Comparative Analysis of Shelf-Life, Antioxidant Activity, and Phytochemical Contents of Australian-Grown and Imported Dragon Fruit under Ambient Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Shelf-Life
2.3.1. Peel Color
2.3.2. Firmness
2.3.3. Weight Loss (%)
2.3.4. Total Soluble Solids (TSS), pH and Titratable Acidity
2.4. Antioxidant and Phytochemical Assays
2.4.1. Extraction
2.4.2. Measurement of Phytochemical Contents and Antioxidant Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fruit Quality during Shelf-Life
3.1.1. Color
3.1.2. Firmness
3.1.3. Weight Loss
3.1.4. TSS (°Brix)
3.1.5. pH
3.1.6. TA
3.1.7. Overall Shelf-Life
3.2. Antioxidant Activities
3.2.1. Results
3.2.2. Discussion
3.3. Correlation between Shelf-Life Parameters and Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Day | Origin/ Variety | Color/ log(R681/R551) | Firmness/ NMax | Weight Loss/% | TSS/°Brix | pH | TA/%, as MAE |
---|---|---|---|---|---|---|---|
2 | QLDW | 0.86 ± 0.10 Ab | 11.34 ± 2.26 Ca | - | 14.43 ± 0.83 Bab | 4.56 ± 0.22 Aa | 0.62 ± 0.23 Cb |
NTW | - | - | - | - | - | - | |
OverseasW | 0.74 ± 0.14 Ab | 16.45 ± 3.44 Ab | - | 13.92 ± 0.57 Aa | 4.42 ± 0.03 Aa | 0.61 ± 0.02 Db | |
QLDR | 0.50 ± 0.13 Aa | 9.78 ± 1.27 Ba | - | 15.27 ± 1.16 Ab | 5.23 ± 0.17 Ac | 0.38 ± 0.13 Ba | |
OverseasR | 0.73 ± 0.05 Ab | 13.99 ± 1.09 Bb | - | 14.92 ± 1.22 Aab | 4.86 ± 0.02 Ab | 0.46 ± 0.01 Dab | |
4 | QLDW | 0.95 ± 0.08 Bb | 10.53 ± 1.81 BCab | 1.33 ± 0.42 Aab | 14.53 ± 0.84 Ba | 4.82 ± 0.17 Bb | 0.46 ± 0.14 Bab |
NTW | 0.76 ± 0.06 Aa | 12.69 ± 1.95 Ab | - | 14.37 ± 0.29 Ca | 4.61 ± 0.12 Aa | 0.39 ± 0.02 Bab | |
OverseasW | 0.85 ± 0.16 Aab | 16.68 ± 2.76 Ac | 2.36 ± 0.84 Ab | 13.90 ± 0.77 Aa | 4.61 ± 0.04 Ba | 0.51 ± 0.02 Cb | |
QLDR | 0.73 ± 0.12 Ba | 9.47 ± 1.10 ABa | 1.96 ± 0.51 Aab | 15.14 ± 1.34 Aa | 5.38 ± 0.15 ABd | 0.33 ± 0.10 Ba | |
OverseasR | 0.82 ± 0.07 ABab | 12.81 ± 1.19 ABb | 2.71 ± 1.03 Ab | 14.68 ± 1.19 Aa | 5.12 ± 0.11 Bc | 0.35 ± 0.01 Ca | |
6 | QLDW | 0.98 ± 0.07 Bb | 9.76 ± 1.70 ABCa | 2.32 ± 0.53 Ba | 14.22 ± 0.78 Bab | 5.00 ± 0.09 Ca | 0.38 ± 0.09 ABbc |
NTW | 0.91 ± 0.06 Bab | 12.03 ± 1.03 Ab | 1.19 ± 0.17a | 13.75 ± 0.43 Bab | 4.99 ± 0.13 Ba | 0.33 ± 0.03 Aabc | |
OverseasW | 0.92 ± 0.18 Aab | 13.91 ± 1.53 Ab | 4.05 ± 1.06 Ab | 13.48 ± 0.53 Aa | 4.89 ± 0.01 Ca | 0.29 ± 0.01 Bc | |
QLDR | 0.80 ± 0.11 Ba | 8.81 ± 1.48 ABa | 3.69 ± 1.19 Bb | 14.90 ± 1.31 Ab | 5.50 ± 0.14 Bc | 0.29 ± 0.08 ABab | |
OverseasR | 0.90 ± 0.13 Bab | 12.41 ± 1.87 ABb | 4.20 ± 0.46 Ab | 14.57 ± 1.28 Aab | 5.32 ± 0.08 Cb | 0.25 ± 0.01 Ba | |
8 | QLDW | 1.02 ± 0.06 Bb | 8.80 ± 1.40 ABa | 3.60 ± 0.99 Ca | 13.67 ± 0.80 Aa | 5.32 ± 0.15 Db | 0.30 ± 0.09 Ab |
NTW | 0.91 ± 0.03 Bab | 11.26 ± 0.51 Ab | 2.41 ± 0.28a | 13.13 ± 0.35 Aa | 5.19 ± 0.06 Cab | 0.30 ± 0.04 Ab | |
OverseasW | 0.95 ± 0.17 Ab | 13.46 ± 1.09 Ac | 6.27 ± 1.52 Bb | 13.13 ± 0.59 Aa | 5.09 ± 0.06 Da | 0.29 ± 0.01 Ab | |
QLDR | 0.83 ± 0.09 Ba | 8.35 ± 1.06 Aa | 5.70 ± 1.88 Cb | 14.44 ± 1.16 Aa | 5.70 ± 0.17 Cc | 0.23 ± 0.07 Aab | |
OverseasR | 0.97 ± 0.10 Bb | 10.89 ± 0.89 Ab | 7.31 ± 1.32 Bb | 14.17 ± 1.50 Aa | 5.53 ± 0.02 Dc | 0.19 ± 0.03 Aa | |
10 | QLDW | 1.00 ± 0.05 B | 8.54 ± 1.76 A | 4.01 ± 0.84 C | 13.11 ± 1.22 A | 5.45 ± 0.19 D | 0.24 ± 0.01 A |
Day | Origin/Variety | TPC/(mg GAE/100 g FW) | TFC/(mg QE/100 g FW) | FRAP/(mg TE/100 g FW) | CUPRAC/(mg TE/100 g FW) |
---|---|---|---|---|---|
2 | QLDW | 168.94 ± 5.86 Eb | 33.37 ± 1.22 Eb | 163.19 ± 6.61 Db | 296.39 ± 20.58 Db |
NTW | - | - | - | - | |
OverseasW | 150.25 ± 0.72 Da | 27.78 ± 0.23 Da | 145.37 ± 1.23 Da | 240.32 ± 2.20 Da | |
QLDR | 303.70 ± 10.44 Cd | 45.00 ± 3.64 Dc | 513.15 ± 9.85 Dc | 1319.71 ± 42.34 Dd | |
OverseasR | 273.98 ± 6.41 Cc | 36.32 ± 1.37 Db | 493.11 ± 1.99 Dd | 1210.38 ± 1.43 Dc | |
4 | QLDW | 158.36 ± 3.75 Db | 30.54 ± 1.49 Db | 157.45 ± 7.03 Db | 279.02 ± 16.51 Cb |
NTW | 164.95 ± 1.66 Cb | 30.95 ± 1.81 Cb | 163.17 ± 6.34 Bb | 277.43 ± 22.87 Bb | |
OverseasW | 139.84 ± 1.02 Ca | 24.92 ± 0.23 Ca | 139.93 ± 3.93 Ca | 221.71 ± 5.12 Ca | |
QLDR | 297.74 ± 9.31 BCd | 39.65 ± 3.78 Cc | 488.78 ± 8.69 Cd | 1212.78 ± 40.79 Cd | |
OverseasR | 268.23 ± 5.18 BCc | 32.59 ± 2.02 Cb | 473.95 ± 1.01 Cc | 1103.78 ± 4.47 Cc | |
6 | QLDW | 148.73 ± 3.79 Cb | 25.67 ± 1.27 Cb | 148.95 ± 6.16 Cb | 256.63 ± 14.79 Bb |
NTW | 154.74 ± 1.52 Bb | 25.65 ± 1.72 Bb | 155.74 ± 6.26 Bb | 255.69 ± 18.33 ABb | |
OverseasW | 130.71 ± 0.60 Ba | 21.53 ± 0.15 Ba | 132.69 ± 2.90 Ba | 203.43 ± 0.68 Ba | |
QLDR | 292.50 ± 8.29 ABd | 34.68 ± 3.22 Bc | 468.19 ± 9.84 Bd | 1137.74 ± 43.02 Bd | |
OverseasR | 262.50 ± 4.57 ABc | 27.88 ± 1.78 Bb | 449.85 ± 5.33 Bc | 1008.24 ± 1.38 Bc | |
8 | QLDW | 139.38 ± 6.91 Bb | 21.74 ± 1.54 Bb | 139.10 ± 4.70 Bb | 235.25 ± 15.73 Ab |
NTW | 143.71 ± 1.23 Ab | 21.47 ± 1.36 Ab | 146.59 ± 3.83 Ab | 235.33 ± 17.34 Ab | |
OverseasW | 121.31 ± 1.03 Aa | 18.69 ± 0.15 Aa | 123.32 ± 1.35 Aa | 188.00 ± 2.12 Aa | |
QLDR | 285.44 ± 7.48 Ad | 29.13 ± 1.93 Ac | 443.54 ± 11.55 Ad | 1053.93 ± 39.97 Ad | |
OverseasR | 255.04 ± 4.38 Ac | 22.54 ± 1.25 Ab | 425.70 ± 8.35 Ac | 906.43 ± 1.79 Ac | |
10 | QLDW | 132.84 ± 8.74 A | 20.07 ± 0.76 A | 128.81 ± 4.80 A | 223.82 ± 4.86 A |
Day | Origin/Variety | TBC/(mg/100 g FW) | TAC/(mg/100 g FW) |
---|---|---|---|
2 | QLDR | 84.63 ± 2.15 Da | 83.12 ± 2.11 Da |
OverseasR | 71.65 ± 1.57 Db | 72.78 ± 1.75 Db | |
4 | QLDR | 78.15 ± 2.29 Ca | 75.38 ± 1.92 Ca |
OverseasR | 67.59 ± 0.42 Cb | 65.09 ± 2.36 Cb | |
6 | QLDR | 71.31 ± 3.22 Ba | 65.35 ± 1.87 Ba |
OverseasR | 60.01 ± 1.49 Bb | 55.14 ± 1.36 Bb | |
8 | QLDR | 61.29 ± 4.71 Aa | 53.78 ± 3.77 Aa |
OverseasR | 48.16 ± 0.99 Ab | 42.65 ± 0.87 Ab |
References
- da Silveira Agostini-Costa, T. Bioactive compounds and health benefits of Pereskioideae and Cactoideae: A review. Food Chem. 2020, 327, 126961. [Google Scholar] [CrossRef] [PubMed]
- Eusebio, J.E.; Alaban, M.C.S. Current status of dragon fruit and its prospects in the Philippines. In Proceedings of the Country Report, Dragon Fruit Regional Network Initiation Workshop, Taipei, Taiwan, 23–24 April 2018. [Google Scholar]
- Le, T.-L.; Huynh, N.; Quintela-Alonso, P. Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech J. Food Sci. 2021, 39, 71–94. [Google Scholar]
- Hossain, F.M.; Numan, S.M.; Akhtar, S. Cultivation, Nutritional Value, and Health Benefits of Dragon Fruit (Hylocereus spp.): A Review. Int. J. Hortic. Sci. Technol. 2021, 8, 239–249. [Google Scholar]
- Salvin, S. The New Crop Industries Handbook; RIRDC: Kingston, Australia, 2004.
- Diczbalis, Y. Tropical Exotic Fruit Industry: Strategic Direction Setting 2012–2015; RIRDC: Kingston, Australia, 2012.
- Perween, T.; Mandal, K.; Hasan, M. Dragon fruit: An exotic super future fruit of India. J. Pharmacogn. Phytochem. 2018, 7, 1022–1026. [Google Scholar]
- AgriFutures. Dragon Fruit (Pitaya). Available online: https://www.agrifutures.com.au/farm-diversity/dragon-fruit-pitaya/ (accessed on 17 May 2024).
- Chen, Z.; Zhong, B.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Arab. J. Chem. 2021, 14, 103151. [Google Scholar] [CrossRef]
- Ruzainah, A.J.; Ahmad, R.; Nor, Z.; Vasudevan, R. Proximate analysis of dragon fruit (Hylecereus polyhizus). Am. J. Appl. Sci. 2009, 6, 1341–1346. [Google Scholar]
- Brann, M. Darwin Dragon Fruit Farm Taking on Vietnamese Imports with Record Pick. Available online: https://www.abc.net.au/news/rural/2019-02-25/darwin-dragon-fruit-farm-takes-on-imports-with-record-pick/10812900 (accessed on 25 February 2019).
- CXS 237-2003; Standard for Pitahayas. Codex Committee on Fresh Fruit and Vegetables: Mexico City, Mexico, 2003.
- Wanitchang, J.; Terdwongworakul, A.; Wanitchang, P.; Noypitak, S. Maturity sorting index of dragon fruit: Hylocereus polyrhizus. J. Food Eng. 2010, 100, 409–416. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC international Gaithersburg: Rockville, MD, USA, 2000; Volume 1. [Google Scholar]
- Johnson, J.; Collins, T.; Power, A.; Chandra, S.; Skylas, D.; Portman, D.; Panozzo, J.; Blanchard, C.; Naiker, M. Antioxidative properties and macrochemical composition of five commercial mungbean varieties in Australia. Legume Sci. 2020, 2, e27. [Google Scholar] [CrossRef]
- Johnson, J.; Collins, T.; Walsh, K.; Naiker, M. Solvent extractions and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums. Chem. Pap. 2020, 74, 4481–4492. [Google Scholar] [CrossRef]
- Johnson, J.B.; Collins, T.; Skylas, D.; Quail, K.; Blanchard, C.; Naiker, M. Profiling the varietal antioxidative contents and macrochemical composition in Australian faba beans (Vicia faba L.). Legume Sci. 2020, 2, e28. [Google Scholar] [CrossRef]
- Zitha, E.Z.M.; Magalhães, D.S.; do Lago, R.C.; Carvalho, E.E.N.; Pasqual, M.; Boas, E.V.d.B.V. Changes in the bioactive compounds and antioxidant activity in red-fleshed dragon fruit during its development. Sci. Hortic. 2022, 291, 110611. [Google Scholar] [CrossRef]
- Jadhav, P.B. Extending the storage and Post-Storage life of dragon fruit using a cold room (Ecofrost). Int. J. Agric. Environ. Biotechnol. 2018, 11, 573–577. [Google Scholar] [CrossRef]
- Chandran, S. Effect of film packaging in extending shelf life of dragon fruit, Hylocereus undatus and Hylocereus polyrhizus. In Proceedings of the Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce 875, Bangkok, Thailand, 3–5 August 2009; pp. 389–394. [Google Scholar]
- Lata, D.; Narayana, C.; Anand, A.; Rao, S.; Ranjitha, K.; Azeez, S.; Karunakaran, G. Effect of ambient storage on postharvest quality and shelf life of white pulp (Hylocereus undatus) and red Pulp Dragon Fruit (Hylocereus polyrhizus). Erwerbs-Obstbau 2023, 65, 2469–2478. [Google Scholar] [CrossRef]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Castillo-Martínez, R.; Ortiz-Hernández, Y.D. Floración y fructificación de pitajaya en Zaachila. Oaxaca. Rev. Fitotec. Mex 1994, 17, 12–19. [Google Scholar] [CrossRef]
- Choo, W.S.; Yong, W.K. Antioxidant properties of two species of Hylocereus fruits. Adv. Appl. Sci. Res. 2011, 2, 418–425. [Google Scholar]
- Chew, Y.M.; Hung, C.-H.; King, V.A.-E. Accelerated storage test of betalains extracted from the peel of pitaya (Hylocereus cacti) fruit. J. Food Sci. Technol. 2019, 56, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Al-Dairi, M. Effect of mechanical damage on the quality characteristics of banana fruits during short-term storage. Discov. Food 2022, 2, 4. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, J.; Yin, C.; Li, G.; Jiang, Y.; Shan, Y. Effect of ozone treatment on flavonoid accumulation of Satsuma mandarin (Citrus unshiu Marc.) during ambient storage. Biomolecules 2019, 9, 821. [Google Scholar] [CrossRef]
- Sudhakar Rao, D. Individual shrink wrapping extends the storage life and maintains the quality of pomegranates (cvs.‘Mridula’and ‘Bhagwa’) at ambient and low temperature. J. Food Sci. Technol. 2018, 55, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.; Gallone, A.; Nychas, G.; Sofos, J.; Colelli, G.; Amodio, M.; Spano, G. Factors affecting quality and safety of fresh-cut produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Wismer, W.V. Consumer eating habits and perceptions of fresh produce quality. In Postharvest Handling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 31–52. [Google Scholar]
- Mane, S.; Pawar, C.; Salvi, B.; Burondkar, M.; Haldankar, P.; Borkar, P.; Kulkarni, M. Effect of precooling and storage temperature on physical parameters of alphonso mango (Mangifera indica L.) fruits. Pharma Innov. J 2021, 10, 984–989. [Google Scholar]
- Nasrin, T.A.A.; Rahman, M.A.; Arfin, M.S.; Islam, M.N.; Ullah, M.A. Effect of novel coconut oil and beeswax edible coating on postharvest quality of lemon at ambient storage. J. Agric. Food Res. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Li, Z.; Thomas, C. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Khatun, Z.; Dash, P.K.; Mannan, M.A. Influence of precooling systems on postharvest quality and shelf life of dragon fruits (Hylocereus polyrhizus). J. Bangladesh Agric. Univ. 2022, 20, 313–322. [Google Scholar] [CrossRef]
- Franco, R.K.; Castro, A.; Esguerra, E. Harvest maturity affects the quality and storage behavior of white-fleshed dragon fruit [Hylocereus undatus (Haworth) Britton and Rose]. Food Res. 2022, 6, 423–433. [Google Scholar] [CrossRef]
- Bhat, N. Postharvest storage systems: Biology, physical factors, storage, and transport. In Handbook of Fruits and Fruit Processing; Wiley: Hoboken, NJ, USA, 2012; pp. 85–101. [Google Scholar]
- Paliyath, G.; Murr, D.P.; Handa, A.K.; Lurie, S. Postharvest Biology and Technology of Fruits, Vegetables, and Flowers; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Yahia, E.M.; Carrillo-Lopez, A. Postharvest Physiology and Biochemistry of Fruits and Vegetables; Woodhead Publishing: London, UK, 2018. [Google Scholar]
- Wang, Y.; Ding, S.; Chen, F.; Xiao, G.; Fu, X.; Wang, R. Changes in pectin characteristics of jujube fruits cv” Dongzao” and” Jinsixiaozao” during cold storage. J. Food Sci. 2021, 86, 3001–3013. [Google Scholar] [CrossRef]
- Sozzi, G.O. Strategies for the regulation of postharvest fruit softening by changing cell wall enzyme activity. In Production Practices and Quality Assessment of Food Crops: Volume 4: Proharvest Treatment and Technology; Springer: Berlin/Heidelberg, Germany, 2004; pp. 135–172. [Google Scholar]
- Moshari-Nasirkandi, A.; Alirezalu, A.; Hachesu, M.A. Effect of lemon verbena bio-extract on phytochemical and antioxidant capacity of strawberry (FragariaŨananassa Duch. cv. Sabrina) fruit during cold storage. Biocatal. Agric. Biotechnol. 2020, 25, 101613. [Google Scholar] [CrossRef]
- Lata, D.; Aftab, M.; Homa, F.; Ahmad, M.S.; Siddiqui, M.W. Effect of eco-safe compounds on postharvest quality preservation of papaya (Carica papaya L.). Acta Physiol. Plant. 2018, 40, 1–8. [Google Scholar] [CrossRef]
- Khan, A.; Hussain, K.; Shah, H.; Malik, A.; Anwar, R.; Rehman, R.; Bakhsh, A. Cold storage influences postharvest chilling injury and quality of peach fruits. J. Hortic. Sci. Technol 2018, 1, 28–34. [Google Scholar] [CrossRef]
- Wong, Y.-M.; Siow, L.-F. Effects of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models. J. Food Sci. Technol. 2015, 52, 3086–3092. [Google Scholar] [CrossRef] [PubMed]
- Zauberman, G.; Ronen, R.; Akerman, M.; Fuchs, Y. Low pH treatment protects litchi fruit color. In Proceedings of the Symposium on Tropical Fruit in International Trade 269, Honolulu, HI, USA, 4–9 June 1989; pp. 309–314. [Google Scholar]
- Baloch, M.; Bibi, F. Effect of harvesting and storage conditions on the post harvest quality and shelf life of mango (Mangifera indica L.) fruit. South Afr. J. Bot. 2012, 83, 109–116. [Google Scholar] [CrossRef]
- Wu, Z.; Tu, M.; Yang, X.; Xu, J.; Yu, Z. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit. Postharvest Biol. Technol. 2020, 161, 111081. [Google Scholar] [CrossRef]
- Tang, M.; Bie, Z.-L.; Wu, M.-Z.; Yi, H.-P.; Feng, J.-X. Changes in organic acids and acid metabolism enzymes in melon fruit during development. Sci. Hortic. 2010, 123, 360–365. [Google Scholar] [CrossRef]
- Walker, R.P.; Famiani, F. Organic acids in fruits: Metabolism, functions and contents. Hortic. Rev. 2018, 45, 371–430. [Google Scholar]
- Patel, S.K.; Pathak, S.; Mishra, D.; Kumar, V.; Singh, A.P. Effect of Paclobutrazol and GA4+ 7 on Post-Harvest Storage of Dragon Fruit [Hylocereus costaricensis (Web.) Britton and Rose]. J. Adv. Biol. Biotechnol. 2024, 27, 1–8. [Google Scholar] [CrossRef]
- Vangdal, E.; Flatland, S.; Lunde Knutsen, I.; Larsen, H. Factors affecting storability and shelf life in plums (Prunus domestica L. In Proceedings of the II EUFRIN Plum and Prune Working Group Meeting on Present Constraints of Plum Growing in Europe 968, Craiova, Romania, 20–22 July 2010; pp. 197–203. [Google Scholar]
- Cao, M.; Wang, D.; Qiu, L.; Ren, X.; Ma, H. Shelf Life Prediction of ’Royal Gala’ Apples Based on Quality Attributes and Storage Temperature. J. Hortic. Sci. Technol. 2021, 39, 343–355. [Google Scholar] [CrossRef]
- Nath, A.; Deka, B.C.; Singh, A.; Patel, R.; Paul, D.; Misra, L.; Ojha, H. Extension of shelf life of pear fruits using different packaging materials. J. Food Sci. Technol. 2012, 49, 556–563. [Google Scholar] [CrossRef]
- Jalgaonkar, K.; Mahawar, M.K.; Bibwe, B.; Kannaujia, P. Postharvest profile, processing and waste utilization of dragon fruit (Hylocereus spp.): A review. Food Rev. Int. 2022, 38, 733–759. [Google Scholar] [CrossRef]
- King, E.S.; Noll, A.; Glenn, S.; Bolling, B.W. Refrigerated and frozen storage impact aronia berry quality. Food Prod. Process. Nutr. 2022, 4, 3. [Google Scholar] [CrossRef]
- Muley, A.B.; Kedia, P.; Pegu, K.; Kausley, S.B.; Rai, B. Analyzing the physical and biochemical changes in strawberries during storage at different temperatures and the development of kinetic models. J. Food Meas. Charact. 2022, 16, 222–247. [Google Scholar] [CrossRef]
- Jamaludin, N.A.; Ding, P.; Hamid, A.A. Physico-chemical and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus) during fruit development. J. Sci. Food Agric. 2011, 91, 278–285. [Google Scholar] [CrossRef]
- Lau, C.; Othman, F.; Eng, L. The effect of heat treatment, different packaging methods and storage temperatures on shelf life of dragon fruit (Hylocereus spp.). Jab. Pertan. Sarawak 2008, 1–16. [Google Scholar]
- Wu, Q.; Zhou, Y.; Zhang, Z.; Li, T.; Jiang, Y.; Gao, H.; Yun, Z. Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya. Postharvest Biol. Technol. 2020, 160, 111059. [Google Scholar] [CrossRef]
- Awang, Y.; Ghani, M.A.A.; Sijam, K.; Mohamad, R.B. Effect of calcium chloride on anthracnose disease and postharvest quality of red-flesh dragon fruit (Hylocereus polyrhizus). Afr. J. Microbiol. Res 2011, 5, 5250–5259. [Google Scholar] [CrossRef]
- Ghani, M.; Awang, Y.; Sijam, K. Disease occurrence and fruit quality of pre-harvest calcium treated red flesh dragon fruit (Hylocereus polyrhizus). Afr. J. Biotechnol. 2011, 10, 1550–1558. [Google Scholar]
- Prashanth, R.; Kiran Kumar, A.; Rajkumar, M.; Aparna, K. Studies on postharvest quality and shelf life of pink fleshed dragon fruit (Hylocereus spp.) coated with Chitosan and stored at ambient temperature. Biol Forum 2022, 14, 340–347. [Google Scholar]
- Chaemsanit, S.; Matan, N.; Matan, N. Effect of peppermint oil on the shelf-life of dragon fruit during storage. Food Control 2018, 90, 172–179. [Google Scholar] [CrossRef]
- Nurliyana, R.; Syed Zahir, I.; Mustapha Suleiman, K.; Aisyah, M.R.; Kamarul Rahim, K. Antioxidant study of pulps and peels of dragon fruits: A comparative study. Int. Food Res. J. 2010, 17, 367–375. [Google Scholar]
- Al-Mekhlafi, N.A.; Mediani, A.; Ismail, N.H.; Abas, F.; Dymerski, T.; Lubinska-Szczygeł, M.; Vearasilp, S.; Gorinstein, S. Metabolomic and antioxidant properties of different varieties and origins of Dragon fruit. Microchem. J. 2021, 160, 105687. [Google Scholar] [CrossRef]
- Parmar, V.; Karetha, K. Physical and biochemical analysis of dragon fruit species from different regions of Gujarat. J. Pharmacogn. Phytochem. 2020, 9, 2863–2866. [Google Scholar]
- Patwary, M.A.; Rahman, M.; Barua, H.; Sarkar, S.; Alam, M.S. Study on the growth and development of two dragon fruit (Hylocereus undatus) genotypes. Agriculturists 2013, 11, 52–57. [Google Scholar] [CrossRef]
- Tien, N.N.T.; Le, N.L.; Khoi, T.T.; Richel, A. Influence of location, weather condition, maturity, and plant disease on chemical profiles of dragon fruit (Hylocereus spp.) branches grown in Vietnam. Biomass Convers. Biorefinery 2022, 13, 16085–16097. [Google Scholar] [CrossRef]
- Sosa, V.; Guevara, R.; Gutiérrez-Rodríguez, B.E.; Ruiz-Domínguez, C. Optimal areas and climate change effects on dragon fruit cultivation in Mesoamerica. J. Agric. Sci. 2020, 158, 461–470. [Google Scholar] [CrossRef]
- Zakaria, N.N.A.; Mohamad, A.Z.; Harith, Z.T.; Rahman, N.A. Antioxidant and antibacterial activities of red (Hylocereus polyrhizus) and white (Hylocereus undatus) dragon fruits. J. Trop. Resour. Sustain. Sci. 2022, 10, 9–14. [Google Scholar] [CrossRef]
- Arivalagan, M.; Karunakaran, G.; Roy, T.; Dinsha, M.; Sindhu, B.; Shilpashree, V.; Satisha, G.; Shivashankara, K. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chem. 2021, 353, 129426. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ismail, N.; Nawawi, N.; Ijod, G.; Anzian, A.; Ismail-Fitry, M.; Ahmad, N.; Adzahan, N.; Azman, E. Shelf life and quality assessment of pasteurised red dragon fruit (Hylocereus polyrhizus L.) purée: Comparative study of high-pressure and thermal processing. Int. Food Res. J. 2024, 31, 514. [Google Scholar] [CrossRef]
- Pangesty, D.; Andarwulan, N.; Adawiyah, D. Identification of Pigment and its Antioxidant Activity of Several Species of Indonesian Dragon Fruit. Asian J. Chem. 2018, 30, 1983–1988. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K.S.; Erçağ, E.; Çelik, S.E.; Baki, S.; Yıldız, L.; Karaman, Ş.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
- Sharma, S.; Harjeevan, K.; Singh, H.; Naik, E.; Adhikary, T. Phytochemical properties, antioxidant potential and fatty acids profiling of three dragon fruit species grown under sub-tropical climate. Not. Bot. Horti Agrobot. 2023, 51, 12993. [Google Scholar]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain stability and degradation—Structural and chromatic aspects. J. Food Sci. 2006, 71, R41–R50. [Google Scholar] [CrossRef]
- Rodriguez, E.B.; Vidallon, M.L.P.; Mendoza, D.J.R.; Dalisay, K.A.M.; Reyes, C.T. Stabilization of betalains from the peel of red dragon fruit [Hylocereus polyrhizus (Weber) Britton & Rose] through biopolymeric encapsulation. Philipp. Agric. Sci. 2015, 98, 276–286. [Google Scholar]
- Calvi, P.; Terzo, S.; Amato, A. Betalains: Colours for human health. Nat. Prod. Res. 2023, 37, 1746–1765. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, P.; Guerrero-Rubio, M.A.; Henarejos-Escudero, P.; García-Carmona, F.; Gandía-Herrero, F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: A review. Trends Food Sci. Technol. 2022, 122, 66–82. [Google Scholar] [CrossRef]
- Tesoriere, L.; Allegra, M.; Butera, D.; Livrea, M.A. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans. Am. J. Clin. Nutr. 2004, 80, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S.A.; Ostadrahimi, A. Betalains, the nature-inspired pigments, in health and diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 2949–2978. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef]
- Petric, T.; Kiferle, C.; Perata, P.; Gonzali, S. Optimizing shelf life conditions for anthocyanin-rich tomatoes. PLoS ONE 2018, 13, e0205650. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.; Lee, J. Relationship of fruit color and anthocyanin content with related gene expression differ in strawberry cultivars during shelf life. Sci. Hortic. 2022, 301, 111109. [Google Scholar] [CrossRef]
- Joo, M.; Lewandowski, N.; Auras, R.; Harte, J.; Almenar, E. Comparative shelf life study of blackberry fruit in bio-based and petroleum-based containers under retail storage conditions. Food Chem. 2011, 126, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; He, X.; Tang, Y.; Li, Z.; Li, C.; Zeng, Y.; Tang, J.; Sun, J. Betacyanins and anthocyanins in pulp and peel of red pitaya (Hylocereus polyrhizus cv. Jindu), inhibition of oxidative stress, lipid reducing, and cytotoxic effects. Front. Nutr. 2022, 9, 894438. [Google Scholar] [CrossRef] [PubMed]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic compounds: Functional properties, impact of processing and bioavailability. Phenolic Compd. Biol. Act 2017, 8, 1–24. [Google Scholar]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Trong, L.V.; Thuy, L.T.; Chinh, H.V.; Thinh, B.B. Physiological and biochemical changes of red-fleshed dragon fruit (Hylocereus polyrhizus) during development and maturation. J. Food Nutr. Res. 2022, 61, 139–145. [Google Scholar]
- Singh, A.; Swami, S.; Panwar, N.R.; Kumar, M.; Shukla, A.K.; Rouphael, Y.; Sabatino, L.; Kumar, P. Development changes in the physicochemical composition and mineral profile of red-fleshed dragon fruit grown under semi-arid conditions. Agronomy 2022, 12, 355. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Elmastaş, M.; Demir, A.; Genç, N.; Dölek, Ü.; Güneş, M. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef]
- Vvedenskaya, I.O.; Vorsa, N. Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci. 2004, 167, 1043–1054. [Google Scholar] [CrossRef]
- Dong, C.; Hu, H.; Hu, Y.; Xie, J. Metabolism of flavonoids in novel banana germplasm during fruit development. Front. Plant Sci. 2016, 7, 1291. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Çelik, S.E. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 2008, 160, 413–419. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef]
- Woo, K.; Ngou, F.; Ngo, L.; Soong, W.; Tang, P. Stability of betalain pigment from red dragon fruit (Hylocereus polyrhizus). Am. J. Food Technol. 2011, 6, 140–148. [Google Scholar] [CrossRef]
- Wu, Q.; Fu, X.; Chen, Z.; Wang, H.; Wang, J.; Zhu, Z.; Zhu, G. Composition, color stability and antioxidant properties of betalain-based extracts from bracts of Bougainvillea. Molecules 2022, 27, 5120. [Google Scholar] [CrossRef]
- Lombardelli, C.; Benucci, I.; Mazzocchi, C.; Esti, M. Betalain extracts from beetroot as food colorants: Effect of temperature and UV-light on storability. Plant Foods Hum. Nutr. 2021, 76, 347–353. [Google Scholar] [CrossRef]
- Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Mazzoni, L.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Gonzàlez-Paramàs, A.M.; Santos-Buelga, C.; Quiles, J.L.; Bompadre, S.; Mezzetti, B. An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food Funct. 2014, 5, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-D.; Venkatadri, U.; Nguyen-Quang, T.; Diallo, C.; Adams, M. Optimization model for fresh fruit supply chains: Case-study of dragon fruit in Vietnam. AgriEngineering 2019, 2, 1–26. [Google Scholar] [CrossRef]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Abu-Zahra, T. Influence of agricultural practices on fruit quality of bell pepper. Pak. J. Biol. Sci. 2011, 14, 876. [Google Scholar] [CrossRef]
- Hernández, M.; Espinosa, F.; Galindo, P. Tomato fruit quality as influenced by the interactions between agricultural techniques and harvesting period. J. Plant Nutr. Soil Sci. 2014, 177, 443–448. [Google Scholar] [CrossRef]
- Joint FAO/WHO Codex Alimentarius Commission. Codex Alimentarius; Food & Agriculture Org.: Rome, Italy, 1992. [Google Scholar]
- Lavelli, V.; Vantaggi, C. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity. J. Agric. Food Chem. 2009, 57, 4733–4738. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Changes of phytochemicals and antioxidant capacity of banana peel during the ripening process; with and without ethylene treatment. Sci. Hortic. 2019, 253, 255–262. [Google Scholar] [CrossRef]
- Hernández-Herrero, J.; Frutos, M. Colour and antioxidant capacity stability in grape, strawberry and plum peel model juices at different pHs and temperatures. Food Chem. 2014, 154, 199–204. [Google Scholar] [CrossRef]
Origin | Temperature Range (°C) | Humidity Range (%) |
---|---|---|
First season | ||
QLD | 20.4–24.7 | 54–82 |
NT | 22.3–25.6 | 63–89 |
Overseas | 20.2–23.8 | 55–80 |
Second season | ||
QLD | 20.5–24.6 | 50–82 |
Overseas | 20.0–24.0 | 54–78 |
Days after Being Freshly Received | |
---|---|
White-flesh dragon fruit | |
Australian-grown | 9 |
Imported | 8 |
Red-flesh dragon fruit | |
Australian-grown | 8 |
Imported | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-Y.; Islam, M.A.; Johnson, J.B.; Xu, C.-Y.; Mazhar, M.S.; Naiker, M. Comparative Analysis of Shelf-Life, Antioxidant Activity, and Phytochemical Contents of Australian-Grown and Imported Dragon Fruit under Ambient Conditions. Horticulturae 2024, 10, 1048. https://doi.org/10.3390/horticulturae10101048
Chen S-Y, Islam MA, Johnson JB, Xu C-Y, Mazhar MS, Naiker M. Comparative Analysis of Shelf-Life, Antioxidant Activity, and Phytochemical Contents of Australian-Grown and Imported Dragon Fruit under Ambient Conditions. Horticulturae. 2024; 10(10):1048. https://doi.org/10.3390/horticulturae10101048
Chicago/Turabian StyleChen, Si-Yuan, Mohammad Aminul Islam, Joel B. Johnson, Cheng-Yuan Xu, Muhammad Sohail Mazhar, and Mani Naiker. 2024. "Comparative Analysis of Shelf-Life, Antioxidant Activity, and Phytochemical Contents of Australian-Grown and Imported Dragon Fruit under Ambient Conditions" Horticulturae 10, no. 10: 1048. https://doi.org/10.3390/horticulturae10101048
APA StyleChen, S.-Y., Islam, M. A., Johnson, J. B., Xu, C.-Y., Mazhar, M. S., & Naiker, M. (2024). Comparative Analysis of Shelf-Life, Antioxidant Activity, and Phytochemical Contents of Australian-Grown and Imported Dragon Fruit under Ambient Conditions. Horticulturae, 10(10), 1048. https://doi.org/10.3390/horticulturae10101048