Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Condition
2.2. Determination of RA Content
2.3. HSI Data Collection
2.4. Image Segmentation and Spectral Extraction
2.5. Spectral Data Pre-Processing Method
2.6. Feature Selection and Modeling Methods
2.7. Model Calibration and Evaluation
2.8. In-Field Application
2.9. Statistical Analysis
3. Results
3.1. Analysis of RA Content in Basil Plants
3.2. Determination of Spectral Pre-Processing Methods
3.3. Selection of Characteristic Wavelength
3.4. Final Prediction Models
3.5. In-Field Application for Monitoring RA Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makri, O.; Kintzios, S. Ocimum sp. (Basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs Spices Med. Plants 2008, 3, 123–150. [Google Scholar] [CrossRef]
- Guan, H.; Luo, W.; Bao, B.; Cao, Y.; Cheng, F.; Yu, S.; Fan, Q.; Zhang, L.; Wu, Q.; Shan, M.A. Comprehensive review of rosmarinic acid: From phytochemistry to pharmacology and its new insight. Molecules 2022, 27, 3292. [Google Scholar] [CrossRef] [PubMed]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic acid–human pharmacokinetics and health benefits. Planta Medica 2021, 87, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Connelly, A.E.; Tucker, A.J.; Tulk, H.; Catapang, M.; Chapman, L.; Sheikh, N.; Yurchenko, S.; Fletcher, R.; Kott, L.S.; Duncan, A.M.; et al. High-rosmarinic acid spearmint tea in the management of knee osteoarthritis symptoms. J. Med. Food 2014, 17, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.; Gibbs, A.; Neale, C.; Perry, N.; Ossoukhova, A.; Bilog, V.; Kras, M.; Scholz, C.; Sass, M.; Buchwald-Werner, S. Anti-stress effects of lemon balm-containing foods. Nutrients 2014, 6, 4805–4821. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Koh, J.; Kim, Y.S.; Park, D. Effect of rosmarinic acid on atopic dermatitis. J. Dermatol. 2008, 35, 768–771. [Google Scholar] [CrossRef]
- Kiferle, C.; Lucchesini, M.; Mensuali-Sodi, A.; Maggini, R.; Raffaelli, A.; Pardossi, A. Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent. Eur. J. Biol. 2011, 6, 946–957. [Google Scholar] [CrossRef]
- Amigo, J.M.; Martí, I.; Gowen, A. Hyperspectral imaging and chemometrics: A perfect combination for the analysis of food structure, composition and quality. Data Handl. Sci. Technol. 2013, 28, 343–370. [Google Scholar] [CrossRef]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Humplík, J.F.; Lazár, D.; Husičková, A.; Spíchal, L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—A review. Plant Methods 2015, 11, 29. [Google Scholar] [CrossRef]
- Mishra, P.; Lohumi, S.; Ahmad Khan, H.; Nordon, A. Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches. Comput. Electron. Agric. 2020, 178, 105780. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Evaluating empirical regression, machine learning, and radiative transfer modelling for estimating vegetation chlorophyll content using bi-seasonal hyperspectral images. Remote Sens. 2019, 11, 1979. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Gomes, V.; Rendall, R.; Reis, M.S.; Mendes-Ferreira, A.; Melo-Pinto, P. Determination of Sugar, pH, and Anthocyanin Contents in Port Wine Grape Berries through Hyperspectral Imaging: An Extensive Comparison of Linear and Non-Linear Predictive Methods. Appl. Sci. 2021, 11, 10319. [Google Scholar] [CrossRef]
- Burnett, A.C.; Anderson, J.; Davidson, K.J.; Ely, K.S.; Lamour, J.; Li, Q.; Morrison, B.D.; Yang, D.; Rogers, A.; Serbin, S.P. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. J. Exp. Bot. 2021, 72, 6175–6189. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A review of ensemble learning algorithms used in remote sensing applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Brugger, A.; Yamati, F.I.; Barreto, A.; Paulus, S.; Schramowsk, P.; Kersting, K.; Steiner, U.; Neugart, S.; Mahlein, A.K. Hyperspectral imaging in the UV range allows for differentiation of sugar beet diseases based on changes in secondary plant metabolites. Phytopathology 2023, 113, 44–54. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3147–3154. [Google Scholar]
- Brugger, A.; Schramowski, P.; Paulus, S.; Steiner, U.; Kersting, K.; Mahlein, A.K. Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction. Plant Pathol. 2021, 70, 1572–1582. [Google Scholar] [CrossRef]
- Weksler, S.; Rozenstein, O.; Haish, N.; Moshelion, M.; Wallach, R.; Ben-Dor, E. Detection of potassium deficiency and momentary transpiration rate estimation at early growth stages using proximal hyperspectral imaging and extreme gradient boosting. Sensors 2021, 21, 958. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Young, S.; Linder, E.; Whipker, B.; Suchoff, D. Hyperspectral imaging with machine learning to differentiate cultivars, growth stages, flowers, and leaves of industrial hemp (Cannabis sativa L.). Front. Plant Sci. 2022, 12, 810113. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Ye, Y.; Wei, L.; Yang, X.; Huang, C. Study on the optimization of hyperspectral characteristic bands combined with monitoring and visualization of pepper leaf SPAD value. Sensors 2022, 22, 183. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kim, Y.S.; Faqeerzada, M.A.; Kim, M.S.; Baek, I.; Cho, B.K. Hyperspectral reflectance imaging for nondestructive evaluation of root rot in Korean ginseng (Panax ginseng Meyer). Front. Plant Sci. 2023, 14, 1109060. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fowler, M.S.; Fisk, I.D. Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chem. 2018, 258, 343–351. [Google Scholar] [CrossRef]
- Bian, X.; Wang, K.; Tan, E.; Diwu, P.; Zhang, F.; Guo, Y. A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples. Chemom. Intell. Lab. Syst. 2020, 197, 103916. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Gao, X.; Xie, A. Total phenolic content prediction in Flos Lonicerae using hyperspectral imaging combined with wavelengths selection methods. J. Food Process Eng. 2019, 42, 13224. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Vidal, M.; Amigo, J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst. 2012, 117, 138–148. [Google Scholar] [CrossRef]
- Eshkabilov, S.; Lee, A.; Sun, X.; Lee, C.W.; Simsek, H. Hyperspectral imaging techniques for rapid detection of nutrient content of hydroponically grown lettuce cultivars. Comput. Electron. Agric. 2021, 181, 105968. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A.; Iwaski, Y.; Umeda, H. Application of hyperspectral imaging for assessment of tomato leaf water status in plant factories. Appl. Sci. 2020, 10, 4665. [Google Scholar] [CrossRef]
- Diago, M.P.; Fernandez-Novales, J.; Fernandes, A.M.; Melo-Pinto, P.; Tardaguila, J. Use of visible and short-wave near-infrared hyperspectral imaging to fingerprint anthocyanins in intact grape berries. J. Agric. Food Chem. 2016, 64, 7658–7666. [Google Scholar] [CrossRef]
- Burnett, A.C.; Serbin, S.P.; Davidson, K.J.; Ely, K.S.; Rogers, A. Detection of the metabolic response to drought stress using hyperspectral reflectance. J. Exp. Bot. 2021, 72, 6474–6489. [Google Scholar] [CrossRef]
- Chen, S.; Gao, Y.; Fan, K.; Shi, Y.; Luo, D.; Shen, J.; Ding, Z.; Wang, Y. Prediction of drought-induced components and evaluation of drought damage of tea plants based on hyperspectral imaging. Front. Plant Sci. 2021, 12, 695102. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Wendel, A.; Underwood, J. Spectral filter design based on in-field hyperspectral imaging and machine learning for mango ripeness estimation. Comput. Electron. Agric. 2019, 164, 104890. [Google Scholar] [CrossRef]
- Luo, X.; Xu, L.; Huang, P.; Wang, Y.; Liu, J.; Hu, Y.; Wang, P.; Kang, Z. Nondestructive testing model of tea polyphenols based on hyperspectral technology combined with chemometric methods. Agriculture 2021, 11, 673. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.; Mohammadimanesh, F.; Homayouni, S. Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and polSAR data: A comparative evaluation. Remote Sens. 2021, 13, 4405. [Google Scholar] [CrossRef]
- Kiani, S.; van Ruth, S.M.; Minaei, S.; Varnamkhastid, M.G. Hyperspectral imaging, a non-destructive technique in medicinal and aromatic plant products industry: Current status and potential future applications. Comput. Electron. Agric. 2018, 152, 9–18. [Google Scholar] [CrossRef]
- Yoon, H.I.; Lee, S.H.; Ryu, D.; Choi, H.; Park, S.H.; Jung, J.H.; Kim, H.-Y.; Yang, J.-S. Non-destructive assessment of cannabis quality during drying process using hyperspectral imaging and machine learning. Front. Plant Sci. 2024, 15, 1365298. [Google Scholar] [CrossRef] [PubMed]
Statistics | Rosmarinic Acid (mg g−1 DW) | ||
---|---|---|---|
Total Dataset | Calibration Set | Prediction Set | |
Number of samples | 144 | 115 | 29 |
Minimum | 1.892 | 1.892 | 2.991 |
Maximum | 34.29 | 34.29 | 33.32 |
Mean | 12.47 | 12.12 | 13.93 |
Standard deviation | 7.966 | 7.624 | 9.204 |
Prediction Model | Pre-Processing Method | Calibration | Cross-Validation | ||
---|---|---|---|---|---|
R2C | RMSEC | R2CV | RMSECV | ||
RF | Log (1/R) + 2nd Der + SNV | 0.966 | 1.407 | 0.737 | 3.889 |
Log (1/R) + 2nd Der | 0.962 | 1.485 | 0.725 | 3.979 | |
Log (1/R) + 1st Der + SNV | 0.960 | 1.519 | 0.725 | 3.980 | |
Log (1/R) + 1st Der + MSC | 0.963 | 1.461 | 0.719 | 4.021 | |
Log (1/R) + SNV | 0.964 | 1.434 | 0.719 | 4.026 | |
AdaBoost | Log (1/R) + 2nd Der + SNV | 0.950 | 1.698 | 0.746 | 3.822 |
Log (1/R) + 2nd Der | 0.944 | 1.803 | 0.739 | 3.877 | |
Log (1/R) + SNV | 0.922 | 2.122 | 0.713 | 4.069 | |
Raw reflectance | 0.914 | 2.229 | 0.705 | 4.121 | |
Log (1/R) + MSC | 0.931 | 1.989 | 0.705 | 4.122 | |
XGBoost | Log (1/R) + 2nd Der + SNV | 1.000 | 0.001 | 0.708 | 4.099 |
1st Der | 1.000 | 0.001 | 0.700 | 4.155 | |
Log (1/R) + SNV | 1.000 | 0.001 | 0.697 | 4.179 | |
Log (1/R) + SG filter + SNV | 1.000 | 0.001 | 0.694 | 4.197 | |
Log (1/R) + SG filter + MSC | 1.000 | 0.001 | 0.686 | 4.254 | |
LightGBM | Log (1/R) + 2nd Der | 0.965 | 1.423 | 0.733 | 3.924 |
Log (1/R) + 2nd Der + SNV | 0.963 | 1.466 | 0.715 | 4.053 | |
Log (1/R) + 1st Der + MSC | 0.960 | 1.514 | 0.712 | 4.073 | |
Log (1/R) + 2nd Der + MSC | 0.964 | 1.448 | 0.711 | 4.082 | |
1st Der + MSC | 0.957 | 1.576 | 0.699 | 4.165 |
Prediction Model | Pre-Processing Method | Feature Selection | Calibration | Cross-Validation | Prediction | ||||
---|---|---|---|---|---|---|---|---|---|
Method | No. Feature | R2C | RMSEC | R2CV | RMSECV | R2P | RMSEP | ||
RF | Log (1/R) + 2nd Der + SNV | Full band | 51 | 0.968 | 1.368 | 0.742 | 3.853 | 0.790 | 4.148 |
RF | 5 | 0.962 | 1.486 | 0.703 | 4.135 | 0.770 | 4.342 | ||
AdaBoost | 7 | 0.968 | 1.364 | 0.732 | 3.927 | 0.804 | 4.003 | ||
XGBoost | 4 | 0.966 | 1.399 | 0.750 | 3.792 | 0.787 | 4.173 | ||
LightGBM | 14 | 0.966 | 1.405 | 0.733 | 3.921 | 0.788 | 4.161 | ||
AdaBoost | Log (1/R) + 2nd Der + SNV | Full band | 51 | 0.949 | 1.716 | 0.750 | 3.792 | 0.770 | 4.335 |
RF | 5 | 0.874 | 2.693 | 0.724 | 3.985 | 0.751 | 4.516 | ||
AdaBoost | 7 | 0.917 | 2.193 | 0.764 | 3.686 | 0.766 | 4.376 | ||
XGBoost | 4 | 0.906 | 2.330 | 0.758 | 3.731 | 0.758 | 4.446 | ||
LightGBM | 14 | 0.930 | 2.013 | 0.750 | 3.798 | 0.792 | 4.124 | ||
XGBoost | Log (1/R) + 2nd Der + SNV | Full band | 51 | 0.940 | 1.851 | 0.739 | 3.878 | 0.768 | 4.360 |
RF | 5 | 0.895 | 2.455 | 0.719 | 4.021 | 0.773 | 4.312 | ||
AdaBoost | 7 | 0.983 | 0.997 | 0.744 | 3.842 | 0.796 | 4.082 | ||
XGBoost | 4 | 0.917 | 2.187 | 0.763 | 3.694 | 0.761 | 4.425 | ||
LightGBM | 14 | 0.968 | 1.350 | 0.776 | 3.595 | 0.752 | 4.502 | ||
LightGBM | Log (1/R) + 2nd Der | Full band | 51 | 0.916 | 2.199 | 0.749 | 3.806 | 0.801 | 4.032 |
RF | 10 | 0.872 | 2.718 | 0.760 | 3.719 | 0.789 | 4.154 | ||
AdaBoost | 8 | 0.828 | 3.151 | 0.744 | 3.837 | 0.812 | 3.924 | ||
XGBoost | 5 | 0.827 | 3.159 | 0.747 | 3.816 | 0.791 | 4.131 | ||
LightGBM | 16 | 0.945 | 1.776 | 0.784 | 3.524 | 0.750 | 4.523 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.I.; Ryu, D.; Park, J.-E.; Kim, H.-Y.; Park, S.H.; Yang, J.-S. Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms. Horticulturae 2024, 10, 1156. https://doi.org/10.3390/horticulturae10111156
Yoon HI, Ryu D, Park J-E, Kim H-Y, Park SH, Yang J-S. Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms. Horticulturae. 2024; 10(11):1156. https://doi.org/10.3390/horticulturae10111156
Chicago/Turabian StyleYoon, Hyo In, Dahye Ryu, Jai-Eok Park, Ho-Youn Kim, Soo Hyun Park, and Jung-Seok Yang. 2024. "Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms" Horticulturae 10, no. 11: 1156. https://doi.org/10.3390/horticulturae10111156
APA StyleYoon, H. I., Ryu, D., Park, J.-E., Kim, H.-Y., Park, S. H., & Yang, J.-S. (2024). Non-Destructive Prediction of Rosmarinic Acid Content in Basil Plants Using a Portable Hyperspectral Imaging System and Ensemble Learning Algorithms. Horticulturae, 10(11), 1156. https://doi.org/10.3390/horticulturae10111156