Multivariate Analysis and Optimization of the Relationship between Soil Nutrients and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Sampling Methods
2.3. Determination Indices and Methods
2.4. Method of Screening of Soil Nutrient Factors Affecting the Berry Quality and Establishing the Regression Equation
2.5. Statistical Analysis of Data
3. Results
3.1. Soil Nutrition and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyard
3.1.1. Soil Nutrition
3.1.2. Berry Quality
3.2. Internal Correlation of Soil Nutrients and Relationship between Berry Quality in Vineyards
3.2.1. Correlation Coefficients among Soil Nutrients
3.2.2. Correlation between Berry Quality and Soil Nutrients
3.3. Screening for Soil Nutrient Factors Affecting Grape Quality and Establishing of the Regression Equations
3.4. Optimization Scheme for Soil Nutrient Content in Vineyards
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Q.; Zhang, X.Y.; Li, Q.; Sha, H.M.; Qiao, Y.F.; Hu, Z.H. The best fruit loads for the cold resistance of wine grape (Vitis Vinifera L.) in the eastern foothills of Helan Mountain, China. Bangl. J. Bot. 2022, 51, 263–270. [Google Scholar] [CrossRef]
- Yang, C.L.; Song, R.; Ding, Y.T.; Zhang, L.; Wang, H.; Li, H. Review on legal supervision system of the Chinese wine industry. Horticulturae 2022, 8, 432. [Google Scholar] [CrossRef]
- Li, H.; Wang, H. Overview of Wine in China; Science Press: Beijing, China, 2020. [Google Scholar]
- Wang, L.; Liu, J.M.; Wang, L.E.; Zhu, H.; Lin, J. Tourism resource assessment and spatial analysis of wine tourism development: A case study of the eastern foothills of China’s Helan Mountains. J. Mt. Sci. 2018, 15, 645–656. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, R.; Qin, Q.; Sun, Q. Soil affected the variations in grape and wine properties along the eastern foot of Helan Mountain, China. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2019, 69, 494–502. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Roby, J.P.; De Resseguier, L. Soil-related terroir factors: A review. Oeno One 2018, 52, 173–188. [Google Scholar] [CrossRef]
- Unamunzaga, O.; Besga, G.; Castellón, A.; Usón, M.A.; Chéry, P.; Gallejones, P.; Aizpurua, A. Spatial and vertical analysis of soil properties in a Mediterranean vineyard soil. Soil Use Manag. 2014, 30, 285–296. [Google Scholar] [CrossRef]
- Jiang, T.T.; Yan, P.K.; Ma, T.H.; Wang, R. Nutritional requirements and precise fertilization of wine grapes in the eastern foothills of Helan Mountain. Int. J. Agric. Biol. Eng. 2022, 15, 147–153. [Google Scholar] [CrossRef]
- De Santis, D.; Frangipane, M.T.; Brunori, E.; Cirigliano, P.; Biasi, R. Biochemical markers for oenological potentiality in a grapevine aromatic variety under different soil types. Am. J. Enol. Vitic. 2016, 68, 15123. [Google Scholar]
- Pérez-Álvarez, E.P.; Martínez-Vidaurre, J.M.; Garde-Cerdán, T. Anthocyanin composition of grapes from three different soil types in cv. Tempranillo A.O.C. Rioja vineyards. J. Sci. Food Agric. 2019, 99, 4833–4841. [Google Scholar]
- Zhu, Q.; Xie, X.; Xu, Y. Fertilization regulates grape yield and quality in by altering soil nutrients and the microbial community. Sustainability 2022, 14, 10857. [Google Scholar] [CrossRef]
- Arnó, J.; Rosell, J.R.; Blanco, R.; Ramos, M.C.; Martínez-Casasnovas, J.A. Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics. Precis. Agric. 2012, 13, 393–410. [Google Scholar] [CrossRef]
- Guo, K.B.; Guo, Z.; Guo, Y.; Qiao, G. The effects of soil nutrient on fruit quality of ‘Hayward’ kiwifruit (Actinidia chinensis) in Northwest China. Eur. J. Hortic. Sci. 2020, 85, 471–476. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, W.; Liu, P.; Tan, J.; Song, B. Multivariate analysis and optimization of relationship between soil nutrients and fruit quality in C. sinensis (L.) osbeck orchard. Soils 2021, 53, 97–104. [Google Scholar]
- Zhang, Q.; Wei, Q.P.; Liu, H.P.; Jiang, R.S.; Liu, X.D.; Wang, X.W. Multivariate analysis and optimum proposals of the relationship between soil nutrients and fruit qualities in apple orchard. Sci. Agric. Sin. 2011, 44, 1654–1661. [Google Scholar]
- Ren, Y.Z. ‘Terroir’ of Wine Region at Eastern Foothills of Helan Mountain Based on Soil and Climate Property; Northwest A&F University: Xianyang, China, 2021. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA-SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Zhang, M.; Dong, L.G.; Wang, Y.; Bai, X.X.; Ma, Z.T.; Yu, X.; Zhao, Z. The response of soil microbial communities to soil erodibility depends on the plant and soil properties in semiarid regions. Land Degrad. Dev. 2021, 32, 3180–3193. [Google Scholar] [CrossRef]
- Bao, S.D. Agrochemical Analysis of Soil, 3rd ed.; China Agricultural Publishing: Beijing, China, 2000. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.B.; Xue, S.; Wang, G.L. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for Zn, Fe, Mn and Cu. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Wang, H. Wine Analysis and Inspection; China Agricultural Publishing: Beijing, China, 2011. [Google Scholar]
- Downey, M.O.; Rochfort, S. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin. J. Chromatogr. A 2008, 1201, 43–47. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
- Wang, G.H.; Zhang, H.; Wei, Y.S. Implementation of partial least squares regression in SPSS software. Stat. Decis. 2017, 7, 67–71. [Google Scholar]
- National Soil Census Office. Soil Census Technology in China; Agriculture Press: Beijing, China, 1992.
- Zhang, X.J.; Wu, X.D.; Guo, J.; Sun, Q.; Wang, R.; Wang, Z.P.; Si, H.L. Effect of potassium application rate on wine grape in eastern foot of Helan Mountain. Acta Agric. Boreali-Occident. Sin. 2013, 22, 144–150. [Google Scholar]
- Wang, R.; Sun, Q.; Chang, Q. Soil types effect on grape and wine composition in Helan Mountain Area of Ningxia. PLoS ONE 2015, 10, e0116690. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.F.; Liu, S.T.; Li, Q.; He, J.; Sun, Z.J.; Pan, X.Y. Diversity analysis of vineyards soil bacterial community in different planting years at eastern foot of Helan Mountain, Ningxia. Rhizosphere 2023, 25, 100650. [Google Scholar] [CrossRef]
- Ma, T.H.; Hui, Y.R.; Zhang, L.; Su, B.F.; Wang, R. Foliar application of chelated sugar alcohol calcium fertilizer for regulating the growth and quality of wine grapes. Int. J. Agric. Biol. Eng. 2022, 15, 153–158. [Google Scholar] [CrossRef]
- Li, Z.H.; Liu, B.R.; Chen, Z.F.; Mao, D.C.; Jiang, X.S. Re-vegetation Improves soil quality by decreasing soil conductivity and altering soil microbial communities: A case study of an opencast coal mine in the Helan Mountains. Front. Microbiol. 2022, 13, 833711. [Google Scholar] [CrossRef]
- Wu, M.Y.; Pang, D.B.; Lin, C.; Li, X.B.; Liu, L.Z.; Liu, B.; Li, J.Y.; Wang, J.F.; Ma, L.L. Chemical composition of soil organic carbon and aggregate stability along an elevation gradient in Helan Mountains, northwest China. Ecol. Indic. 2021, 131, 108228. [Google Scholar] [CrossRef]
- Su, B.W.; Zhao, G.X.; Dong, C. Spatiotemporal variability of soil nutrients and the responses of growth during growth stages of winter wheat in northern China. PLoS ONE 2018, 13, e0203509. [Google Scholar] [CrossRef]
- Yan, P.; Lin, K.R.; Yu, C.X.; Tu, X.J. Spatial variability of soil phosphorus and potassium and its influencing factors in the fragile red beds ecosystem in southern China. Pol. J. Environ. Stud. 2021, 30, 5307–5315. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.Q.; Lin, F.; Ten, Y.; Lin, J.; Zhu, D.H.; Guo, P.; Weng, Y.B.; Chen, L.S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. J. Soil Sci. Plant Nutr. 2015, 15, 615–628. [Google Scholar] [CrossRef]
- Michopoulos, P.; Solomou, A. Effects of conventional and organic (manure) fertilization on soil, plant tissue nutrients and berry yields in vineyards. The use of the original native soil as a control. J. Plant Nutr. 2019, 42, 2287–2298. [Google Scholar] [CrossRef]
- Wu, W.J.; Lin, Z.; Zhu, X.P.; Li, G.Y.; Zhang, W.J.; Chen, Y.J.; Ren, L.; Luo, S.W.; Lin, H.H.; Zhou, H.K.; et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Takahashi, H.; Yoshida, C.; Takeda, T. Sugar composition in asparagus spears and its relationship to soil chemical properties. J. Appl. Glycosci. 2019, 66, 47–50. [Google Scholar] [CrossRef]
- Rekik, F.; Van Es, H.; Hernandez-Aguilera, J.N.; Gómez, M.I. Linking coffee to soil: Can soil health increase coffee cup quality in Colombia? Soil Sci. 2019, 184, 25–33. [Google Scholar] [CrossRef]
- Mazzei, P.; Francesca, N.; Moschetti, G.; Piccolo, A. NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes. Anal. Chim. Acta 2010, 673, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Míguez, M.J.; Gómez-Míguez, M.; Vicario, I.M.; Heredia, F.J. Assessment of colour and aroma in white wines vinifications:: Effects of grape maturity and soil type. J. Food Eng. 2007, 79, 758–764. [Google Scholar] [CrossRef]
- Zhou, L.F.; Yang, Y.X.; Feng, H. Colored plastic film mulching regulates light quality and sucrose mtabolism in wine grape in an arid desert oasis. J. Plant Growth Regul. 2023, 42, 7705–7714. [Google Scholar] [CrossRef]
- Gouot, J.C.; Smith, J.P.; Holzapfel, B.P.; Walker, A.R.; Barril, C. Grape berry flavonoids: A review of their biochemical responses to high and extreme high temperatures. J. Exp. Bot. 2019, 70, 397–423. [Google Scholar] [CrossRef]
- Kang, C.C.; Diverres, G.; Karkee, M.; Zhang, Q.; Keller, M. Decision-support system for precision regulated deficit irrigation management for wine grapes. Comput. Electron. Agric. 2023, 208, 107777. [Google Scholar] [CrossRef]
- Wang, W.; Liang, Y.Y.; Quan, G.R.; Wang, X.F.; Xi, Z.M. Thinning of cluster improves berry composition and sugar accumulation in Syrah grapes. Sci. Hortic. 2022, 297, 110966. [Google Scholar] [CrossRef]
- Drenjančević, M.; Jukić, V.; Zmaić, K.; Kujundžić, T.; Rastija, V. Effects of early leaf removal on grape yield, chemical characteristics, and antioxidant activity of grape variety Cabernet Sauvignon and wine from eastern Croatia. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2017, 67, 705–711. [Google Scholar] [CrossRef]
- Xi, Z.M.; Zhang, Z.W.; Cheng, Y.F.; Li, H. The effect of vineyard cover crop on main monomeric phenols of grape berry and wine in Vitis viniferal L. cv. Cabernet Sauvignon. Agric. Sci. China 2010, 9, 440–448. [Google Scholar] [CrossRef]
Sub-Regions | Winery | Longitude | Latitude | Altitude (m) | Slope Gradient (°) | Row/within-Row Spaces (m) |
---|---|---|---|---|---|---|
Shizuishan | Hedong | 106°18′40″ E | 38°36′49″ N | 1.07 × 103 | 1.98 | 3.24 × 1.51 |
Yinchuan | Woerfeng | 106°03′45″ E | 38°40′33″ N | 1.16 × 103 | 2.11 | 3.47 × 0.82 |
Xinhuibin | 106°01′24″ E | 38°17′28″ N | 1.16 × 103 | 2.27 | 3.53 × 0.78 | |
Qingtongxia | Xige | 105°55′40″ E | 38°04′08″ N | 1.14 × 103 | 3.06 | 3.01 × 1.04 |
Hongsibu | Pengsheng | 106°04′22″ E | 37°27′33″ N | 1.37 × 103 | 3.43 | 3.95 × 0.80 |
Huida | 106°04′49″ E | 37°27′56″ N | 1.32 × 103 | 3.82 | 3.45 × 0.53 |
Indicators | Range | Mean ± SD | CV (%) | Suitable Range | Deficiency Frequency (%) | Optimum Frequency (%) | Excess Frequency (%) |
---|---|---|---|---|---|---|---|
TN (g·kg−1) | 0.44~1.30 | 0.71 ± 0.30 | 42.3 | 1.00~1.50 | 83.3 | 16.7 | 0.00 |
TP (g·kg−1) | 0.25~0.72 | 0.48 ± 0.17 | 35.4 | 0.60~0.80 | 66.7 | 33.3 | 0.00 |
TK (g·kg−1) | 14.9~19.0 | 16.5 ± 1.49 | 9.05 | 15.0~20.0 | 16.7 | 83.3 | 0.00 |
OM (g·kg−1) | 2.59~36.9 | 11.5 ± 11.5 | 101 | 20.0~30.0 | 83.3 | 0.00 | 16.7 |
NN (mg·kg−1) | 3.86~104 | 41.3 ± 33.8 | 81.8 | 67.5~90.0 | 83.3 | 0.00 | 16.7 |
AN (mg·kg−1) | 1.48~6.96 | 3.25 ± 1.91 | 58.8 | 22.5~30.0 | 100 | 0.00 | 0.00 |
Available P (mg·kg−1) | 3.81~11.5 | 6.86 ± 2.75 | 40.1 | 10.0~20.0 | 83.3 | 16.7 | 0.00 |
Available K (mg·kg−1) | 80.1~208 | 127 ± 41.0 | 32.4 | 100~150 | 16.7 | 66.7 | 16.7 |
Available Cu (mg·kg−1) | 0.28~1.11 | 0.65 ± 0.26 | 40.0 | 0.20~1.00 | 0.00 | 83.3 | 16.7 |
Available Zn (mg·kg−1) | 0.89~3.29 | 1.73 ± 0.82 | 47.4 | 0.50~1.00 | 0.00 | 16.7 | 83.3 |
Available Fe (mg·kg−1) | 4.39~8.61 | 5.67 ± 1.40 | 24.7 | 4.50~10.0 | 16.7 | 83.3 | 0.00 |
Available Mn (mg·kg−1) | 7.36~14.6 | 10.3 ± 2.46 | 24.0 | 5.00~15.0 | 0.00 | 100 | 0.00 |
Soil pH | 7.87~8.32 | 8.09 ± 0.16 | 1.98 | 6.50~7.50 | 0.00 | 0.00 | 100 |
Indicators | Range | Mean ± SD | CV (%) |
---|---|---|---|
Berry Weight/g | 1.17~1.59 | 1.40 ± 0.16 | 11.4 |
Yield per Plant/kg | 1.53~7.15 | 3.77 ± 1.89 | 50.1 |
SSC/% | 25.8~30.2 | 27.8 ± 1.50 | 5.39 |
Reducing Sugar/(g·L−1) | 234~278 | 255 ± 14.9 | 5.86 |
TA/(g·L−1) | 2.49~4.47 | 3.47 ± 0.87 | 25.1 |
Juice pH | 3.49~3.85 | 3.70 ± 0.12 | 3.24 |
Tannin/(g·L−1) | 12.1~39.7 | 23.3 ± 9.45 | 40.5 |
Anthocyanin/(g·L−1) | 32.5~80.2 | 52.0 ± 17.3 | 33.2 |
Flavonol/(g·L−1) | 5.03~7.96 | 6.76 ± 0.93 | 13.8 |
Indicators | Soil Factors | Regression Equations | F Value | p Value |
---|---|---|---|---|
Berry weight (Y1) | X5, X9, X13 | Y1 = −4.69 + (5.58 × 10−4)X5 + (2.54 × 10−1)X9 + (7.30 × 10−1)X13 | 30.1 | 0.03 |
Yield per plant (Y2) | X1, X6, X11, X13 | Y2 = −50.2 − 6.37X1 − (2.41 × 10−1)X6 + 1.94X11 + 5.96X13 | 7.50 × 103 | 8.66 × 10−3 |
SSC (Y3) | X1, X2, X4 | Y3 = 20.3 + 12.6X1 + 4.67X2 − (3.19 × 10−1)X4 | 22.5 | 0.04 |
Reducing sugar (Y4) | X1, X3, X11, X12 | Y4 = 316 + 37.9X1 − 4.81X3 − 8.48X11 + 3.84X12 | 267 | 4.59 × 10−2 |
TA (Y5) | X1, X3, X9 | Y5 = 1.92 − 2.93X1 + (2.82 × 10−1)X3 − 1.56X9 | 109 | 9.11 × 10−3 |
Juice pH (Y6) | X2, X7, X8 | Y6 = 3.66 + (2.46 × 10−1)X2 + (3.65 × 10−2)X7 − (2.58 × 10−3)X8 | 23.0 | 0.04 |
Tannin (Y7) | X1, X8, X10, X13 | Y7 = 560 − 42.9X1 − (2.08 × 10−1)X8 + 1.10X10 − 59.6X13 | 802 | 0.03 |
Anthocyanin (Y8) | X2, X7, X12 | Y8 = 155.077 + 266X2 − 14.6X7 − 12.7X12 | 40.8 | 0.02 |
Flavonol (Y9) | X1, X4, X13 | Y9 = 41.6 + 5.56X1 − (1.12 × 10−1)X4 − 4.63X13 | 33.9 | 0.03 |
Soil Nutrient Factors | Y1 Berry Weight (g) | Y2 Yield per Plant (kg) | Y3 SSC (ºBrix) | Y4 Reducing Sugar (g·L−1) | Y5 TA (g·L−1) | Y6 Juice pH | Y7 Tannin (mg·g−1) | Y8 Anthocyanin (mg·g−1) | Y9 Flavonol (mg·g−1) | X Optimum Value (or Range) |
---|---|---|---|---|---|---|---|---|---|---|
TN (g·kg−1) | 0.71 | 0.71 | 0.74 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71~0.74 |
TP (g·kg−1) | 0.69 | 0.69 | 0.72 | 0.69 | 0.69 | 0.67 | 0.69 | 0.72 | 0.69 | 0.67~0.72 |
TK (g·kg−1) | 16.5 | 16.5 | 16.7 | 16.5 | 16.7 | 16.5 | 16.5 | 16.5 | 16.5 | 16.5~16.7 |
OM (g·kg−1) | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 |
NN (mg·kg−1) | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 | 41.3 |
AN (mg·kg−1) | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 |
Available P (mg·kg−1) | 6.86 | 6.86 | 6.86 | 6.86 | 6.86 | 6.86 | 6.86 | 6.86 | 6.86 | 6.86 |
Available K (mg·kg−1) | 147 | 147 | 150 | 147 | 147 | 208 | 147 | 150 | 147 | 147~208 |
Available Cu (mg·kg−1) | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
Available Zn (mg·kg−1) | 3.29 | 3.29 | 3.29 | 3.29 | 3.29 | 3.29 | 3.29 | 3.29 | 3.29 | 3.29 |
Available Fe (mg·kg−1) | 7.63 | 7.63 | 7.60 | 7.52 | 7.51 | 7.52 | 7.62 | 7.52 | 7.63 | 7.51~7.63 |
Available Mn (mg·kg−1) | 14.6 | 14.6 | 14.6 | 14.6 | 14.6 | 14.4 | 14.6 | 14.4 | 14.6 | 14.4~14.6 |
Soil pH | 7.46 | 7.50 | 7.50 | 7.50 | 7.50 | 7.50 | 7.47 | 7.50 | 7.46 | 7.46~7.50 |
Y optimum value | 0.95 | 3.98 | 29.3 | 256 | 3.53 | 3.54 | 57.6 | 64.0 | 9.72 | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xiao, J.; Yan, Y.; Liu, W.; Cui, P.; Xu, C.; Nan, L.; Liu, X. Multivariate Analysis and Optimization of the Relationship between Soil Nutrients and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China. Horticulturae 2024, 10, 61. https://doi.org/10.3390/horticulturae10010061
Li Y, Xiao J, Yan Y, Liu W, Cui P, Xu C, Nan L, Liu X. Multivariate Analysis and Optimization of the Relationship between Soil Nutrients and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China. Horticulturae. 2024; 10(1):61. https://doi.org/10.3390/horticulturae10010061
Chicago/Turabian StyleLi, Yashan, Jinnan Xiao, Yinfang Yan, Weiqiang Liu, Ping Cui, Chengdong Xu, Lijun Nan, and Xu Liu. 2024. "Multivariate Analysis and Optimization of the Relationship between Soil Nutrients and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China" Horticulturae 10, no. 1: 61. https://doi.org/10.3390/horticulturae10010061
APA StyleLi, Y., Xiao, J., Yan, Y., Liu, W., Cui, P., Xu, C., Nan, L., & Liu, X. (2024). Multivariate Analysis and Optimization of the Relationship between Soil Nutrients and Berry Quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China. Horticulturae, 10(1), 61. https://doi.org/10.3390/horticulturae10010061