Establishment of an In Vitro Micropropagation System for Cannabis sativa ‘Cheungsam’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Germination
2.2. Multiplication
2.3. Effect of Plant Growth Regulators (PGRs) and Activated Charcoal on In Vitro Plant Multiplication of the Cannabis sativa ‘Cheungsam’
2.4. Effect of Medium Formulation on In Vitro Plant Multiplication of the Cannabis sativa ‘Cheungsam’
2.5. Effect of Explants Type on In Vitro Plant Multiplication of the Cannabis sativa ‘Cheungsam’
2.6. Rooting of Shoots
2.7. Acclimatization
2.8. Statistical Analysis
3. Results
3.1. Effect of PGRs on In Vitro Shoot Induction
3.2. Effect of Activated Charcoal on In Vitro Shoot Induction and Overcome Hyperhydricity
3.3. Effect of Media Formulation on In Vitro Shoot Induction
3.4. Effect of Explants Type on In Vitro Shoot Induction
3.5. Rooting of Shoots
3.6. Acclimatization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Booth, J.K.; Bohlmann, J. Terpenes in Cannabis sativa—From plant genome to humans. Plant Sci. 2019, 284, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kisková, T.; Mungenast, F.; Suváková, M.; Jäger, W.; Thalhammer, T. Future aspects for cannabinoids in breast cancer therapy. Int. J. Mol. Sci. 2019, 20, 1673. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L. An archaeological and historical account of cannabis in China. Econ. Bot. 1974, 28, 437–448. [Google Scholar] [CrossRef]
- Kim, H.-S.; Shin, M.-J.; Pan, Y.-H. A study on the improvement of cannabis production history management in Korea-focused on Gyeongbuk hemp regulation free zone. J. Korea Converg. Soc. 2022, 13, 249–259. [Google Scholar] [CrossRef]
- Coppess, J.; Schnitkey, G.; Zulauf, C.; Paulson, N.; Gramig, B.; Swanson, K. The agriculture improvement act of 2018: Initial Review. Farmdoc Dly. 2018, 8, 227. [Google Scholar]
- Romero, P.; Peris, A.; Vergara, K.; Matus, J.T. Comprehending and improving cannabis specialized metabolism in the systems biology era. Plant Sci. 2020, 298, 110571. [Google Scholar] [CrossRef]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef]
- Ligresti, A.; Petrosino, S.; Di Marzo, V. From endocannabinoid profiling to ‘endocannabinoid therapeutics’. Curr. Opin. Chem. Biol. 2009, 13, 321–331. [Google Scholar] [CrossRef]
- Monthony, A.S.; Page, S.R.; Hesami, M.; Jones, A.M.P. The past, present and future of Cannabis sativa tissue culture. Plants 2021, 10, 185. [Google Scholar] [CrossRef]
- Scoggins, H.; Bridgen, M. Plants from Test Tubes: An Introduction to Micropropogation, 4th ed.; Timber Press: Portland, OR, USA, 2013; p. 270. [Google Scholar]
- Yang, R.; Berthold, E.C.; McCurdy, C.R.; da Silva Benevenute, S.; Brym, Z.T.; Freeman, J.H. Development of cannabinoids in flowers of industrial hemp (Cannabis sativa L.): A pilot study. J. Agric. Food Chem. 2020, 68, 6058–6064. [Google Scholar] [CrossRef] [PubMed]
- Punja, Z.K.; Rodriguez, G.; Chen, S. Assessing genetic diversity in Cannabis sativa using molecular approaches. In Cannabis sativa L. Botany and Biotechnology; Springer: Cham, Switzerland, 2017; pp. 395–418. [Google Scholar]
- Warren, J.; Mercado, J.; Grace, D. Occurrence of hop latent viroid causing disease in Cannabis sativa in California. Plant Dis. 2019, 103, 2699. [Google Scholar] [CrossRef]
- Wróbel, T.; Dreger, M.; Wielgus, K.; Słomski, R. Modified nodal cuttings and shoot tips protocol for rapid regeneration of Cannabis sativa L. J. Nat. Fibers 2022, 19, 536–545. [Google Scholar] [CrossRef]
- Page, S.R.; Monthony, A.S.; Jones, A.M.P. DKW basal salts improve micropropagation and callogenesis compared with MS basal salts in multiple commercial cultivars of Cannabis sativa. Botany 2021, 99, 269–279. [Google Scholar] [CrossRef]
- Stephen, C.; Zayas, V.A.; Galic, A.; Bridgen, M.P. Micropropagation of hemp (Cannabis sativa L.). HortScience 2023, 58, 307–316. [Google Scholar] [CrossRef]
- Iiyama, C.M.; Cardoso, J.C. MicropropagatioAvailable online: n of Melaleuca alternifolia by shoot proliferation from apical segments. Trees 2021, 35, 1497–1509. [Google Scholar] [CrossRef]
- Ioannidis, K.; Dadiotis, E.; Mitsis, V.; Melliou, E.; Magiatis, P. Biotechnological approaches on two high CBD and CBG Cannabis sativa L.(Cannabaceae) varieties: In vitro regeneration and phytochemical consistency evaluation of micropropagated plants using quantitative 1H-NMR. Molecules 2020, 25, 5928. [Google Scholar] [CrossRef]
- Iannaccone, M.; Di Santo, P.; Buhagiar, J.A.; Paura, B.; Cocozza, C. Enhancement of Sprouting and Rooting of Quercus Pubescens by Benzylaminopurine and Indole-Butyric Acid in Micropropagation. Fresenius Environ. Bull. 2020, 29, 10287–10293. [Google Scholar]
- Miri, S.M. Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open Agric. 2020, 5, 75–84. [Google Scholar] [CrossRef]
- Rokosa, M.T.; Kulpa, D. Micropropagation of Stevia rebaudiana plants. Ciência Rural. 2019, 50, e20181029. [Google Scholar] [CrossRef]
- Mestinšek-Mubi, Š.; Svetik, S.; Flajšman, M.; Murovec, J. In vitro tissue culture and genetic analysis of two high-CBD medical cannabis (Cannabis sativa L.) breeding lines. Genetika 2020, 52, 925–941. [Google Scholar] [CrossRef]
- Boonsnongcheep, P.; Pongkitwitoon, B. Factors affecting micropropagation of Cannabis sativa L.: A review. Pharm. Sci. Asia 2020, 47, 21–29. [Google Scholar] [CrossRef]
- Codesido, V.; Meyer, S.; Casano, S. Influence of media composition and genotype for successful Cannabis sativa L. in vitro introduction. Acta Hortic. 2020, 1285, 75–80. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Techen, N.; Khan, I.A.; ElSohly, M.A. In vitro mass propagation of Cannabis sativa L.: A protocol refinement using novel aromatic cytokinin meta-topolin and the assessment of eco-physiological, biochemical and genetic fidelity of micropropagated plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 18–26. [Google Scholar] [CrossRef]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in plant tissue culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef] [PubMed]
- Kevers, C.; Franck, T.; Strasser, R.J.; Dommes, J.; Gaspar, T. Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult. 2004, 77, 181–191. [Google Scholar] [CrossRef]
- Gaspar, T.; Kevers, C.; Franck, T.; Bisbis, B.; Billard, J.-P.; Huault, C.; Le Dily, F.; Petit-Paly, G.; Rideau, M.; Penel, C. Paradoxical results in the analysis of hyperhydric tissues considered as being under stress: Questions for a debate. Bulg. J. Plant. Physiol. 1995, 21, 80–97. [Google Scholar]
- Li, T.; Yun, Z.; Zhang, D.; Yang, C.; Zhu, H.; Jiang, Y.; Duan, X. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit. Front. Plant Sci. 2015, 6, 845. [Google Scholar] [CrossRef]
- Wi, S.J.; Jang, S.J.; Park, K.Y. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol. Cells 2010, 30, 37–49. [Google Scholar] [CrossRef]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chang, J.-C. Development of an improved micropropagation protocol for red-fleshed pitaya ‘Da Hong’with and without activated charcoal and plant growth regulator combinations. Horticulturae 2022, 8, 104. [Google Scholar] [CrossRef]
- Holmes, J.E.; Lung, S.; Collyer, D.; Punja, Z.K. Variables affecting shoot growth and plantlet recovery in tissue cultures of drug-type Cannabis sativa L. Front. Plant Sci. 2021, 12, 732344. [Google Scholar] [CrossRef] [PubMed]
- Komalavalli, N.; Rao, M.V. In vitro micropropagation of Gymnema sylvestre—A multipurpose medicinal plant. Plant Cell Tissue Organ Cult. 2000, 61, 97–105. [Google Scholar] [CrossRef]
- Tivarekar, S.; Eapen, S. High frequency plant regeneration from immature cotyledons of mungbean. Plant Cell Tissue Organ Cult. 2001, 66, 227–230. [Google Scholar] [CrossRef]
- Driver, J.A.; Kuniyuki, A.H. In vitro propagation of Paradox walnut rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. Vitr. Cell. Dev. Biol. -Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- El-Dawayati, M.M.; Zayed, Z.E. Controlling hyperhydricity in date palm in vitro culture by reduced concentration of nitrate nutrients. In Date Palm Biotechnology Protocols Volume I: Tissue Culture Applications; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1637, pp. 175–183. [Google Scholar]
- Liu, M.; Jiang, F.; Kong, X.; Tian, J.; Wu, Z.; Wu, Z. Effects of multiple factors on hyperhydricity of Allium sativum L. Sci. Hortic. 2017, 217, 285–296. [Google Scholar] [CrossRef]
- Lata, H.; Chandra, S.; Khan, I.A.; El Sohly, M.A. High frequency plant regeneration from leaf derived callus of high Δ9-tetrahydrocannabinol yielding Cannabis sativa L. Planta Med. 2010, 76, 1629–1633. [Google Scholar] [CrossRef]
Explant | PGRs (mg/L) | No. of Shoot/Explant | Plant Height (cm) | No. of Leaf | Leaf Chlorosis Rate (%) | Hyperhydricity | ||
---|---|---|---|---|---|---|---|---|
2IP | mT | BA | ||||||
Shoot tip | - | - | - | 1.12 ± 0.12 b | 1.30 ± 0.30 d | 4.94 ± 0.65 c | 23.17 ± 7.13 bc | + |
0.25 | - | - | 1.05 ± 0.05 b | 3.64 ± 0.48 a | 7.81 ± 0.60 b | 10.49 ± 3.00 d | - | |
0.50 | - | - | 1.18 ± 0.13 b | 3.31 ± 0.30 ab | 8.94 ± 0.57 ab | 26.55 ± 5.86 bc | - | |
1.00 | - | - | 1.00 ± 0.00 b | 3.46 ± 0.36 ab | 8.18 ±0.57 b | 6.36 ± 2.51 d | - | |
- | 0.25 | - | 1.26 ± 0.06 ab | 2.73 ± 0.21 abc | 5.54 ± 0.13 bc | 36.11 ±13.60 b | + | |
- | 0.50 | - | 1.59 ± 0.23 ab | 2.99 ± 0.20 abc | 5.82 ± 0.23 bc | 48.99 ± 4.18 a | + | |
- | - | 0.25 | 1.77 ± 0.10 ab | 1.80 ± 0.16 d | 8.60 ± 0.38 ab | 32.52 ± 2.31 b | + | |
- | - | 0.50 | 2.13 ± 0.12 a | 1.44 ± 0.21 d | 5.47 ± 0.39 c | 30.13 ± 2.46 b | + |
Explant | PGRs (mg/L) | No. of Shoot/Explant | Plant Height (cm) | No. of Leaf | Leaf Chlorosis Rate (%) | Hyperhydricity | ||
---|---|---|---|---|---|---|---|---|
2IP | mT | BA | ||||||
Node | - | - | - | 1.94 ± 0.06 a | 1.60 ± 0.12 bc | 8.22 ± 0.53 a | 45.13 ± 5.58 ab | ++ |
0.25 | - | - | 1.90 ± 0.07 a | 2.77 ± 0.24 a | 9.05 ± 0.60 a | 39.67 ± 4.53 b | ++ | |
0.50 | - | - | 1.80 ± 0.20 a | 2.92 ± 0.81 a | 8.00 ± 1.41 a | 24.83 ± 6.87 bc | ++ | |
1.00 | - | - | 2.00 ± 0.00 a | 3.10 ± 0.48 a | 9.78 ± 1.28 a | 36.81 ± 7.01 b | ++ | |
- | 0.25 | - | 1.78 ± 0.08 a | 2.33 ± 0.12 ab | 3.95 ± 0.06 c | 51.27 ± 0.31 a | ++ | |
- | 0.50 | - | 1.86 ± 0.14 a | 1.87 ± 0.18 b | 3.80 ± 0.07 c | 31.99 ± 6.57 a | ++ | |
- | - | 0.25 | 1.47 ± 0.09 ab | 0.76 ± 0.07 d | 4.47 ± 0.30 c | 31.42 ± 3.30 bc | ++ | |
- | - | 0.50 | 1.55 ± 0.10 ab | 0.73 ±0.06 d | 5.32 ± 0.33 b | 25.41 ± 2.87 bc | ++ |
Explant | PGRs (mg/L) | Charcoal (g/L) | No. of Shoot/Explant | Plant Height (cm) | No. of Leaf | Leaf Chlorosis Rate (%) | Hyperhydricity |
---|---|---|---|---|---|---|---|
2IP | |||||||
Shoot tip | - | - | 1.17 ± 0.17 a | 1.53 ± 0.40 b | 5.33 ± 0.87 c | 13.38 ± 5.97 ab | + |
- | 0.5 | 1.00 ± 0.00 a | 2.38 ± 0.28 ab | 6.50 ± 0.34 c | 21.83 ± 7.04 ab | - | |
0.25 | - | 1.06 ± 0.06 a | 3.69 ± 0.54 a | 7.94 ± 0.76 b | 6.73 ± 2.77 b | - | |
0.25 | 0.5 | 1.06± 0.20 a | 1.82 ± 0.41 b | 5.00 ± 0.45 cd | 48.11 ± 6.83 a | - | |
0.50 | - | 1.25 ± 0.18 a | 3.41 ± 0.28 a | 9.17 ± 0.58 a | 22.61 ± 6.98 ab | - | |
0.50 | 0.5 | 1.17 ± 0.20 a | 2.32 ± 0.34 ab | 7.60 ± 0.83 bc | 26.25 ± 5.69 ab | - | |
1.00 | - | 1.00 ± 0.00 a | 3.54 ± 0.29 a | 8.38 ± 0.84 ab | 6.36 ± 2.51 b | - | |
1.00 | 0.5 | 1.00 ± 0.00 a | 1.14 ±0.25 b | 4.60 ± 0.40 d | 24.00 ± 7.97 ab | - |
Explant | PGRs (mg/L) | Charcoal (g/L) | No. of Shoot/Explant | Plant Height (cm) | No. of Leaf | Leaf Chlorosis Rate (%) | Hyperhydricity |
---|---|---|---|---|---|---|---|
2IP | |||||||
Node | - | - | 2.00 ± 0.00 a | 1.64 ± 0.50 a | 8.22 ± 0.53 ab | 42.43 ± 6.69 a | ++ |
- | 0.5 | 1.80 ± 0.13 a | 2.70 ± 0.72 a | 7.90 ± 0.57 ab | 48.92 ± 4.94 a | ++ | |
0.25 | - | 1.87 ± 0.09 a | 2.77 ± 0.32 a | 9.05 ± 0.60 ab | 35.56 ± 5.61 a | ++ | |
0.25 | 0.5 | 1.90 ± 0.10 a | 1.39 ± 0.20 a | 6.70 ± 0.63 b | 47.58 ± 6.20 a | ++ | |
0.5 | - | 1.80 ± 0.20 a | 2.92 ± 0.81 a | 8.00 ± 1.41 ab | 24.83 ± 6.87 a | ++ | |
0.5 | 0.5 | 1.90 ± 0.10 a | 2.22 ± 0.28 a | 10.80 ± 0.68 a | 47.42 ± 4.17 a | ++ | |
1.0 | - | 2.00 ± 0.00 a | 2.08 ± 0.36 a | 9.78 ± 1.28 ab | 35.55 ± 7.01 a | ++ | |
1.0 | 0.5 | 1.88 ± 0.13 a | 1.99 ± 0.39 a | 6.50 ± 0.93 b | 55.54 ± 9.44 a | ++ |
Explant | Media Type | 2IP | No. of Shoot/Explant | Plant Height (cm) | No. of Leaf | Leaf Chlorosis Rate (%) | Hyperhydricity |
---|---|---|---|---|---|---|---|
Shoot tip | MS | - | 1.12 ± 0.12 a | 1.30 ± 0.30 a | 4.94 ± 0.65 b | 23.17 ± 7.13 ab | - |
MS | 0.25 | 1.05 ± 0.05 a | 3.64 ± 0.48 d | 7.81 ± 0.60 a | 10.49 ± 3.00 b | - | |
MS | 0.50 | 1.18 ± 0.13 a | 3.31 ± 0.30 cd | 8.94 ± 0.57 a | 26.55 ± 5.86 a | - | |
MS | 1.00 | 1.00 ± 0.00 a | 3.46 ± 0.36 cd | 8.18 ±0.57 a | 6.36 ± 2.51 bc | - | |
DKW | - | 1.00 ± 0.00 a | 1.53 ± 0.11 a | 5.06 ± 0.25 b | 11.89 ± 2.60 b | - | |
DKW | 0.25 | 1.03 ± 0.03 a | 2.39 ± 0.17 bc | 7.14 ± 0.27 a | 10.47 ± 1.47 b | - | |
DKW | 0.50 | 1.11 ± 0.06 a | 2.82 ± 0.17 cd | 8.29 ± 0.32 a | 6.61 ± 1.21 bc | - | |
DKW | 1.00 | 1.09 ± 0.05 a | 2.69 ± 0.19 cd | 7.95 ± 0.35 a | 7.65 ± 1.22 bc | - |
Explant | Media Type | 2IP | No. of Shoot/Explant | Plant Height (cm) | No. of Leaf | Leaf Chlorosis Rate (%) | Hyperhydricity |
---|---|---|---|---|---|---|---|
Node | MS | - | 1.94 ± 0.06 a | 1.60 ± 0.12 c | 8.22 ± 0.53 b | 45.13 ± 5.58 a | ++ |
MS | 0.25 | 1.90 ± 0.07 a | 2.77 ± 0.24 ab | 9.05 ± 0.60 b | 39.67 ± 4.53 a | ++ | |
MS | 0.50 | 1.80 ± 0.20 a | 2.92 ± 0.81 ab | 8.00 ± 1.41 b | 24.83 ± 6.87 ab | ++ | |
MS | 1.00 | 2.00 ± 0.00 a | 3.10 ± 0.48 a | 9.78 ± 1.28 b | 36.81 ± 7.01 ab | ++ | |
DKW | - | 1.96 ± 0.03 a | 1.27 ± 0.09 c | 9.18 ± 0.52 b | 19.68 ± 2.85 b | + | |
DKW | 0.25 | 1.92 ± 0.04 a | 2.69 ± 0.16 ab | 12.64 ± 0.47 a | 22.79 ± 1.94 b | - | |
DKW | 0.50 | 1.90 ± 0.04 a | 2.86 ± 0.14 ab | 13.23 ± 0.41 a | 21.23 ± 1.84 b | - | |
DKW | 1.00 | 1.92 ± 0.04 a | 2.57 ± 0.15 b | 13.22 ± 0.48 a | 17.79 ± 2.03 b | - |
Media Type | PGRs (mg/L) | Rooting Rate (%) | |
---|---|---|---|
IBA | NAA | ||
MS | - | - | 18.52 ± 10.36 c |
MS | 0.1 | - | 76.92 ± 6.35 ab |
MS | 0.25 | - | 19.51 ± 6.00 c |
MS | 0.5 | - | 48.15 ± 6.29 bc |
MS | 0.25 | 0.05 | 4.92 ± 7.50 d |
DKW | - | - | 61.54 ± 4.60 b |
DKW | 0.1 | - | 78.95 ± 6.59 ab |
DKW | 0.25 | - | 85.37 ± 6.14 a |
DKW | 0.5 | - | 91.49 ± 5.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-C.; Jeon, S.-Y.; Choi, Y.-J.; Byun, B.-H.; Kim, D.-H.; Yu, G.-R.; Kim, H.; Lim, D.-W. Establishment of an In Vitro Micropropagation System for Cannabis sativa ‘Cheungsam’. Horticulturae 2024, 10, 1060. https://doi.org/10.3390/horticulturae10101060
Baek S-C, Jeon S-Y, Choi Y-J, Byun B-H, Kim D-H, Yu G-R, Kim H, Lim D-W. Establishment of an In Vitro Micropropagation System for Cannabis sativa ‘Cheungsam’. Horticulturae. 2024; 10(10):1060. https://doi.org/10.3390/horticulturae10101060
Chicago/Turabian StyleBaek, Sang-Cheol, Sang-Yoon Jeon, Yoon-Jung Choi, Bo-Hyun Byun, Da-Hoon Kim, Ga-Ram Yu, Hyuck Kim, and Dong-Woo Lim. 2024. "Establishment of an In Vitro Micropropagation System for Cannabis sativa ‘Cheungsam’" Horticulturae 10, no. 10: 1060. https://doi.org/10.3390/horticulturae10101060
APA StyleBaek, S.-C., Jeon, S.-Y., Choi, Y.-J., Byun, B.-H., Kim, D.-H., Yu, G.-R., Kim, H., & Lim, D.-W. (2024). Establishment of an In Vitro Micropropagation System for Cannabis sativa ‘Cheungsam’. Horticulturae, 10(10), 1060. https://doi.org/10.3390/horticulturae10101060