In Vitro Propagation, Evaluation of Antioxidant Activities, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Curcuma larsenii Maknoi & Jenjitikul—A Rare Plant Species in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Micropropagation
2.2. Phytochemical Profiling Analysis
2.3. Statistical Analysis for Phytochemical Profiling
3. Results
3.1. In Vitro Plant Regeneration
3.1.1. In Vitro Shoot Multiplication and Root Induction
3.1.2. Acclimatization and Transplantation of In Vitro-Grown Plantlets
3.2. Phytochemical Profiling Analysis
3.2.1. Total Phenolic Contents and Total Flavonoid Contents
3.2.2. Antioxidant Activity
3.2.3. Determination of Phenolic Acid and Flavonoid Content by HPLC Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maknoi, C.; Jenjittikul, T. A new species of Curcuma L. (Zingiberaceae) from Southeast Asia. Gard. Bull. Singap. 2006, 58, 41–46. [Google Scholar]
- Akter, J.; Hossain, M.A.; Takara, K.; Islam, M.Z.; Hou, D.X. Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds. Comp. Biochem. Physiol. C 2019, 215, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Borah, A.; Paw, M.; Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Pandey, S.K.; Lal, M. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North East India. Ind. Crops Prod. 2019, 129, 448–454. [Google Scholar] [CrossRef]
- Burapan, S.; Kim, M.; Paisooksantivatana, Y.; Eser, B.E.; Han, J. Thai Curcuma species: Antioxidant and bioactive compounds. Foods 2020, 9, 1219. [Google Scholar] [CrossRef]
- Sabir, S.M.; Zeb, A.; Mahmood, M.; Abbas, S.R.; Ahmad, Z.; Iqbal, N. Phytochemical analysis and biological activities of ethanolic extract of Curcuma longa rhizome. Braz. J. Bot. 2021, 81, 737–740. [Google Scholar] [CrossRef]
- Haida, Z.; Sinniah, U.R.; Nakasha, J.J.; Hakiman, M. Shoot induction, multiplication, rooting and acclimatization of black turmeric (Curcuma caesia Roxb.): An important and endangered Curcuma species. Horticulturae 2022, 8, 740. [Google Scholar] [CrossRef]
- Jain, A.; Jain, P.; Bajaj, S.; Majumdar, A.; Soni, P. Chemoprofiling and antioxidant activity of edible Curcuma species. Food Humanit. 2023, 1, 1027–1039. [Google Scholar] [CrossRef]
- Yurasbe, N.Q.; Din, N.A.; Palaniveloo, K.; Manikam, S.; Nagappan, T. Phytochemical diversity and biological activities of Curcuma species from the East Coast of Peninsular Malaysia. Biodiversitas 2023, 24, 4243–4252. [Google Scholar] [CrossRef]
- Monton, C.; Theanphong, O.; Pathompak, P.; Suksaeree, J.; Chankana, N. Curcuminoid contents in rhizomes of some Zingiberaceous plants sold via online platforms: Influence of species and cultivation location. Int. J. Food Sci. 2024, 5929119. [Google Scholar] [CrossRef]
- Balachandran, S.M.; Bhat, S.R.; Chandel, K.P.S. In vitro clonal multiplication of turmeric (Curcuma spp.) and ginger (Zingiber officinale Rosc.). Plant Cell Rep. 1990, 8, 521–524. [Google Scholar] [CrossRef]
- Theanphong, O.; Songsak, T.; Kirdmanee, C. Effect of plant growth regulators on micropropagation of Curcuma. aeruginosa Roxb. Thai J. Bot. 2010, 2, 135–142. [Google Scholar]
- Alizah, Z.; Nurulaishah, Y.; Adilah, A. In vitro propagation of Cucurma aeruginosa Roxb in liquid culture. S. Asian Res. J. Biol. Appl. Biosci. 2019, 1, 87–89. [Google Scholar] [CrossRef]
- Prakash, S.; Elangomathavan, R.; Seshadri, S.; Kathiravan, K.; Ignacimuthu, S. Efficient regeneration of Curcuma amada Roxb. plantlets from rhizome and leaf sheath explants. Plant Cell Tissue Organ Cult. 2004, 78, 159–165. [Google Scholar] [CrossRef]
- Mohanty, S.; Joshi, R.K.; Subudhi, E.; Sahoo, S.; Nayak, S. Genetic stability assessment of micropropagated mango ginger (Curcuma amada Roxb.) through RAPD and ISSR markers. Res. J. Med. Plant 2012, 6, 529–536. [Google Scholar] [CrossRef]
- Shukla, S.K.; Shukla, S.; Koche, V.; Mishra, S.K. In vitro propagation of tikhur (Curcuma angustifolia Roxb.): A starch yielding plant. Indian J. Biotechnol. 2007, 6, 274–276. [Google Scholar]
- Jena, S.; Ray, A.; Sahoo, A.; Sahoo, S.; Kar, B.; Panda, P.C.; Nayak, S. High-frequency clonal propagation of Curcuma angustifolia ensuring genetic fidelity of micropropagated plants. Plant Cell Tissue Organ Cult. 2018, 135, 473–486. Available online: https://link.springer.com/article/10.1007/s11240-018-1480-z (accessed on 4 June 2024). [CrossRef]
- Nayak, S. In vitro multiplication and microrhizome induction in Curcuma aromatica Salisb. Plant Growth Regul. 2000, 32, 41–47. [Google Scholar] [CrossRef]
- Bharalee, R.; Das, A.; Kalita, M.S. In vitro clonal propagation of Curcuma caesia Roxb. and Curcuma zedoaria Rosc. from rhizome bud explant. J. Plant Biochem. Biotechnol. 2005, 14, 61–63. [Google Scholar] [CrossRef]
- Shahinozzaman, M.; Ferdous, M.M.; Faruq, M.O.; Azad, M.A.K.; Amin, M.N. Micropropagation of black turmeric (Curcuma caesia Roxb.) through in vitro culture of rhizome bud explants. J. Cent. Eur. Agric. 2013, 14, 110–115. [Google Scholar] [CrossRef]
- Chowdhury, S.; Pal, K.; Chakraborty, M.; Chakraborty, S.; Mandal, S.; Pandit, G.K.; Maitra, S.; Sahana, N. Conservation and in vitro propagation of an endangered wild turmeric (Curcuma caesia Roxb.) species from sub-himalayan terai region of west Bengal. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2132–2140. [Google Scholar] [CrossRef]
- Prathanturarug, S.; Soonthornchareonnon, N.; Chuakul, W.; Phaidee, Y.; Saralamp, P. Rapid micropropagation of Curcuma longa using bud explants pre-culture in thidiazuron-supplemented liquid medium. Plant Cell Tissue Organ Cult. 2005, 80, 347–351. [Google Scholar] [CrossRef]
- Jala, A. Effects of NAA, BA and sucrose on shoot induction and rapid micropropagation by trimming shoot of Curcuma longa L. Int. Transact. J. Eng. Manag. Appl. Sci. Technol. 2012, 3, 101–109. [Google Scholar]
- Ghosh, A.; Chatterjee, P.; Ghosh, P. A protocol for rapid propagation of genetically true to type Indian turmeric (Curcuma longa L.) through in vitro culture technique. Adv. Appl. Sci. Res. 2013, 4, 39–45. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. The diversity of biologically active compounds in the rhizomes of recently discovered Zingiberaceae plants native to North Eastern Thailand. Pharmacogn. J. 2019, 11, 1014–1022. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Kaewseejan, N. Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Sci. Hortic. 2017, 221, 33–42. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Tangkhawanit, E.; Kaewseejan, N. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder. Food Chem. 2016, 201, 160–167. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. Changes in curcuminoids and chemical components of turmeric (Curcuma longa L.) under freeze-drying and low-temperature drying methods. Food Chem. 2021, 339, 128121. [Google Scholar] [CrossRef]
- Jena, S.; Ray, A.; Sahoo, A.; Sahoo, S.; Dash, B.; Kar, B.; Nayak, S. Rapid plant regeneration in industrially important Curcuma zedoaria revealing genetic and biochemical fidelity of the regenerants. Biotechnology 2020, 10, 17. [Google Scholar] [CrossRef]
- Saensouk, S.; Phookabhin, B.; Muangsan, N.; Chumroenphat, T.; Saensouk, P. In vitro propagation of Curcuma sparganifolia Gagnep., a rare plant species from Thailand. J. Anim. Plant Sci. 2023, 33, 367–377. [Google Scholar] [CrossRef]
- Yaowachai, W.; Saensouk, S.; Saensouk, P. In vitro propagation and determination of total phenolic compounds, flavonoid contents and antioxidative activity of Globba globulifera Gagnep. Pharmacogn. J. 2020, 12, 1740–1747. [Google Scholar] [CrossRef]
- Nonthalee, S.; Maneechai, S.; Saensouk, S.; Saensouk, P. In vitro propagation, microrhizome induction, and evaluation of genetic variation by RAPD markers of Kaempferia siamensis Sirirugsa. Propag. Ornam. Plants 2022, 22, 11–22. Available online: https://www.journal-pop.org/2022_22_1_11-22.html (accessed on 8 March 2024).
- Khajuria, A.K.; Bisht, N.S.; Bhagat, N. In vitro organogenesis and plant regeneration of Thymus serpyllum L.: An important aromatic medicinal plant. In Vitro Cell Dev. Biol. Plant 2020, 56, 652–661. [Google Scholar] [CrossRef]
- Purohit, S.; Nandi, S.K.; Paul, S.; Tariq, M.; Palni, L.M.S. Micropropagation and genetic fidelity analysis in Amomum subulatum Roxb.: A commercially important Himalayan plant. J. Appl. Res. Med. Aroma Plants 2017, 4, 21–26. [Google Scholar] [CrossRef]
- Nasirujjaman, K.; Uddin, M.S.; Zaman, S.; Reza, M.A. Micropropagation of turmeric (Curcuma longa L.) through in vitro rhizome bud culture. J. Biol. Sci. 2005, 5, 490–492. [Google Scholar] [CrossRef]
- Ma, X.; Gang, D.R. Metabolic profiling of turmeric (Curcuma longa L.) plants derived from in vitro micropropagation and conventional greenhouse cultivation. J. Agric. Food Chem. 2006, 54, 9573–9583. [Google Scholar] [CrossRef]
- Panda, M.K.; Mohanty, S.; Subudhi, E.; Acharya, L.; Nayak, S. Assessment of genetic stability of micropropagated plants of Curcuma longa L. by cytophotometry and RAPD analyses. Int. J. Integr. 2007, 1, 189–195. [Google Scholar]
- Tyagi, R.K.; Agrawal, A.; Mahalakshmi, C.; Hussain, Z.; Tyagi, H. Low-cost media for in vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Dev. Biol. Plant 2007, 43, 51–58. [Google Scholar] [CrossRef]
- Saensouk, S.; Yaowachai, W.; Chumroenphat, T.; Nonthalee, S.; Saensouk, P. In vitro regeneration, transplantation and phytochemical profiles of Kaempferia angustifolia Roscoe. Not. Bot. Horti Agrobot. 2023, 51, 13190. [Google Scholar] [CrossRef]
BA (mg/L) | NAA (mg/L) | Average No. of Shoots/Explant Mean ± SE | Average Shoot Length (cm) Mean ± SE | Average No. of Roots/Explant Mean ± SE | Average Root Length (cm) Mean ± SE |
---|---|---|---|---|---|
0 | 0 | 1.00 ± 0.00 d | 5.18 ± 0.49 a | 4.70 ± 0.49 c | 2.45 ± 0.43 c |
1 | 0.1 | 3.40 ± 0.60 b | 3.51 ± 0.29 b | 5.50 ± 0.69 b | 3.77 ± 0.31 b |
2 | 0.1 | 2.80 ± 0.40 c | 3.50 ± 0.39 b | 5.00 ± 0.39 b | 4.16 ± 0.34 a |
3 | 0.1 | 2.70 ± 0.42 c | 2.46 ± 0.24 c | 5.30 ± 0.45 b | 3.91 ± 0.47 b |
4 | 0.1 | 2.80 ± 0.30 c | 3.73 ± 0.34 b | 5.70 ± 0.50 a,b | 4.21 ± 0.49 a |
5 | 0.1 | 2.90 ± 0.35 c | 3.17 ± 0.38 b,c | 5.00 ± 0.33 b | 4.43 ± 0.61 a |
1 | 0.5 | 3.20 ± 0.26 b | 3.16 ± 0.18 b,c | 5.50 ± 0.96 b | 4.77 ± 0.24 a |
2 | 0.5 | 5.40 ± 0.40 a | 3.67 ± 0.32 b | 6.60 ± 1.09 a | 4.78 ± 0.23 a |
3 | 0.5 | 4.70 ± 0.22 a,b | 3.56 ± 0.34 b | 5.80 ± 1.02 a,b | 5.01 ± 0.37 a |
4 | 0.5 | 4.20 ± 0.43 a,b | 3.73 ± 0.27 b | 5.80 ± 0.65 a,b | 4.61 ± 0.42 a |
5 | 0.5 | 3.90 ± 0.27 b | 3.29 ± 0.26 b,c | 5.40 ± 0.73 b | 4.58 ± 0.31 a |
Kinetin (mg/L) | NAA (mg/L) | Average No. of Shoots/Explant Mean ± SE | Average Shoot Length (cm) Mean ± SE | Average No. of Roots/Explant Mean ± SE | Average Root Length (cm) Mean ± SE |
---|---|---|---|---|---|
0 | 0 | 2.00 ± 0.61 b | 5.17 ± 0.72 a | 5.10 ± 0.60 c | 3.52 ± 0.47 b |
1 | 0.1 | 2.00 ± 0.33 b | 4.26 ± 0.29 b | 5.50 ± 0.96 c | 3.38 ± 0.47 b |
2 | 0.1 | 2.80 ± 0.55 a,b | 4.83 ± 0.60 a,b | 6.60 ± 1.09 b,c | 3.35 ± 0.55 b |
3 | 0.1 | 2.50 ± 0.54 b | 5.03 ± 0.46 a | 5.80 ± 1.02 c | 3.92 ± 0.45 b |
4 | 0.1 | 2.40 ± 0.34 b | 5.63 ± 0.39 a | 5.80 ± 0.65 c | 4.28 ± 0.30 a |
5 | 0.1 | 2.10 ± 0.35 b | 4.70 ± 0.67 a,b | 5.40 ± 0.73 c | 3.75 ± 0.24 b |
1 | 0.5 | 2.34 ± 0.24 b | 5.21 ± 0.18 a | 5.70 ± 0.28 c | 4.23 ± 0.31 a |
2 | 0.5 | 3.10 ± 0.27 a | 5.93 ± 0.42 a | 8.50 ± 0.24 a | 4.54 ± 0.25 a |
3 | 0.5 | 2.80 ± 0.32 a,b | 5.88 ± 0.41 a | 7.50 ± 0.32 b | 4.92 ± 0.21 a |
4 | 0.5 | 2.60 ± 0.23 a,b | 5.74 ± 0.29 a | 7.20 ± 0.23 b | 4.80 ± 0.26 a |
5 | 0.5 | 2.40 ± 0.235 b | 4.95 ± 0.27 a,b | 6.80 ± 0.22 b,c | 4.35 ± 0.23 a |
BA (mg/L) | Kinetin (mg/L) | IAA (mg/L) | Average No. of Shoots/Explant Mean ± SE | Average Shoot Length (cm) Mean ± SE | Average No. of Roots/Explant Mean ± SE | Average Root Length (cm) Mean ± SE |
---|---|---|---|---|---|---|
0 | 0 | 0 | 2.30 ± 0.24 e | 5.39 ± 0.45 d | 6.90 ± 0.82 c | 2.62 ± 0.18 b |
1 | 0 | 0.5 | 3.70 ± 0.15 d | 10.28 ± 1.30 a | 7.30 ± 0.76 a,b | 3.92 ± 0.44 a |
2 | 0 | 0.5 | 8.80 ± 0.31 a | 10.60 ± 0.71 a | 8.80 ± 0.33 a,b | 3.98 ± 0.11 a |
3 | 0 | 0.5 | 7.40 ± 0.28 a,b | 8.65 ± 1.29 b | 8.20 ± 0.71 b | 3.83 ± 0.09 a |
4 | 0 | 0.5 | 6.50 ± 0.28 b | 6.79 ± 0.77 c | 9.20 ± 1.03 a | 3.49 ± 0.28 a |
5 | 0 | 0.5 | 5.30 ± 0.30 c | 7.20 ± 0.65 c | 6.60 ± 0.72 c | 3.21 ± 0.24 a,b |
0 | 1 | 0.5 | 3.30 ± 0.34 d | 6.65 ± 1.02 c | 6.20 ± 0.57 c | 2.83 ± 0.10 a,b |
0 | 2 | 0.5 | 5.50 ± 0.31 c | 7.92 ± 0.78 b,c | 7.30 ± 0.43 a,b | 2.49 ± 0.21 b |
0 | 3 | 0.5 | 4.70 ± 0.29 c,d | 7.54 ± 0.28 c | 6.50 ± 0.52 c | 2.21 ± 0.17 b |
0 | 4 | 0.5 | 4.40 ± 0.36 c,d | 8.02 ± 0.35 b | 6.20 ± 0.57 c | 2.83 ± 0.18 a,b |
0 | 5 | 0.5 | 4.70 ± 0.28 c,d | 7.02 ± 0.46 c | 6.30 ± 0.41 c | 2.56 ± 0.19 b |
Plant Materials | Percentage of Surviving Plantlets (%) | Average No. of Shoots/Explant Mean ± SE | Average Shoot Length (cm) Mean ± SE | Average No. of Leaves/Explant Mean ± SE | Average Width of Leaves/Explant (cm) Mean ± SE | Average Length of Leaves/Explant (cm) Mean ± SE |
---|---|---|---|---|---|---|
Soil | 90 | 3.24 ± 0.12 b | 6.34 ± 0.27 c | 6.54 ± 0.27 b | 1.59 ± 0.04 a | 7.93 ± 0.14 b |
Sand | 100 | 4.74 ± 0.15 a | 8.78 ± 0.23 a | 7.26 ± 0.21 a | 1.95 ± 0.04 a | 10.07 ± 0.18 a |
Soil–sand | 100 | 3.89 ± 0.12 b | 7.35 ± 0.20 b | 6.46 ± 0.23 b | 1.70 ± 0.03 a | 9.42 ± 0.14 a |
Conditions | Explants | TPC (mg GAE/g DW) Mean ± SE | TFC (mg RE/g DW) Mean ± SE | DPPH (mg TE/g DW) Mean ± SE | DPPH (% Inhibition) Mean ± SE | FRAP (mg FeSO4/ g DW) Mean ± SE |
---|---|---|---|---|---|---|
Mother plant | Leaves | 115.74 ± 0.46 d | 34.86 ± 0.05 a | 4.38 ± 0.01 a,b | 93.54 ± 0.28 a | 0.06 ± 0.00 d |
Pseudostem | 100.98 ± 0.53 d | 23.81 ± 0.03 b,c | 4.33 ± 0.02 a,b | 92.09 ± 0.64 a | 0.06 ± 0.00 d | |
Rhizome | 10.29 ± 0.14 e | 10.49 ± 0.43 e | 1.50 ± 0.11 e | 16.48 ± 0.23 f | 0.02 ± 0.01 d | |
Root | 30.08 ± 0.18 e | 25.25 ± 1.59 b,c | 1.83 ± 0.05 e | 22.30 ± 1.44 e | 0.03 ± 0.00 d | |
In vitro | Leaves (MS) | 317.33 ± 1.45 a | 28.19 ± 0.99 b | 4.54 ± 0.31 a | 85.93 ± 2.24 b | 6.24 ± 0.37 a |
Leaves (MS + 2BA + 0.1NAA) | 302.63 ± 2.39 b | 26.04 ± 1.89 b,c | 3.99 ± 0.01 b,c | 76.04 ± 0.21 c | 5.71 ± 0.24 b | |
Root (MS) | 265.00 ± 0.77 c | 20.45 ± 4.95 c,d | 3.63 ± 0.31 c | 73.56 ± 1.15 c | 3.41 ± 0.08 c | |
Root (MS + 2BA + 0.1NAA) | 263.79 ± 4.48 c | 15.22 ± 0.54 d,e | 3.08 ± 0.03 d | 59.84 ± 0.60 d | 3.27 ± 0.17 c |
TPC | TFC | DPPH | %Inhibition (DPPH) | FRAP | |
---|---|---|---|---|---|
TPC | 1 | 0.226 | 0.126 | 0.045 | 0.883 ** |
TFC | 1 | −0.045 * | −0.543 ** | 0.119 | |
DPPH | 1 | 0.974 ** | 0.433 * | ||
%inhibition (DPPH) | 1 | 0.332 | |||
FRAP | 1 |
Conditions | Explants | Phenolic Content (µg/g) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | Protocatechuic Acid | p-Hy- droxy- benzoic Acid | Chlorogenic Acid | Vanillic Acid | Caffeic Acid | Syringic Acid | p-Coumaric Acid | Ferulic Acid | Sinapic Acid | Total Phenolics | ||
Mother plant | Leaf | ND | 11.11 ± 0.18 a | ND | ND | 18.14 ± 0.09 e | 6.57 ± 0.09 a | 71.79 ± 0.14 a | 33.89 ± 0.17 b | 57.54 ± 0.09 a | 86.33 ± 0.31 a | 285.38 ± 1.08 |
Pseudostem | 0.49 ± 0.04 de | 7.77 ± 0.12 b | ND | 2.98 ± 0.23 a | 8.97 ± 0.13 f | 0.36 ± 0.03 e | 4.59 ± 0.09 b | 5.03 ± 0.15 d | 2.59 ± 0.12 d | 5.26 ± 0.22 f | 38.02 ± 1.13 | |
Rhizome | 0.55 ± 0.03 d | 3.69 ± 0.19 c | 5.86 ± 0.02 a | ND | 2.51 ± 0.06 h | 0.52 ± 0.03 d | 0.53 ± 0.04 c,d | 11.54 ± 0.15 c | 5.54 ± 0.11 b | 6.87 ± 0.03 c | 37.61 ± 0.67 | |
Root | 1.84 ± 0.03 a | 1.56 ± 0.09 e | 5.53 ± 0.09 b | 0.08 ± 0.00 b | 3.02 ± 0.19 g | 0.72 ± 0.01 c | 0.48 ± 0.03 d | 50.91 ± 0.22 a | 2.02 ± 0.01 e | 1.28 ± 0.07 h | 67.46 ± 0.73 | |
In vitro | Leaf (MS) | 0.89 ± 0.05 b | ND | ND | ND | 592.85 ± 0.04 b | ND | ND | 0.10 ± 0.00 g | ND | 5.73 ± 0.09 e | 599.57 ± 3.65 |
Leaf (MS + 2BA + 0.1NAA) | 0.67 ± 0.03 c | 2.07 ± 0.09 d | ND | ND | 293.27 ± 0.06 d | ND | 0.67 ± 0.03 c | ND | 3.54 ± 0.05 c | 2.53 ± 0.00 g | 302.75 ± 6.33 | |
Root (MS) | 0.91 ± 0.03 b | ND | ND | ND | 952.81 ± 0.09 a | 1.68 ± 0.05 b | ND | 0.34 ± 0.01 f | ND | 6.28 ± 0.09 d | 962.02 ± 9.61 | |
Root (MS + 2BA + 0.1NAA) | 0.46 ± 0.04 e | ND | ND | ND | 582.38 ± 0.78 c | 0.67 ± 0.04 c | ND | 1.67 ± 0.04 e | 1.71 ± 0.01 f | 8.60 ± 0.09 b | 595.49 ± 7.97 |
Conditions | Explants | Flavonoid Content (µg/g) | ||||
---|---|---|---|---|---|---|
Rutin | Myrecetin | Quercetin | Apigenin | Total Flavonoids | ||
Mother plant | Leaf | 441.29 ± 3.94 a | 1042.97 ± 7.07 a | ND | 69.04 ± 0.59 c | 1553.31 ± 11.61 |
Pseudostem | 6.86 ± 0.20 b | 1042.97 ± 7.07 a | 16.87 ± 0.11 a | ND | 1066.71 ± 7.39 | |
Rhizome | 2.56 ± 0.07 d | 206.75 ± 3.08 b | ND | 20.65 ± 0.41 e | 227.40 ± 3.49 | |
Root | ND | 68.15 ± 1.22 d | ND | ND | 70.71 ± 1.29 | |
In vitro | Leaf (MS) | 6.29 ± 0.07 b,c | 32.13 ± 0.07 e | ND | 57.26 ± 0.02 d | 95.67 ± 0.17 |
Leaf (MS + 2BA + 0.1NAA) | 3.55 ± 0.02 c,d | 22.26 ± 0.09 f | ND | 57.58 ± 0.03 d | 83.39 ± 0.16 | |
Root (MS) | 2.84 ± 0.00 d | 99.23 ± 0.09 c | ND | 88.31 ± 0.01 a | 192.01 ± 0.12 | |
Root (MS + 2BA + 0.1NAA) | 4.91 ± 0.06 b,c,d | 99.70 ± 0.05 c | ND | 87.40 ± 0.01 b | 190.37 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saensouk, S.; Benjamin, S.; Chumroenphat, T.; Saensouk, P. In Vitro Propagation, Evaluation of Antioxidant Activities, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Curcuma larsenii Maknoi & Jenjitikul—A Rare Plant Species in Thailand. Horticulturae 2024, 10, 1181. https://doi.org/10.3390/horticulturae10111181
Saensouk S, Benjamin S, Chumroenphat T, Saensouk P. In Vitro Propagation, Evaluation of Antioxidant Activities, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Curcuma larsenii Maknoi & Jenjitikul—A Rare Plant Species in Thailand. Horticulturae. 2024; 10(11):1181. https://doi.org/10.3390/horticulturae10111181
Chicago/Turabian StyleSaensouk, Surapon, Supacha Benjamin, Theeraphan Chumroenphat, and Piyaporn Saensouk. 2024. "In Vitro Propagation, Evaluation of Antioxidant Activities, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Curcuma larsenii Maknoi & Jenjitikul—A Rare Plant Species in Thailand" Horticulturae 10, no. 11: 1181. https://doi.org/10.3390/horticulturae10111181
APA StyleSaensouk, S., Benjamin, S., Chumroenphat, T., & Saensouk, P. (2024). In Vitro Propagation, Evaluation of Antioxidant Activities, and Phytochemical Profiling of Wild and In Vitro-Cultured Plants of Curcuma larsenii Maknoi & Jenjitikul—A Rare Plant Species in Thailand. Horticulturae, 10(11), 1181. https://doi.org/10.3390/horticulturae10111181