, 14, 4561. [Google Scholar] [CrossRef]
- Kumar, R.; Pareek, N.K.; Rathore, V.S.; Nangiya, V.; Yadava, N.D.; Yadav, R.S. Effect of Water and Nitrogen Levels on Yield Attributes, Water Productivity and Economics of Cluster Bean (Cyamopsis tetragonoloba) in Hot Arid Region. Legume Res. 2020, 43, 702–705. [Google Scholar] [CrossRef]
- Matsumura, A.; Hirosawa, K.; Masumoto, H.; Daimon, H. Effects of Maize as a Catch Crop on Subsequent Garland Chrysanthemum and Green Soybean Production in Soil with Excess Nitrogen. Sci. Hortic. 2020, 273, 109640. [Google Scholar] [CrossRef]
- Plaxton, W.C.; Tran, H.T. Metabolic Adaptations of Phosphate-Starved Plants. Plant Physiol. 2011, 156, 1006–1015. [Google Scholar] [CrossRef]
- Li, X.; Yan, Z.; Khalid, M.; Sun, Y.; Shi, Y.; Tang, D. Controlled-Release Compound Fertilizers Improve the Growth and Flowering of Potted Freesia hybrida. Biocatal. Agric. Biotechnol. 2019, 17, 480–485. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Wang, G.; Ju, J.; Mao, W.; Zhao, H. Response of Rice Grain Yield and Soil Fertility to Fertilization Management under Three Rice-Based Cropping Systems in Reclaimed Soil. Agronomy 2023, 13, 1840. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Jiang, J.; Zhao, Z.; Guan, Z.; Chen, S.; Chen, F.; Fang, W.; Zhao, S. Effects of Inorganic, Organic and Bio-Organic Fertilizer on Growth, Rhizosphere Soil Microflora and Soil Function Sustainability in Chrysanthemum Monoculture. Agriculture 2021, 11, 1214. [Google Scholar] [CrossRef]
- Hao, D.C.; Song, Y.; Xiao, P.; Zhong, Y.; Wu, P.; Xu, L. The Genus Chrysanthemum: Phylogeny, Biodiversity, Phytometabolites, and Chemodiversity. Front. Plant Sci. 2022, 13, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Krucker, M.; Hummel, R.L.; Cogger, C. Chrysanthemum Production in Composted and Noncomposted Organic Waste Substrates Fertilized with Nitrogen at Two Rates Using Surface and Subirrigation. Hortic. Sci. 2010, 45, 1695–1701. [Google Scholar] [CrossRef]
- Hua, S.; Wang, X.; Yuan, S.; Shao, M.; Zhao, X.; Zhu, S.; Jiang, L. Characterization of Pigmentation and Cellulose Synthesis in Colored Cotton Fibers. Crop Sci. 2007, 47, 1540–1546. [Google Scholar] [CrossRef]
- Luan, H.; Guo, B.; Pan, Y.; Lv, C.; Shen, H.; Xu, R. Morpho-Anatomical and Physiological Responses to Waterlogging Stress in Different Barley (Hordeum vulgare L.) Genotypes. Plant Growth Regul. 2018, 85, 399–409. [Google Scholar] [CrossRef]
- Ai, P.; Liu, X.; Li, Z.; Kang, D.; Khan, M.A.; Li, H.; Shi, M.; Wang, Z. Comparison of Chrysanthemum Flowers Grown under Hydroponic and Soil-Based Systems: Yield and Transcriptome Analysis. BMC Plant Biol. 2021, 21, 517. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Wang, H.; Luo, J.; Zhang, X.; Liu, Z.; Zhang, Y.; Zhai, L.; Lei, Q.; Ren, T.; et al. Managing Irrigation and Fertilization for the Sustainable Cultivation of Greenhouse Vegetables. Agric. Water Manag. 2018, 210, 354–363. [Google Scholar] [CrossRef]
- Joshi, N.S.; Varu, D.K.; Barad, A.V.; Pathak, D.M. Performance of Varieties and Chemical Fertilizers on Growth and Flowering in Chrysanthemum. Int. J. Agric. Sci. 2013, 9, 182–188. [Google Scholar]
- Roggatz, U.; McDonald, A.J.S.; Stadenberg, I.; Schurr, U. Effects of Nitrogen Deprivation on Cell Division and Expansion in Leaves of Ricinus communis L. Plant Cell Environ. 1999, 22, 81–89. [Google Scholar] [CrossRef]
- Teja, P.R.; Bhaskar, V.V.; Dorajeerao, A.V.D.; Subbaramamma, P. Effect of Graded Levels of Nitrogen and Potassium on Growth and Flower Yield of Annual Chrysanthemum (Chrysanthemum coronarium L.). Plant Arch. 2017, 17, 1371–1376. [Google Scholar] [CrossRef]
- Du, Q.J.; Xiao, H.J.; Li, J.Q.; Zhang, J.X.; Zhou, L.Y.; Wang, J.Q. Effects of Different Fertilization Rates on Growth, Yield, Quality and Partial Factor Productivity of Tomato under Non-Pressure Gravity Irrigation. PLoS ONE 2021, 16, e0247578. [Google Scholar] [CrossRef]
- Zhang, B.; Li, M.; Li, Q.; Cao, J.; Zhang, C.; Zhang, F.; Song, Z.; Chen, X. Accumulation and Distribution Characteristics of Biomass and Nitrogen in Bitter Gourd (Momordica charantia L.) under Different Fertilization Strategies. J. Sci. Food Agric. 2018, 98, 2681–2688. [Google Scholar] [CrossRef]
- Gaaliche, B.; Ladhari, A.; Zarrelli, A.; Ben Mimoun, M. Impact of Foliar Potassium Fertilization on Biochemical Composition and Antioxidant Activity of Fig (Ficus carica L.). Sci. Hortic. 2019, 253, 111–119. [Google Scholar] [CrossRef]
- Shah, S.N.; Ali, A.; Shah, M.; Abid, K. Potassium Influence on Flowering and Morphology of Zinnia Elegans. Int. J. Farming Allied Sci. 2014, 3, 377–381. [Google Scholar]
- Bulawa, B.; Sogoni, A.; Jimoh, M.O.; Laubscher, C.P. Potassium Application Enhanced Plant Growth, Mineral Composition, Proximate and Phytochemical Content in Trachyandra divaricata Kunth (Sandkool). Plants 2022, 11, 3183. [Google Scholar] [CrossRef]
- Polara, N.D.; Gajipara, N.N.; Barad, A.V. Effect of Nitrogen and Phosphorus Nutrition on Growth, Flowering, Flower Yield and Chlorophyll Content of Different Varieties of African Marigold (Tagetes erecta L.). J. Appl. Hortic. 2015, 17, 44–47. [Google Scholar] [CrossRef]
- Serme, A.; Dabire, C.; Koala, M.; Somda, M.K.; Traore, A.S. Influence of Organic and Mineral Fertilizers on the Antioxidants and Total Phenolic Compounds Level in Tomato (Solanum lycopersicum) Var. Mongal F1. J. Exp. Biol. Agric. Sci. 2016, 4, 414–420. [Google Scholar] [CrossRef]
- Muscolo, A.; Papalia, T.; Mallamaci, C.; Carabetta, S.; Di Sanzo, R.; Russo, M. Effect of Organic Fertilizers on Selected Health Beneficial Bioactive Compounds and Aroma Profile of Red Topepo Sweet Pepper. Foods 2020, 9, 1323. [Google Scholar] [CrossRef] [PubMed]
- Slimani, N.; Arraouadi, S.; Hajlaoui, H. Biochemical and Physiological Behavior against Salt Stress Effect on Two Quinoa Accessions (Chenopodium quinoa Willd.). Int. J. Agric. Anim. Prod. 2022, 2, 9–19. [Google Scholar] [CrossRef]
- Loudari, A.; Latique, S.; Mayane, A.; Colinet, G.; Oukarroum, A. Polyphosphate Fertilizer Impacts the Enzymatic and Non-Enzymatic Antioxidant Capacity of Wheat Plants Grown under Salinity. Sci. Rep. 2023, 13, 11212. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M. Abiotic Stress and Reactive Oxygen Species. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Güne, A.; Kordali, Ş.; Turan, M. Industrial Crops & Products Determination of Antioxidant Enzyme Activity and Phenolic Contents of Some Species of the Asteraceae Family from Medicanal Plants. Ind. Crops Prod. 2019, 137, 208–213. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Feng, D.; Duan, N.; Rong, L.; Wu, Z.; Shen, Y. Effect of Different Doses of Nitrogen Fertilization on Bioactive Compounds and Antioxidant Activity of Brown Rice. Front. Nutr. 2023, 10, 1071874. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Rahman, Z.A. Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah). Int. J. Mol. Sci. 2012, 13, 393–408. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef]
- Stefanelli, D.; Winkler, S.; Jones, R. Reduced Nitrogen Availability during Growth Improves Quality in Red Oak Lettuce Leaves by Minimizing Nitrate Content, and Increasing Antioxidant Capacity and Leaf Mineral Content. Agric. Sci. 2011, 2, 477–486. [Google Scholar] [CrossRef]
- Yaldiz, G. Effects of Potassium Sulfate [K2SO4] on the Element Contents, Polyphenol Content, Antioxidant and Antimicrobial Activities of Milk Thistle [Silybum Marianum]. Pharmacogn. Mag. 2017, 13, 102–107. [Google Scholar] [CrossRef]
Serial Number | Fertilizer Rate | Fertilization Treatment | ||||
---|---|---|---|---|---|---|
N | P2O5 | K2O | Organic Fertilizer | Inorganic Fertilizer | ||
1 | 0 | 0 | 0 | Negative control (NON−) | ||
2 | 0 | 196 | 300 | Low nitrogen (LN) | ||
3 | 330 | 0 | 300 | Low phosphorus (LP) | ||
4 | 330 | 196 | 0 | Low potassium (LK) | ||
5 | 330 | 196 | 300 | Balance fertilization (BF) | ||
6 | 330 | 196 | 450 | High potassium (HK) | ||
7 | 1666 | Positive control 1 (O+) | ||||
8 | 1666 | Positive control 2 (I+) |
Fertilization Treatment | Seedling Stage | ||
---|---|---|---|
Plant Height (cm) | Stem Diameter (cm) | Leaf Area (cm2) | |
Negative control (NON−) | 24 ± 1.85 f | 0.31 ± 0.008 g | 6.75 ± 0.35 h |
Low nitrogen (LN) | 32 ± 1.87 d | 0.41 ± 0.022 f | 20.31 ± 0.36 c |
Low phosphorus (LP) | 34 ± 2.78 c | 0.39 ± 0.008 c | 17.42 ± 0.33 d |
Low potassium (LK) | 30 ± 1.61 e | 0.34 ± 0.025 e | 11.65 ± 0.33 e |
Balance fertilization (BF) | 40 ± 2.74 b | 0.42 ± 0.010 b | 21.47 ± 0.61 b |
High potassium (HK) | 45 ± 3.65 a | 0.45 ± 0.017 a | 25.37 ± 0.70 a |
Positive control 1 (O+) | 35 ± 2.49 c | 0.38 ± 0.017 c | 9.94 ± 0.66 f |
Positive control 2 (I+) | 33 ± 1.57 cd | 0.36 ± 0.028 d | 8.26 ± 0.74 g |
Fertilization Treatment | Branching Period | ||
---|---|---|---|
Plant Height (cm) | Stem Diameter (cm) | Leaf Area (cm2) | |
Negative control (NON−) | 41 ± 1.33 g | 0.41 ± 0.02 f | 9.81 ± 0.35 h |
Low nitrogen (LN) | 55 ± 1.47 d | 0.45 ± 0.04 c | 24.34 ± 0.36 c |
Low phosphorus (LP) | 53 ± 1.70 e | 0.44 ± 0.04 d | 20.29 ± 0.33 d |
Low potassium (LK) | 50 ± 1.73 f | 0.43 ± 0.04 e | 14.26 ± 0.33 e |
Balance fertilization (BF) | 66 ± 3.61 a | 0.49 ± 0.03 a | 29.45 ± 0.70 a |
High potassium (HK) | 62 ± 1.80 b | 0.46 ± 0.02 b | 25.59 ± 0.61 b |
Positive control 1 (O+) | 63 ± 2.79 b | 0.44 ± 0.03 d | 12.83 ± 0.66 f |
Positive control 2 (I+) | 59 ± 2.76 c | 0.43 ± 0.03 e | 11.82 ± 0.74 g |
Fertilization Treatment | Plant Height (cm) | Stem Diameter (cm) | Leaf Area (cm2) | Width (cm) | Flower Diameter (cm) |
---|---|---|---|---|---|
Negative control (NON−) | 57 ± 1.73 h | 0.65 ± 0.03 f | 15.51 ± 0.59 g | 1.27 ± 0.08 f | 2.91 ± 0.06 h |
Low nitrogen (LN) | 68 ± 2.10 e | 0.72 ± 0.02 c | 32.65 ± 0.83 d | 1.74 ± 0.07 c | 3.86 ± 0.05 e |
Low phosphorus (LP) | 65 ± 2.76 f | 0.70 ± 0.02 d | 29.35 ± 0.87 e | 1.66 ± 0.08 d | 3.530 ± 0.04 f |
Low potassium (LK) | 63 ± 1.01 g | 0.67 ± 0.04 e | 23.52 ± 0.91 f | 1.56 ± 0.08 e | 3.16 ± 0.06 g |
Balance fertilization (BF) | 82 ± 3.06 a | 0.78 ± 0.03 a | 38.50 ± 0.73 a | 1.86 ± 0.06 b | 4.52 ± 0.06 b |
High potassium (HK) | 79 ± 2.78 b | 0.75 ± 0.03 b | 33.51 ± 0.79 c | 1.93 ± 0.06 a | 4.94 ± 0.05 a |
Positive control 1 (O+) | 75 ± 1.96 c | 0.69 ± 0.03 d | 34.81 ± 0.71 bc | 1.85 ± 0.05 b | 4.22 ± 0.03 c |
Positive control 2 (I+) | 73 ± 1.94 d | 0.67 ± 0.02 e | 33.73 ± 0.79 c | 1.76 ± 0.07 c | 4.13 ± 0.06 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Peng, S.; Yin, Z.; Li, X.; Xie, L.; Shen, M.; Li, D.; Gao, J. Effects of N, P, K Nutrition Levels on the Growth, Flowering Attributes and Functional Components in Chrysanthemum morifolium. Horticulturae 2024, 10, 226. https://doi.org/10.3390/horticulturae10030226
Jiang K, Peng S, Yin Z, Li X, Xie L, Shen M, Li D, Gao J. Effects of N, P, K Nutrition Levels on the Growth, Flowering Attributes and Functional Components in Chrysanthemum morifolium. Horticulturae. 2024; 10(3):226. https://doi.org/10.3390/horticulturae10030226
Chicago/Turabian StyleJiang, Kaifang, Shu Peng, Zimeng Yin, Xiaohui Li, Lei Xie, Meichen Shen, Dahui Li, and Junshan Gao. 2024. "Effects of N, P, K Nutrition Levels on the Growth, Flowering Attributes and Functional Components in Chrysanthemum morifolium" Horticulturae 10, no. 3: 226. https://doi.org/10.3390/horticulturae10030226
APA StyleJiang, K., Peng, S., Yin, Z., Li, X., Xie, L., Shen, M., Li, D., & Gao, J. (2024). Effects of N, P, K Nutrition Levels on the Growth, Flowering Attributes and Functional Components in Chrysanthemum morifolium. Horticulturae, 10(3), 226. https://doi.org/10.3390/horticulturae10030226