Screening and Characterization of Wild Sarcomyxa edulis Strains from Heilongjiang, China, for Strain Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Taxonomic Identification, Mycelial Culture, and Antagonism Test
2.2. Molecular Identification of Sarcomyxa edulis Strains
2.3. Cultivation of S. edulis Strains on Spawn Medium
2.4. Mycelial Morphology
2.5. Determination of Mycelial Growth Rate and Resistance to Trichoderma Contamination
2.6. Agronomic Characteristics of Various S. edulis Strains
2.7. Determination of Biological Efficiency
2.8. Nutrient Contents in Fruiting Bodies
2.9. Statistical Analysis
3. Results
3.1. Taxonomic Identification and Antagonism Test
3.2. ITS Marker Identification
3.3. Mycelial Morphologies of Various S. edulis Strains
3.4. Average Daily Growth Rates of Mycelia of Various S. edulis Strains
3.5. Correlation Analysis between Trichoderma Contamination Rate and Mycelial Growth Rate
3.6. Analysis of Fruiting Body Yield
3.7. Cluster Analysis of Agronomic Traits of Fruiting Bodies
3.8. Heatmap of the BE, Uniformity, and Nutrient Contents of Fruiting Bodies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, Y.C.; Niemela, T.; Qin, G.F. Changbai wood-rotting fungi. A new pleurotoid species Panellus edulis. Ann. Bot. Fenn. 2003, 40, 107–112. [Google Scholar]
- Saito, T.; Tonouchi, A.; Harada, Y. Biological characteristics and molecular phylogeny of Sarcomyxa edulis comb. nov. and S. serotina. Jpn. J. Med. Mycol. 2014, 55, 19–28. [Google Scholar]
- Tian, F.; Li, C.; Li, Y. Genomic Analysis of Sarcomyxa edulis Reveals the Basis of Its Medicinal Properties and Evolutionary Relationships. Front. Microbiol. 2021, 12, 652324. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Tian, T.; Yao, L.; Lv, J.-H.; Tian, F.-H.; Jia, C.-W.; Li, C.-T. Artificial culvivation and evaluation of two late fall oyster strains (Sarcomyxa edulis) from jilin, China. Mycol. Prog. 2023, 22, 47. [Google Scholar] [CrossRef]
- Duan, C.; Yao, L.; Lv, J.-H.; Jia, C.-W.; Tian, F.-H.; Li, C.-T. Systematic analysis of changes across different developmental stages of the mushroom Sarcomyxa edulis. Gene 2022, 824, 146450. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.R. Macrofungi of the Xiaoxingan Mts; Northeastern Forestry University Press: Harbin, China, 1995; pp. 10–15. [Google Scholar]
- Ma, Y.; Mizino, T.; Ito, H. Antitumor activity of some polysaccharides isolated from a Chinese mushroom, “Huangmo” the fruiting body of Hohenbuehelia serotina. Agric. Biol. Chem. 1991, 55, 2701–2710. [Google Scholar] [CrossRef]
- Inafuku, M.; Nagao, K.; Nomura, S.; Shirouchi, B.; Inoue, N.; Nagamori, N.; Nakayama, H.; Toda, T.; Yanagita, T. Protective effects of fractional extracts from Panellus serotinus on nonalcoholic fatty liver disease in obese, diabetic db/db mice. Br. J. Nutr. 2012, 107, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, L.Y.; Wang, H.X.; Ng, T.B. A novel ribonucleasewith antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int. J. Mol. Med. 2014, 33, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wang, L.; An, S.; Wang, C.; Jiang, Q.; Li, X. Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. Innov. Food Sci. Emerg. Technol. 2022, 78, 102993. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.Y. Preparation, physicochemical property and in vitro antioxidant activity of zinc-Hohenbuehelia serotina polysaccharides complex. Int. J. Biol. Macromol. 2019, 121, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.H.; Wu, J.; Wang, P.; Lu, Y.; Ban, X. Neutral polysaccharides from Hohenbuehelia serotina with hypoglycemic effects in a type 2 diabetic mouse model. Front. Pharmacol. 2022, 13, 883653. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Hu, J.; Chi, J.; Li, Y.; Yang, B.; Hu, W.; Chen, F.; Xu, C.; Chai, L.; Bao, Y. Label-Free Proteomics Reveals the Molecular Mechanism of Subculture Induced Strain Degeneration and Discovery of Indicative Index for Degeneration in Pleurotus ostreatus. Plant Cell Biotechnol. Mol. Biol. 2020, 25, 4920. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, S.; Yusuf, U.K.; Zainudin, N.A.I.M. Morphological and molecular detection of Fusarium chlamydosporum from root endophytes of Dendrobium crumenatum. Afr. J. Biotechnol. 2010, 9, 4081–4090. [Google Scholar]
- Li, H. Estimation of the Number of Mating Type Factors of Wild Pleurotus eryngii var. tuoliensis in China. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2012. [Google Scholar]
- Richard, W.K. Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 2005, 97, 12–24. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, S.-H.; Dai, Y.-C. Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 2012, 56, 49–62. [Google Scholar] [CrossRef]
- Shah, Z.; Ashraf, M.; Ishtiaq, C.M. Comparative study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates (wheat straw, leaves, saw dust). Pak. J. Nutr. 2004, 3, 158–160. [Google Scholar]
- Isikhuemhen, O.S.; Mikiashvili, N.A.; Adenipekun, C.O.; Ohimain, E.I.; Shahbazi, G. The tropical white rot fungus, Lentinus squarrosulus Mont.: Lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation. World J. Microbiol. Biotechnol. 2012, 28, 1961–1966. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; Shu, F.; Cui, S.; Yang, S.; Liu, Y.; Wang, Q. Extraction process optimization, structural characteristics and antioxidant activities of polysaccharides from Sarcomyxa edulis. Acta Edulis Fungi 2021, 28, 48–56. [Google Scholar]
- Yue, S.; Zhang, L.; Maimaiti, N.; Li, W. Isolation, Purification, Structural Characterization and In Vitro Hypoglycemic Activity of Hohenbuehelia serotina Polysaccharide. Acta Edulis Fungi 2023, 30, 59–66. [Google Scholar]
- Akata, I.; Ergonul, B.; Kalyoncu, F. Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. Int. J. Pharmacol. 2012, 8, 134–138. [Google Scholar] [CrossRef]
- Silva, S.; Costa, S.M.G.; Clemente, E. Chemical composition of Pleurotus pulmonarius (Fr.) Quél. substrates and residue after cultivation. Braz. Arch. Biol. Technol. 2002, 45, 531–535. [Google Scholar] [CrossRef]
- Hansen, E.M.; St Emlid, J.; Johansson, M. Somatic incompatibility and nuclear reassortment in Heterobasidion annosum. Mycol. Res. 1993, 97, 1223–1228. [Google Scholar] [CrossRef]
- Hansen, E.M.; St Emlid, J.; Johansson, M. Genetic control of somatic incompatibility in the root-rotting basidiomycete Heterobasidion annosum. Mycol. Res. 1993, 97, 1229–1233. [Google Scholar] [CrossRef]
- Worrall, J. Somatic incompatibility in basidiomycetes. Mycologia 1997, 89, 24–36. [Google Scholar] [CrossRef]
- Jin, J.; Hughes, K.W.; Petersen, R.H. Phylogenetic relationships of Panellus (Agaricales) and related species based on morphology and ribosomal large subunit DNA sequences. Mycotaxon 2001, 79, 7–21. [Google Scholar]
- Gu, M.; Chen, Q.; Zhang, Y.; Zhao, Y.; Wang, L.; Wu, X.; Zhao, M.; Gao, W. Evaluation of Genetic Diversity and Agronomic Traits of Germplasm Resources of Stropharia rugosoannulata. Horticulturae 2024, 10, 213. [Google Scholar] [CrossRef]
- Song, J. Study on Incompatible Factor Diversity and Breeding of Panellus edulis. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2011. [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Goodwin, S.B.; Zismann, V.L. Phylogenetic analyses of the ITS region of ribosomal DNA reveal that Septoria passerinii from barley is closely related to the wheat pathogen Mycosphaerella graminicola. Mycologia 2001, 93, 934–946. [Google Scholar] [CrossRef]
- Appiah, A.; Flood, J.; Archer, S.; Bridge, P. Molecular analysis of the major Phytophthora species on cocoa. Plant Pathol. 2004, 53, 209–219. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Kristiansson, E.; Ryberg, M.; Hallenberg, N.; Larsson, K.-H. Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evol. Bioinform. 2008, 4, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Zhai, D.; Li, Q.; Zhang, M.; Jiang, N.; Liu, J.; Song, C.; Shang, X.; Chen, H.; Yu, H. Comparative Analysis of Main Agronomic Traits of Different Pleurotus giganteus Germplasm Resources. Life 2024, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Pardo, A.; de Juan, A.; Alvarez-Ortí, M.; José, E. PardoScreening of Agaricus bisporus (Lange, Imbach) strains and the casing variables for quality mushroom production in Spain. Hortscience 2010, 45, 231–235. [Google Scholar] [CrossRef]
- Gao, W.; Weijn, A.; Baars, J.J.P.; Mes, J.J.; Visser, R.G.F.; Sonnenberg, A.S.M. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genet. Biol. 2015, 77, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Baars, J.J.P.; Maliepaard, C.; Visser, R.G.F.; Zhang, J.; Sonnenberg, A.S.M. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms). AMB Express 2016, 6, 67. [Google Scholar] [CrossRef]
- NY/T 3736-2020; Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability- Mei wei shan gu (Panellus edulis Y.C. Dai, Niemel? & G.F. Qin). The Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2020.
- Chakravarty, B. Trends in Mushroom cultivation and breeding. Aust. J. Agric. Eng. 2011, 2, 102–109. [Google Scholar]
- Oh, S.J.; Park, J.S.; Lee, D.C.; Shin, P.G. Studies on the effect of vinyl mulching on Pleurotus cultivation—Control of mushroom disease on P. ostreatus (II). Micobiology 2003, 31, 50–53. [Google Scholar] [CrossRef]
- Choi, I.-Y.; Joung, G.-T.; Ryu, J.; Choi, J.-S.; Choi, Y.-G. Physiological Characteristics of Green Mold (Trichoderma spp.) Isolated from Oyster Mushroom (Pleurotus spp.). Mycobiology 2003, 31, 139–144. [Google Scholar] [CrossRef]
- Muswati, C.; Simango, K.; Tapfumaneyi, L.; Mutetwa, M.; Ngezimana, W. The Effects of Different Substrate Combinations on Growth and Yield of Oyster Mushroom (Pleurotus ostreatus). Hindawi Int. J. Agron. 2021, 10, 9962285. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Hindawi Int. J. Microbiol. 2015, 14, 376387. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, A.A.; Ferreira, I.C.; Dueñas, M.; Barros, L.; da Silva, R.; Gomes, E.; Santos-Buelga, C. Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chem. 2013, 138, 2168–2173. [Google Scholar] [CrossRef] [PubMed]
- Kalac, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Habijanic, J.; Berovic, M.; Boh, B.; Plankl, M.; Wraber, B. Submerged cultivation of Ganoderma lucidum and the effects of its polysaccharides on the production of human cytokines TNF-a, IL-12, IFN-g, IL-2, IL-4, IL-10 and IL-17. New Biotechnol. 2015, 32, 85–95. [Google Scholar] [CrossRef]
- Liu, C.; Choi, M.W.; Li, X.; Cheung, P.C. Immunomodulatory effect of structurally-characterized mushroom sclerotial polysaccharides isolated from Polyporus rhinocerus on human monoctyes THP-1. J. Funct. Foods 2018, 41, 90–99. [Google Scholar] [CrossRef]
- López-Legarda, X.; Rostro-Alanis, M.; Parra-Saldivar, R.; Villa-Pulgarín, J.A.; Segura-Sánchez, F. Submerged cultivation, characterization and in vitro antitumor activity of polysaccharides from Schizophyllum radiatum. Int. J. Biol. Macromol. 2021, 186, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, S.; Wang, X.; Zhu, Y.; Zhang, J.; Liu, H.; Jia, L. Characterization, anti-oxidation and anti-inflammation of polysaccharides by Hypsizygus marmoreus against LPS-induced toxicity on lung. Int. J. Biol. Macromol. 2018, 111, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Yu, M.; Shen, M.; Xu, S.; Xu, Z.; Zhang, Y.; Lin, Z.; Wang, W. Preparation of the Auricularia auricular polysaccharides simulated hydrolysates and their hypoglycaemic effect. Int. J. Biol. Macromol. 2018, 106, 1139–1145. [Google Scholar] [CrossRef]
- Jiao, J.; Yong, T.; Huang, L.; Chen, S.; Xiao, C.; Wu, Q.; Hu, H.; Xie, Y.; Li, X.; Liu, Y.; et al. A Ganoderma lucidum polysaccharide F31 alleviates hyperglycemia through kidney protection and adipocyte apoptosis. Int. J. Biol. Macromol. 2023, 226, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Giménez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef]
- Sardar, H.; Anjum, M.A.; Nawaz, A.; Naz, S.; Ejaz, S.; Ali, S.; Haider, S.-A. Effect of different agro-wastes, casing materials and supplements on the growth, yield and nutrition of milky mushroom (Calocybe indica). Folia Hortic. 2020, 32, 115–124. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Ma, H.; Wei, J.; Zhang, P.; Zhang, P.; Dai, X.; Ma, Y.; Zhang, X. Identification, Domestication and Cultivation of a Wild Sarcomyxa edulis and Analysis of Active Ingredient in the Spore. Edible Fungi China 2023, 42, 6–10. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Shi, L.; Wang, J.; Sheng, C.; Zhang, P.; Yu, H.; Zhao, J. Comparative Experiment on Formula of Panellus edulis with Corncob. Edible Fungi China 2022, 41, 28–31. [Google Scholar] [CrossRef]
- Liu, Z.; Qian, H.; Wang, Y.; Zhao, Y.; Shi, L.; Wang, J.; Sheng, C. Preliminary report on selenium enriched cultivation of Sarcomyxa edulis. Edible Med. Mushrooms 2022, 30, 424–427. [Google Scholar]
Agronomic Traits | Observation |
---|---|
Clustered morphology of fruiting body | Stacked-up; overturned tile |
Shape of pileus | Sector; mytiliform |
Uniformity of color of pileus | Nonuniform; uniform |
Color of pileus | Yellow; yellowish-brown; yellowish-green |
Pileus edge | Smooth; wavy; incision |
Number of fruiting bodies | Small; medium; large |
Length–width ratio of pileus | Small; middle; big |
Pileus thickness | Thin; middle; thick |
Time from inoculation to primordium formation | Short; moderate; long |
Strain | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | Y11 | Y12 | Y13 | Y14 | Y15 | Y16 | Y17 | Y18 | Y19 | Y20 | Y21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | 0 | 0 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |
Y2 | 0 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ||
Y3 | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |||
Y4 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | 0 | ++ | ||||
Y5 | ++ | ++ | ++ | ++ | ++ | + | ++ | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |||||
Y6 | 0 | ++ | ++ | ++ | ++ | ++ | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ||||||
Y7 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |||||||
Y8 | + | ++ | ++ | ++ | 0 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ||||||||
Y9 | ++ | ++ | + | + | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |||||||||
Y10 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ||||||||||
Y11 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |||||||||||
Y12 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ||||||||||||
Y13 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | |||||||||||||
Y14 | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ||||||||||||||
Y15 | ++ | ++ | ++ | ++ | ++ | ++ | |||||||||||||||
Y16 | ++ | ++ | ++ | ++ | ++ | ||||||||||||||||
Y17 | ++ | ++ | ++ | ++ | |||||||||||||||||
Y18 | ++ | ++ | ++ | ||||||||||||||||||
Y19 | ++ | ++ | |||||||||||||||||||
Y20 | ++ | ||||||||||||||||||||
Y21 |
Strain | Colony Density | Degree of Aerial Mycelial Development | Colony Edge Uniformity | Leathery Colony | Obvious Colony Pigmentation |
---|---|---|---|---|---|
Y3 | High | Moderately strong | Neat | No | No |
Y5 | Medium | Moderately strong | Neat | Yes | Yes |
Y6 | High | Strong | Uneven | No | No |
Y9 | High | Strong | Neat | No | No |
Y10 | Medium | Weak | Uneven | Yes | Yes |
Y11 | Low | Weak | Uneven | Yes | Yes |
Y12 | Medium | Weak | Neat | Yes | Yes |
Y13 | Medium | Moderately strong | Neat | Yes | Yes |
Y14 | Medium | Weak | Neat | Yes | Yes |
Y15 | Medium | Weak | Neat | Yes | Yes |
Y16 | Medium | Weak | Uneven | Yes | Yes |
Y17 | High | Strong | Uneven | No | No |
Y18 | High | Moderately strong | Neat | No | No |
Y19 | Medium | Weak | Uneven | Yes | Yes |
Y20 | Medium | Weak | Neat | Yes | Yes |
Y21 | High | Weak | Neat | Yes | Yes |
Strain | Yield (g) | Biological Efficiency (%) |
---|---|---|
Y3 | 180.57 ± 5.76 e | 36.11 ± 1.21 e |
Y5 | 186.32 ± 6.18 cde | 37.26 ± 1.37 cde |
Y6 | 205.07 ± 4.96 cde | 41.01 ± 0.99 cde |
Y9 | 215.13 ± 5.17 cde | 44.03 ± 1.03 cde |
Y10 | 195.05 ± 6.81 cde | 39.01 ± 0.78 cde |
Y11 | 221.22 ± 6.34 cde | 44.24 ± 1.86 cde |
Y12 | 306.03 ± 3.70 ab | 61.21 ± 1.11 ab |
Y13 | 342.02 ± 4.43 a | 68.40 ± 0.74 a |
Y14 | 281.15 ± 5.56 b | 56.23 ± 1.12 b |
Y15 | 294.12 ± 5.62 b | 58.82 ± 1.88 b |
Y16 | 230.93 ± 7.13 cd | 46.19 ± 1.42 cd |
Y17 | 197.98 ± 6.46 cde | 39.60 ± 1.69 cde |
Y18 | 207.03 ± 3.56 cde | 41.41 ± 0.71 cde |
Y19 | 236.32 ± 4.04 c | 46.32 ± 1.03 c |
Y20 | 181.90 ± 5.32 de | 36.38 ± 1.06 de |
Y21 | 209.07 ± 3.92 cde | 41.81 ± 0.78 cde |
Strain | Polysaccharide (g/100 g) | Crude Protein (g/100 g) | Crude Fiber (%) | Ash (%) | Crude Fat (g/100 g) |
---|---|---|---|---|---|
Y3 | 6.12 ± 0.04 e | 15.33 ± 0.06 g | 3.65 ± 0.02 e | 7.65 ± 0.08 a | 24.10 ± 0.1 a |
Y5 | 7.55 ± 0.07 cd | 13.41 ± 0.03 i | 5.62 ± 0.04 b | 6.32 ± 0.06 ab | 23.20 ± 0.2 b |
Y6 | 6.98 ± 0.04 de | 14.32 ± 0.09 h | 2.41 ± 0.01 g | 5.83 ± 0.04 ab | 20.30 ± 0.3 cd |
Y9 | 6.35 ± 0.03 e | 16.32 ± 1.01 fg | 6.65 ± 0.04 a | 6.01 ± 0.06 ab | 20.30 ± 0.1 cd |
Y10 | 6.88 ± 0.08 de | 15.78 ± 0.05 fg | 4.12 ± 0.05 d | 5.78 ± 0.05 bc | 19.70 ± 0.3 de |
Y11 | 7.42 ± 0.06 cd | 16.95 ± 0.06 ef | 3.67 ± 0.06 e | 7.03 ± 0.08 ab | 19.50 ± 0.2 de |
Y12 | 8.03 ± 0.05 c | 18.02 ± 0.07 d | 5.32 ± 0.03 bc | 5.66 ± 0.02 bc | 22.00 ± 0.2 cd |
Y13 | 7.96 ± 0.04 cd | 20.65 ± 0.04 b | 4.12 ± 0.06 d | 5.34 ± 0.06 c | 15.50 ± 0.3 f |
Y14 | 8.86 ± 0.07 a | 19.24 ± 0.09 c | 3.65 ± 0.03 e | 5.44 ± 0.08 bc | 15.60 ± 0.1 f |
Y15 | 8.45 ± 0.04 b | 22.64 ± 0.06 a | 2.98 ± 0.07 f | 5.81 ± 0.05 bc | 17.40 ± 0.4 e |
Y16 | 6.07 ± 0.05 e | 17.02 ± 0.04 ef | 4.66 ± 0.04 c | 6.98 ± 0.04 ab | 20.10 ± 0.2 cd |
Y17 | 7.46 ± 0.06 cd | 16.36 ± 0.06 ef | 5.13 ± 0.12 bc | 7.05 ± 1.11 c | 19.80 ± 0.3 de |
Y18 | 7.32 ± 0.03 cd | 15.46 ± 0.02 fg | 3.48 ± 0.05 ef | 7.22 ± 0.08 ab | 17.90 ± 0.1 e |
Y19 | 7.69 ± 0.07 cd | 16.48 ± 0.07 ef | 6.54 ± 0.03 a | 7.43 ± 0.06 ab | 22.40 ± 0.2 c |
Y20 | 7.77 ± 0.05 cd | 17.23 ± 1.02 de | 2.87 ± 0.04 f | 6.64 ± 0.05 ab | 21.30 ± 0.3 c |
Y21 | 7.04 ± 0.06 de | 16.45 ± 0.06 ef | 4.35 ± 0.11 cd | 7.15 ± 0.04 ab | 20.60 ± 0.2 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, Y.; Sheng, C.; Wang, F.; Zhang, P.; Qi, Y.; Wang, J.; Shi, L.; Yu, H.; Zhao, J. Screening and Characterization of Wild Sarcomyxa edulis Strains from Heilongjiang, China, for Strain Development. Horticulturae 2024, 10, 1061. https://doi.org/10.3390/horticulturae10101061
Liu Z, Wang Y, Sheng C, Wang F, Zhang P, Qi Y, Wang J, Shi L, Yu H, Zhao J. Screening and Characterization of Wild Sarcomyxa edulis Strains from Heilongjiang, China, for Strain Development. Horticulturae. 2024; 10(10):1061. https://doi.org/10.3390/horticulturae10101061
Chicago/Turabian StyleLiu, Zitong, Yanfeng Wang, Chunge Sheng, Fei Wang, Peng Zhang, Yuxin Qi, Jinhe Wang, Lei Shi, Haiyang Yu, and Jing Zhao. 2024. "Screening and Characterization of Wild Sarcomyxa edulis Strains from Heilongjiang, China, for Strain Development" Horticulturae 10, no. 10: 1061. https://doi.org/10.3390/horticulturae10101061
APA StyleLiu, Z., Wang, Y., Sheng, C., Wang, F., Zhang, P., Qi, Y., Wang, J., Shi, L., Yu, H., & Zhao, J. (2024). Screening and Characterization of Wild Sarcomyxa edulis Strains from Heilongjiang, China, for Strain Development. Horticulturae, 10(10), 1061. https://doi.org/10.3390/horticulturae10101061