An Exploration of Candidate Korean Native Poaceae Plants for Breeding New Varieties as Garden Materials in the New Climate Regime Based on Existing Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Yang, L.; Ye, W. Landscape design of garden plants based on green and low-carbon energy under the background of big data. Energy Rep. 2022, 8, 13399–13408. [Google Scholar] [CrossRef]
- Basey, A.C.; Fant, J.B.; Kramer, A.T. Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Nativ. Plants J. 2015, 16, 37–53. [Google Scholar] [CrossRef]
- Kruckeberg, A.R.; Chalker-Scott, L. Gardening with Native Plants of the Pacific Northwest, 3rd ed.; University of Washington Press: Seattle, WA, USA, 2019. [Google Scholar]
- Mareri, L.; Parrotta, L.; Cai, G. Environmental Stress and Plants. Int. J. Mol. Sci. 2022, 23, 5416. [Google Scholar] [CrossRef]
- Xiong, W.; Reynolds, M.; Xu, Y. Climate change challenges plant breeding. Curr. Opin. Plant Biol. 2022, 70, 102308. [Google Scholar] [CrossRef]
- Gupta, A.; Ranjan, R. Grasses as an Immense Source of Pharmacologically Active Medicinal Properties: An Overview. Proc. Indian Natl. Sci. Acad. 2020, 86, 1323–1329. [Google Scholar] [CrossRef]
- Souza, F.H.D.D.; Gusmão, M.R.; Cavallari, M.M.; Barioni, W., Jr. Characterization of the potential of native grasses for use as lawns. Ornam. Hortic. 2020, 26, 109–120. [Google Scholar] [CrossRef]
- Dunster, K. Beyond Turf and Lawn: Poaceae in This Age of Climate Change. In Grasses-Benefits, Diversities and Functional Roles; Almusaed, A., Al-Samaraee, S.M.S., Eds.; IntechOpen: London, UK, 2017; pp. 87–118. [Google Scholar]
- Aitken, K.S.; McNeil, M.D.; Berkman, P.J.; Hermann, S.; Kilian, A.; Bundock, P.C.; Li, J. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol. 2014, 14, 190. [Google Scholar] [CrossRef]
- Ray, S.; Satya, P.; Sharma, L.; Roy, S.; Bera, A.; Santra, S.; Ghosh, S. Model Plants in Genomics. In Plant Genomics for Sustainable Agriculture; Singh, R.L., Mondal, S., Parihar, A., Singh, P.K., Eds.; Springer Nature: Singapore, 2022; pp. 241–264. [Google Scholar]
- Gaut, B.S. Evolutionary dynamics of grass genomes. New Phytol. 2002, 154, 15–28. [Google Scholar] [CrossRef]
- Zhdanov, O.; Blatt, M.R.; Cammarano, A.; Zare-Behtash, H.; Busse, A. A new perspective on mechanical characterisation of Arabidopsis stems through vibration tests. J. Mech. Behav. Biomed. Mater. 2020, 112, 104041. [Google Scholar] [CrossRef] [PubMed]
- Meinke, D.W.; Cherry, J.M.; Dean, C.; Rounsley, S.D.; Koornneef, M. Arabidopsis thaliana: A Model Plant for Genome Analysis. Science 1998, 282, 662–682. [Google Scholar] [CrossRef]
- Kellogg, E.A. Evolutionary History of the Grasses. Plant Physiol. 2001, 125, 1198–1205. [Google Scholar] [CrossRef]
- Raissig, M.T.; Woods, D.P. The Wild Grass Brachypodium Distachyon as a Developmental Model System. In Current Topics in Developmental Biology; Goldstein, B., Srivastava, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; Chapter Two; Volume 147, pp. 33–71. [Google Scholar]
- Scholthof, K.-B.G.; Irigoyen, S.; Catalan, P.; Mandadi, K.K. Brachypodium: A Monocot Grass Model Genus for Plant Biology. Plant Cell 2018, 30, 1673–1694. [Google Scholar] [CrossRef]
- Brutnell, T.P.; Bennetzen, J.L.; Vogel, J.P. Brachypodium distachyon and Setaria viridis: Model Genetic Systems for the Grasses. Annu. Rev. Plant Biol. 2015, 66, 465–485. [Google Scholar] [CrossRef]
- Steinwand, M.A.; Young, H.A.; Bragg, J.N.; Tobias, C.M.; Vogel, J.P. Brachypodium sylvaticum, a Model for Perennial Grasses: Transformation and Inbred Line Development. PLoS ONE 2013, 8, e75180. [Google Scholar] [CrossRef]
- Brutnell, T.P.; Wang, L.; Swartwood, K.; Goldschmidt, A.; Jackson, D.; Zhu, X.-G.; Kellogg, E.; Van Eck, J. Setaria viridis: A Model for C4 Photosynthesis. Plant Cell 2010, 22, 2537–2544. [Google Scholar] [CrossRef]
- Cai, H.-w.; Inoue, M.; Yuyama, N.; Takahashi, W.; Hirata, M.; Sasaki, T. Isolation, characterization and mapping of simple sequence repeat markers in zoysiagrass (Zoysia spp.). Theor. Appl. Genet. 2005, 112, 158–166. [Google Scholar] [CrossRef]
- Sun, H.-J.; Song, I.-J.; Bae, T.-W.; Lee, H.-Y. Recent developments in biotechnological improvement of Zoysia japonica Steud. J. Plant Biotechnol. 2010, 37, 400–407. [Google Scholar] [CrossRef]
- Tanaka, H.; Hirakawa, H.; Kosugi, S.; Nakayama, S.; Ono, A.; Watanabe, A.; Hashiguchi, M.; Gondo, T.; Ishigaki, G.; Muguerza, M. Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Res. 2016, 23, 171–180. [Google Scholar] [CrossRef]
- Muguerza, M.B.; Gondo, T.; Ishigaki, G.; Shimamoto, Y.; Umami, N.; Nitthaisong, P.; Rahman, M.M.; Akashi, R. Tissue Culture and Somatic Embryogenesis in Warm-Season Grasses—Current Status and Its Applications: A Review. Plants 2022, 11, 1263. [Google Scholar] [CrossRef]
- Antonielli, M.; Pasqualini, S.; Batini, P.; Ederli, L.; Massacci, A.; Loreto, F. Physiological and anatomical characterisation of Phragmites australis leaves. Aquat. Bot. 2002, 72, 55–66. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Yu, D.; Liu, G.; Luo, L. Anatomical Characteristics of C4 and C3 Photosynthetic-pathway Poaceae Plants in Hainan. Chin. Bull. Bot. 2011, 46, 456–469. [Google Scholar] [CrossRef]
- Kobayashi, T.; Okamoto, K.; Hori, Y. Differences in Field Gas Exchange and Water Relations Between a C3 Dicot (Plantago Asiatica) and a C4 Monocot (Eleusine Indica). Photosynthetica 1999, 37, 123–130. [Google Scholar] [CrossRef]
- Carmo-Silva, A.E.; Soares, A.S.; Marques da Silva, J.; Bernardes da Silva, A.; Keys, A.J.; Arrabaça, M.C. Photosynthetic responses of three C4 grasses of different metabolic subtypes to water deficit. Funct. Plant Biol. 2007, 34, 204–213. [Google Scholar] [CrossRef]
- Waller, S.; Lewis, J. Occurrence of C3 and C4 Photosynthetic Pathways in North American Grasses. J. Range Manag. 1979, 32, 12–28. [Google Scholar] [CrossRef]
- Covshoff, S.; Szecowka, M.; Hughes, T.E.; Smith-Unna, R.; Kelly, S.; Bailey, K.J.; Sage, T.L.; Pachebat, J.A.; Leegood, R.; Hibberd, J.M. C4 Photosynthesis in the Rice Paddy: Insights from the Noxious Weed Echinochloa glabrescens. Plant Physiol. 2015, 170, 57–73. [Google Scholar] [CrossRef]
- Barden, L.S. Invasion of Microstegium vimineum (Poaceae), An Exotic, Annual, Shade-Tolerant, C4 Grass, into a North Carolina Floodplain. Am. Midl. Nat. 1987, 118, 40–45. [Google Scholar] [CrossRef]
- Hodgson, R.J.; Liddicoat, C.; Cando-Dumancela, C.; Fickling, N.W.; Peddle, S.D.; Ramesh, S.; Breed, M.F. Increasing aridity strengthens the core bacterial rhizosphere associations in the pan-palaeotropical C4 grass, Themeda triandra. Appl. Soil Ecol. 2024, 201, 105514. [Google Scholar] [CrossRef]
- Hager, H.A.; Ryan, G.D.; Kovacs, H.M.; Newman, J.A. Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses. BMC Ecol. 2016, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, M.E.; Hackel, J.; Vorontsova, M.S.; Alberti, A.; Arthan, W.; Burke, S.V.; Duvall, M.R.; Kellogg, E.A.; Lavergne, S.; McKain, M.R.; et al. Continued Adaptation of C4 Photosynthesis After an Initial Burst of Changes in the Andropogoneae Grasses. Syst. Biol. 2019, 69, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.B. Origin, Biogeographical Migrations and Diversifications of Turfgrasses; Michigan State University Press: East Lansing, MI, USA, 2012. [Google Scholar]
- Prendergast, H.D.V.; Hattersley, P.W.; Stone, N.E.; Lazarides, M. C4 acid decarboxylation type in Eragrostis (Poaceae) patterns of variation in chloroplast position, ultrastructure and geographical distribution. Plant Cell Environ. 1986, 9, 333–344. [Google Scholar] [CrossRef]
- Chauvel, B.; Munier-Jolain, N.; Letouzé, A.; Grandgirard, D. Developmental patterns of leaves and tillers in a black-grass population (Alopecurus myosuroides Huds.). Agronomie 2000, 20, 247–257. [Google Scholar] [CrossRef]
- Yang, D.-H.; Jeong, O.-C.; Sun, H.-J.; Kang, H.-G.; Lee, H.-Y. Genome analysis of Zoysia japonica ‘Yaji’ cultivar using PacBio long-read sequencing. Plant Biotechnol. Rep. 2023, 17, 275–283. [Google Scholar] [CrossRef]
- Lamesch, P.; Berardini, T.Z.; Li, D.; Swarbreck, D.; Wilks, C.; Sasidharan, R.; Muller, R.; Dreher, K.; Alexander, D.L.; Garcia-Hernandez, M.; et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2011, 40, D1202–D1210. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Krishnakumar, V.; Chan, A.P.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017, 89, 789–804. [Google Scholar] [CrossRef]
- Lei, L.; Gordon, S.P.; Liu, L.; Sade, N.; Lovell, J.T.; Rubio Wilhelmi, M.D.M.; Singan, V.; Sreedasyam, A.; Hestrin, R.; Phillips, J. The reference genome and abiotic stress responses of the model perennial grass Brachypodium sylvaticum. G3 Genes Genomes Genet. 2024, 14, jkad245. [Google Scholar] [CrossRef]
- Mamidi, S.; Healey, A.; Huang, P.; Grimwood, J.; Jenkins, J.; Barry, K.; Sreedasyam, A.; Shu, S.; Lovell, J.T.; Feldman, M. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nat. Biotechnol. 2020, 38, 1203–1210. [Google Scholar] [CrossRef]
- Baenziger, P.S. Plant breeding training in the US. HortScience 2006, 41, 40. [Google Scholar] [CrossRef]
- Tomaškin, J.; Tomaškinová, J.; Kizeková, M. Ornamental grasses as part of public green, their ecosystem services and use in vegetative arrangements in urban environment. Thaiszia. J. Bot. Košice 2015, 25, 1–13. [Google Scholar]
- Pamukcu-Albers, P.; Ugolini, F.; La Rosa, D.; Grădinaru, S.R.; Azevedo, J.C.; Wu, J. Building green infrastructure to enhance urban resilience to climate change and pandemics. Landsc. Ecol. 2021, 36, 665–673. [Google Scholar] [CrossRef]
- Helfand, G.E.; Park, J.S.; Nassauer, J.I.; Kosek, S. The economics of native plants in residential landscape designs. Landsc. Urban Plan. 2006, 78, 229–240. [Google Scholar] [CrossRef]
- Gillis, A.J.; Swim, J.K. Adding native plants to home landscapes: The roles of attitudes, social norms, and situational strength. J. Environ. Psychol. 2020, 72, 101519. [Google Scholar] [CrossRef]
- Ribaut, J.-M.; de Vicente, M.; Delannay, X. Molecular breeding in developing countries: Challenges and perspectives. Curr. Opin. Plant Biol. 2010, 13, 213–218. [Google Scholar] [CrossRef]
- Kersey, P.J. Plant genome sequences: Past, present, future. Curr. Opin. Plant Biol. 2019, 48, 1–8. [Google Scholar] [CrossRef]
- Van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Rice, E.S.; Green, R.E. New Approaches for Genome Assembly and Scaffolding. Annu. Rev. Anim. Biosci. 2019, 7, 17–40. [Google Scholar] [CrossRef]
- Sano, Y. Constraints in Using Wild Relatives in Breeding: Lack of Basic Knowledge on Crop Gene Pools. In International Crop Science I; Crop Science Society of America: Madison, WI, USA, 1993; pp. 437–443. [Google Scholar]
- Cesarino, I.; Dello Ioio, R.; Kirschner, G.K.; Ogden, M.S.; Picard, K.L.; Rast-Somssich, M.I.; Somssich, M. Plant science’s next top models. Ann. Bot. 2020, 126, 1–23. [Google Scholar] [CrossRef]
- Draper, J.; Mur, L.A.; Jenkins, G.; Ghosh-Biswas, G.C.; Bablak, P.; Hasterok, R.; Routledge, A.P. Brachypodium distachyon. A New Model System for Functional Genomics in Grasses. Plant Physiol. 2001, 127, 1539–1555. [Google Scholar] [CrossRef]
- Osada, T. Nihon Kika Shokubutsu Zukan: Illustrated Japanese Alien Plants; Hokuryukan: Nagano, Japan, 1972. [Google Scholar]
- Makino, T.; Ohashi, H.; Murata, J.; Iwatsuki, K. Shin Makino Nihon Shokubutsu Zukan: New Makino’s Illustrated Flora of Japan; Hokuryukan: Nagano, Japan, 2008. [Google Scholar]
- Jeon, W.B.; Lee, M.B.; Kim, D.Y.; Hong, M.J.; Lee, Y.J.; Seo, Y.W. Efficient Phosphinothricin Mediated Selection of Callus Derived from Brachypodium Mature Seed. Korean J. Breed. Sci. 2010, 42, 351–356. [Google Scholar]
- Hong, S.-Y.; Seo, P.J.; Yang, M.-S.; Xiang, F.; Park, C.-M. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol. 2008, 8, 112. [Google Scholar] [CrossRef]
- Mayer, B.F.; Bertrand, A.; Charron, J.-B. Treatment Analogous to Seasonal Change Demonstrates the Integration of Cold Responses in Brachypodium distachyon. Plant Physiol. 2020, 182, 1022–1038. [Google Scholar] [CrossRef]
- Takada, A.; Kodera, S.; Suzuki, K.; Nemoto, M.; Egawa, R.; Takizawa, H.; Hirata, A. Estimation of the number of heat illness patients in eight metropolitan prefectures of Japan: Correlation with ambient temperature and computed thermophysiological responses. Front. Public Health 2023, 11, 1061135. [Google Scholar] [CrossRef]
- Lee, J.; Lim, J.; Lee, J.; Park, J.; Won, M. Ground-Based NDVI Network: Early Validation Practice with Sentinel-2 in South Korea. Sensors 2024, 24, 1892. [Google Scholar] [CrossRef]
- Park, I.-K.; Shin, Y.; Baek, H.-J.; Kim, J.; Kim, D.-I.; Seok, M.; Oh, Y.; Park, D. Establishment potential across South Korea for two gecko species, Gekko japonicus and G. swinhonis, adapted to different climates. NeoBiota 2024, 93, 39–62. [Google Scholar] [CrossRef]
- Im, H.T. Plant geographical study for the plant of Cheju. Korean J. Plant Taxon. 1992, 22, 219–234. [Google Scholar] [CrossRef]
- Catalan, P.; López-Álvarez, D.; Díaz-Pérez, A.; Sancho, R.; López-Herránz, M.L. Phylogeny and Evolution of the Genus Brachypodium. In Genetics and Genomics of Brachypodium; Springer: Berlin/Heidelberg, Germany, 2016; pp. 9–38. [Google Scholar] [CrossRef]
- Felber, F.; Kozlowski, G.; Arrigo, N.; Guadagnuolo, R. Genetic and Ecological Consequences of Transgene Flow to the Wild Flora. In Green Gene Technology: Research in an Area of Social Conflict; Fiechter, A., Sautter, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 173–205. [Google Scholar]
- The_International_Brachypodium_Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463, 763–768. [Google Scholar] [CrossRef]
- Kim, J. The Current State and Characteristics of Ornamental Grasses in South Korea. J. Korean Inst. Landsc. Archit. 2021, 49, 151–162. [Google Scholar] [CrossRef]
- Moser, L.E.; Hoveland, C.S. Cool-Season Grass Overview. In Cool-Season Forage Grasses; Wiley: Hoboken, NJ, USA, 1996; pp. 1–14. [Google Scholar]
- Phillips, A.R.; Seetharam, A.S.; Albert, P.S.; AuBuchon-Elder, T.; Birchler, J.A.; Buckler, E.S.; Gillespie, L.J.; Hufford, M.B.; Llaca, V.; Romay, M.C. A happy accident: A novel turfgrass reference genome. G3 Genes Genomes Genet. 2023, 13, jkad073. [Google Scholar] [CrossRef]
- Frei, D.; Veekman, E.; Grogg, D.; Stoffel-Studer, I.; Morishima, A.; Shimizu-Inatsugi, R.; Yates, S.; Shimizu, K.K.; Frey, J.E.; Studer, B.; et al. Ultralong Oxford Nanopore Reads Enable the Development of a Reference-Grade Perennial Ryegrass Genome Assembly. Genome Biol. Evol. 2021, 13, evab159. [Google Scholar] [CrossRef]
- Li, P.; Brutnell, T.P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J. Exp. Bot. 2011, 62, 3031–3037. [Google Scholar] [CrossRef] [PubMed]
- Thielen, P.M.; Pendleton, A.L.; Player, R.A.; Bowden, K.V.; Lawton, T.J.; Wisecaver, J.H. Reference Genome for the Highly Transformable Setaria viridis ME034V. G3 Genes Genomes Genet. 2020, 10, 3467–3478. [Google Scholar] [CrossRef]
- Martins, P.K.; Nakayama, T.J.; Ribeiro, A.P.; da Cunha, B.A.D.B.; Nepomuceno, A.L.; Harmon, F.G.; Kobayashi, A.K.; Molinari, H.B.C. Setaria viridis floral-dip: A simple and rapid Agrobacterium-mediated transformation method. Biotechnol. Rep. 2015, 6, 61–63. [Google Scholar] [CrossRef]
- Weiss, T.; Wang, C.; Kang, X.; Zhao, H.; Elena Gamo, M.; Starker, C.G.; Crisp, P.A.; Zhou, P.; Springer, N.M.; Voytas, D.F. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis. Plant J. 2020, 104, 828–838. [Google Scholar] [CrossRef]
- Anderson, C.M.; Mattoon, E.M.; Zhang, N.; Becker, E.; McHargue, W.; Yang, J.; Patel, D.; Dautermann, O.; McAdam, S.A.; Tarin, T. High light and temperature reduce photosynthetic efficiency through different mechanisms in the C4 model Setaria viridis. Commun. Biol. 2021, 4, 1092. [Google Scholar] [CrossRef]
- Danila, F.R.; Thakur, V.; Chatterjee, J.; Bala, S.; Coe, R.A.; Acebron, K.; Furbank, R.T.; von Caemmerer, S.; Quick, W.P. Bundle sheath suberisation is required for C4 photosynthesis in a Setaria viridis mutant. Commun. Biol. 2021, 4, 254. [Google Scholar] [CrossRef]
- Hong, I.K.; Yun, H.K.; Lee, S.M.; Jung, Y.B.; Lee, M.R. Composition and Utilization of Urban Garden Space Using the Planting System Design Process. J. People Plants Environ. 2020, 23, 615–624. [Google Scholar] [CrossRef]
- Frey, D.; Moretti, M. A comprehensive dataset on cultivated and spontaneously growing vascular plants in urban gardens. Data Brief 2019, 25, 103982. [Google Scholar] [CrossRef]
- de Oliveira Maximino, J.V.; Machado, M.A.S.; Mittelmann, A.; da Cunha Pinheiro, E.; da Silva Pires, E.; Longaray, M.B.; de Souza, F.H.D.; Stumpf, E.R.T. Potential of grass seed production for new lawns. Ornam. Hortic. 2017, 23, 200–206. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Quan, Z.; Cheng, S.; Xu, X.; Pan, S.; Xie, M.; Zeng, P.; Yue, Z.; Wang, W. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 2012, 30, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, H.; Chen, Y.; Sun, J.; Ma, L.; Wang, A.; Miao, F.; Cong, L.; Song, H.; Yin, X. High-quality chromosome-scale de novo assembly of the Paspalum notatum ‘Flugge’ genome. BMC Genom. 2022, 23, 293. [Google Scholar] [CrossRef] [PubMed]
- Doust, A.N.; Kellogg, E.A.; Devos, K.M.; Bennetzen, J.L. Foxtail millet: A Sequence-Driven Grass Model System. Plant Physiol. 2009, 149, 137–141. [Google Scholar] [CrossRef]
- Loch, D.S.; Ebina, M.; Choi, J.S.; Han, L. Ecological Implications of Zoysia Species, Distribution, and Adaptation for Management and Use of Zoysiagrasses. Int. Turfgrass Soc. Res. J. 2017, 13, 11–25. [Google Scholar] [CrossRef]
- Tsuruta, S.-I.; Kobayashi, M.; Ebina, Z.M. Wild Crop Relatives: Genomic and Breeding Resources: Millets and Grasses; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 297–309. [Google Scholar]
- Magni, S.; Pompeiano, A.; Gaetani, M.; Caturegli, L.; Grossi, N.; Minelli, A.; Volterrani, M. Zoysiagrass (Zoysia spp. Willd.) for European lawns: A review. Ital. J. Agron. 2017, 12, 44. [Google Scholar] [CrossRef]
- Flavell, R. Role of Model Plant Species. In Plant Genomics: Methods and Protocols; Gustafson, J.P., Langridge, P., Somers, D.J., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 1–18. [Google Scholar]
Plant Category | Subfamily | Scientific Name | Genome Size (Mbps) | Life Cycle z | Photosynthetic Type |
---|---|---|---|---|---|
Native | Arundinoideae | Phragmites australis | 1200 | P | C3 [25] |
Native | Chloridoideae | Leptochloa chinensis | 460 | A | C4 [26] |
Native | Chloridoideae | Eleusine indica | 590 | A | C4 [27] |
Native | Chloridoideae | Cynodon dactylon | 1020 | P | C4 [28] |
Native | Chloridoideae | Zoysia japonica | 390 | P | C4 [28] |
Native | Oryzoideae | Zizania latifolia | 1800 | P | C3 [26] |
Native | Panicoideae | Setaria viridis | 400 | A | C4 [29] |
Native | Panicoideae | Echinochloa oryzoides | 1000 | A | C4 [30] |
Native | Panicoideae | Microstegium vimineum | 1300 | A | C4 [31] |
Native | Panicoideae | Echinochloa crus-galli | 1400 | A | C4 [30] |
Native | Panicoideae | Themeda triandra | 840 | P | C4 [32] |
Native | Panicoideae | Miscanthus sinensis | 2500 | P | C4 [26] |
Native | Pooideae | Poa annua | 1800 | A | C3 [29] |
Native | Pooideae | Brachypodium sylvaticum | 360 | P | C3 [33] |
Cultivated | Bambusoideae | Phyllostachys edulis | 2080 | P | C3 [34] |
Cultivated | Chloridoideae | Zoysia matrella | 380 | P | C4 [35] |
Cultivated | Chloridoideae | Zoysia pacifica | 370 | P | C4 [35] |
Cultivated | Oryzoideae | Oryza sativa | 430 | A | C3 [29] |
Cultivated | Panicoideae | Panicum miliaceum | 920 | A | C4 [29] |
Cultivated | Panicoideae | Sorghum bicolor | 820 | A | C4 [29] |
Cultivated | Panicoideae | Coix lacryma-jobi | 1560 | A | C4 [29] |
Cultivated | Panicoideae | Zea mays | 2300 | A | C4 [29] |
Cultivated | Panicoideae | Setaria italica | 490 | A | C4 [29] |
Cultivated | Pooideae | Avena sativa | 4000 | A | C3 [29] |
Cultivated | Pooideae | Triticum aestivum | 17,000 | A | C3 [29] |
Cultivated | Pooideae | Hordeum vulgare | 5100 | A | C3 [29] |
Exotic | Chloridoideae | Eragrostis curvula | 660 | P | C4 [36] |
Exotic | Panicoideae | Saccharum spontaneum | 3360 | P | C4 [29] |
Exotic | Panicoideae | Paspalum notatum | 550 | P | C4 [29] |
Exotic | Panicoideae | Eremochloa ophiuroides | 800 | P | C4 [29] |
Exotic | Panicoideae | Panicum virgatum | 1200 | P | C4 [29] |
Exotic | Pooideae | Lolium rigidum | 2400 | A | C3 [29] |
Exotic | Pooideae | Poa pratensis | 3500 | P | C3 [29] |
Exotic | Pooideae | Alopecurus myosuroides | 3500 | A | C3 [37] |
Exotic | Pooideae | Lolium multiflorum | 600 | A | C3 [29] |
Exotic | Pooideae | Poa trivialis | 1350 | P | C3 [29] |
Exotic | Pooideae | Bromus tectorum | 2500 | A | C3 [29] |
Exotic | Pooideae | Lolium perenne | 2000 | P | C3 [29] |
Arabidopsis thaliana | Brachypodium distachyon | Brachypodium sylvaticum | Setaria viridis | Zoysia japonica | |
---|---|---|---|---|---|
Common name | mouseear cress | purple false brome | slender false brome | green bristlegrass | Korean lawngrass |
Cotyledon | Eudicots | Monocots | Monocots | Monocots | Monocots |
Order | Brassicales | Poales | Poales | Poales | Poales |
Family | Brassicaceae | Poaceae | Poaceae | Poaceae | Poaceae |
Tribe | Camelineae | Brachypodieae | Brachypodieae | Paniceae | Zoysieae |
Genus | Arabidopsis | Brachypodium | Brachypodium | Setaria | Zoysia |
Life cycle | Annual | Annual | Perennial | Annual | Perennial |
Photosynthetic type | C3 | C3 | C3 | C4 | C4 |
Chromosome number | 2n = 2x = 10 | 2n = 2x = 10 | 2n = 2x = 18 | 2n = 2x = 18 | 2n = 4x = 40 |
Native in Korea | Y | N | Y | Y | Y |
Arabidopsis thaliana | Brachypodium distachyon | Brachypodium sylvaticum | Setaria viridis | |||||
---|---|---|---|---|---|---|---|---|
Genome version | TAIR10 | Araport11 | v2.1 | v3.2 | v1.1 | v2.1 | v2.1 | v4.1 |
Source | TAIR | TAIR | JGI | JGI | JGI | JGI | JGI | JGI |
Accession | ‘Col-0’ | ‘Col-0’ | ‘Bd21’ | ‘Bd21’ | ‘Ain-1’ | ‘Ain-1’ | ‘A10.1’ | ‘A10’ |
Assembled genome size | 119,667,750 | 119,667,750 | 271,997,306 | 271,163,419 | 358,283,154 | 360,731,464 | 395,731,502 | 397,277,387 |
No. of contigs | 169 | 169 | 485 | 34 | 1117 | 14 | 75 | 39 |
Protein-coding transcripts | 35,386 | 48,456 | 42,868 | 56,847 | 50,263 | 54,423 | 52,459 | 50,526 |
Protein-coding genes | 27,416 | 27,655 | 31,694 | 32,439 | 36,927 | 31,643 | 38,334 | 29,807 |
Reference publication | Lamesch et al. [39] | Cheng et al. [40] | Lei et al. [41] | Mamidi et al. [42] |
Zoysia japonica | Zoysia matrella | Zoysia pacifica | ||
---|---|---|---|---|
Accession | ‘Yaji’ | ‘Nagirizaki’ | ‘Wakaba’ | ‘Zanpa’ |
Estimated genome size | 421 Mbps | 390 Mbps | 380 Mbps | 370 Mbps |
Genome version | unknown | ZJN_r1.1 | ZMW_r1.0 | ZPZ_r1.0 |
Source | unreleased | Zoysia Genome Database | Zoysia Genome Database | Zoysia Genome Database |
Number of sequences | 1350 | 11,786 | 13,609 | 11,428 |
Total length | 373,429,196 | 334,384,427 | 563,438,595 | 397,009,957 |
Average length | 276,614 | 28,371 | 41,402 | 34,740 |
Max. length | 17,601,860 | 8,501,895 | 1,041,506 | 1,506,652 |
Min. length | unknown | 500 | 500 | 500 |
N50 length | 3,962,554 | 2,370,062 | 108,897 | 111,449 |
Number of predicted genes | 50,140 | 59,271 | 95,079 | 65,252 |
Reference publication | Yang et al. [38] | Tanaka et al. [23] | Tanaka et al. [23] | Tanaka et al. [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Cho, W. An Exploration of Candidate Korean Native Poaceae Plants for Breeding New Varieties as Garden Materials in the New Climate Regime Based on Existing Data. Horticulturae 2024, 10, 1158. https://doi.org/10.3390/horticulturae10111158
Kim SH, Cho W. An Exploration of Candidate Korean Native Poaceae Plants for Breeding New Varieties as Garden Materials in the New Climate Regime Based on Existing Data. Horticulturae. 2024; 10(11):1158. https://doi.org/10.3390/horticulturae10111158
Chicago/Turabian StyleKim, Sang Heon, and Wonwoo Cho. 2024. "An Exploration of Candidate Korean Native Poaceae Plants for Breeding New Varieties as Garden Materials in the New Climate Regime Based on Existing Data" Horticulturae 10, no. 11: 1158. https://doi.org/10.3390/horticulturae10111158
APA StyleKim, S. H., & Cho, W. (2024). An Exploration of Candidate Korean Native Poaceae Plants for Breeding New Varieties as Garden Materials in the New Climate Regime Based on Existing Data. Horticulturae, 10(11), 1158. https://doi.org/10.3390/horticulturae10111158