Effects of the Cultivation Methods on the Sensory Quality and Phytochemical Profiles of Satsuma Mandarin (Citrus unshiu)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Citrus Samples
2.2. Determination of Water, pH, and Minerals in Soil
2.3. SSC and Titratable Acidity
2.4. Sensory Evaluation
2.5. Citrus Metabolomic Analysis
2.5.1. GC-MS Analysis
2.5.2. UPLC-Q-TOF MS Analysis
2.5.3. Vitamin C Quantification Using HPLC
2.5.4. Data Processing
2.6. Statistical Analysis
3. Results
3.1. Soil Characteristics
3.2. SSC, TA, SSC/TA Ratio, and Sensory Characteristics
3.3. Metabolomics Analysis
3.4. Metabolic Pathway of Identified Metabolites
3.5. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Lou, Y.; Li, Y.; Zhang, J.; Li, P.; Yang, B.; Gu, Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front. Nutr. 2022, 9, 968604. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.S. Bioactive compounds of citrus Fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Shuraym, L.A.; Bader, D.M.D.; Almarzuq, M.; Afifi, M.; et al. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules 2023, 27, 1636. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Kim, H.J.; Park, K.J.; Kang, S.B.; Park, Y.; Han, S.G.; Kim, M.; Song, Y.H.; Kim, D.S. Metabolomic profiling of Citrus unshiu during different stages of fruit development. Plants 2022, 11, 967. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.; Park, S.M.; Yun, S.H.; Gab, H.S.; Kim, S.S.; Kim, H.J. Comparative metabolomics analysis of citrus varieties. Foods 2021, 10, 2826. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jin, R.; Yang, Z.; Wang, X.; You, G.; Guo, J.; Zhang, Y.; Liu, F.; Pan, S. Comparative study on physicochemical, nutritional and enzymatic properties of two Satsuma mandarin (Citrus unshiu Marc.) varieties from different regions. J. Food Compos. Anal. 2021, 95, 103614. [Google Scholar] [CrossRef]
- Costanzo, G.; Vitale, E.; Lesce, M.R.; Spinelli, M.; Fontanarosa, C.; Paradiso, R.; Amoresano, A.; Arena, C. Modulation of antioxidant compounds in fruits of Citrus reticulata Blanco using postharvest LED irradiation. Biology 2023, 12, 1029. [Google Scholar] [CrossRef] [PubMed]
- Carmona, L.; Sulli, M.; Diretto, G.; Alquézar, B.; Alves, M.; Peña, L. Improvement of antioxidant properties in fruit from two blood and blond orange cultivars by postharvest storage at low temperature. Antioxidants 2022, 11, 547. [Google Scholar] [CrossRef]
- Treeby, M.T.; Henriod, R.E.; Bevington, K.B.; Milne, D.J.; Storey, R. Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality. Agric. Water Manag. 2007, 91, 24–32. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Y.; Tan, Q.; Sun, X.; Wei, W.; Hu, C. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Sci. Total Environ. 2020, 714, 136722. [Google Scholar] [CrossRef]
- Wang, S.; Xie, W.; Yan, X. Effects of future climate change on citrus quality and yield in China. Sustainability 2022, 14, 9366. [Google Scholar] [CrossRef]
- Xuemei, J.; Qiong, Y.; Ya, W.; Yanmei, L.; Yongqiang, Z.; Rangjin, X.; Shaolan, H.; Lie, D.; Shilai, Y.; Qiang, L.; et al. Effects of DuPont Tyvek® non-woven material mulching on fruit quality and chlorophyll fluorescence in Wanzhou Rose Orange. Sci. Hortic. 2017, 219, 31–36. [Google Scholar] [CrossRef]
- Cozzolino, E.; Mola, I.D.; Ottaiano, L.; Bilotto, M.; Petriccione, M.; Ferrara, E.; Mori, M.; Morra, L. Assessing yield and quality of melon (Cucumis melo L.) improved by biodegradable mulching film. Plants 2023, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Gecer, M.K.; Orman, E.; Gundogdu, M.; Ercisli, S.; Karunakaran, R. Identification of metabolites changes and quality in strawberry fruit: Effect of cultivation in high tunnel and open field. Plants 2022, 11, 1368. [Google Scholar] [CrossRef]
- Wu, B.P.; Zhang, C.; Gao, Y.B.; Zheng, W.W.; Xu, K. Changes in sugar accumulation and related enzyme activities of red bayberry (Myrica rubra) in greenhouse cultivation. Horticulturae 2021, 7, 429. [Google Scholar] [CrossRef]
- Helaly, A.A.; Goda, Y.; Abd El-Rehim, A.S.; Mohamed, A.A.; El-Zeiny, O.A.H. Effect of polyethylene mulching type on the growth, yield and fruits quality of Physalis pubescens. Adv. Plants Agric. Res. 2017, 6, 154–160. [Google Scholar] [CrossRef]
- Ordóñez-Díaz, J.L.; Pereira-Caro, G.; Cardeñosa, V.; Muriel, J.L.; Moreno-Rojas, J.M. Study of the quality attributes of selected blueberry (Vaccinium corymbosum L.) varieties grown under different irrigation regimes and cultivation systems. Appl. Sci. 2020, 10, 8459. [Google Scholar] [CrossRef]
- Griñán, I.; Galindo, A.; Rodríguez, P.; Morales, D.; Corell, M.; Centeno, A.; Collado-González, J.; Torrecillas, A.; Carbonell-Barrachina, A.A.; Hernández, F. Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Sci. Hortic. 2019, 244, 68–74. [Google Scholar] [CrossRef]
- Nam, H.A.; Ramakrishnan, S.R.; Kwon, J.H. Effects of electron-beam irradiation on the quality characteristics of mandarin oranges (Citrus unshiu (Swingle) Marcov) during storage. Food Chem. 2019, 286, 338–345. [Google Scholar] [CrossRef]
- Huang, S.; Lim, S.Y.; Lau, H.; Ni, W.; Li, S.F.Y. Effect of glycinebetaine on metabolite profiles of cold-stored strawberry revealed by 1H NMR-based metabolomics. Food Chem. 2022, 393, 133452. [Google Scholar] [CrossRef]
- Perotti, V.E.; Moreno, A.S.; Trípodi, K.E.; Meier, G.; Bello, F.; Cocco, M.; Vázquez, D.; Anderson, C.; Podestá, F.E. Proteomic and metabolomic profiling of Valencia orange fruit after natural frost exposure. Physiol. Plant. 2015, 153, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Moing, A.; Allwood, J.W.; Aharoni, A.; Baker, J.; Beale, M.H.; Ben-Dor, S.; Biais, B.; Brigante, F.; Burger, Y.; Deborde, C.; et al. Comparative metabolomics and molecular phylogenetics of melon (Cucumis melo, Cucurbitaceae) biodiversity. Metabolites 2020, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.H.; Madden, R.T.; Sung, J.; Chambers, A.H.; Crane, J.; Wang, Y. Pathway-based metabolomics analysis reveals biosynthesis of key flavor compounds in mango. J. Agric. Food Chem. 2021, 70, 10389–10399. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liang, X.; Li, Y.; Fan, Y.; Li, Y.; Cao, Y.; An, W.; Shi, Z.; Zhao, J.; Guo, S. Changes in metabolome and nutritional quality of Lycium barbarum fruits from three typical growing areas of China as revealed by widely targeted metabolomics. Metabolites 2020, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Wang, Y.; Zhao, Z.; Qu, G.; Cao, J. Transcriptomics integrated with metabolomics reveals underlying mechanisms of cold-induced flesh bleeding in plum (cv. Friar) fruit during storage. Postharvest Biol. Technol. 2022, 192, 112032. [Google Scholar] [CrossRef]
- Obreza, T.A.; Zekri, M.; Hanlon, E.A.; Morgan, K.; Schumann, A.; Rouse, R. Soil and Leaf Tissue Testing for Commercial Citrus Production; SL253.04 Fla.; Cooperative Extension Service, University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2010; pp. 1–11. [Google Scholar]
- Kim, D.S.; Jeong, S.M.; Jo, S.H.; Chanmuang, S.; Kim, S.S.; Park, S.M.; Yun, S.H.; Han, S.G.; Cho, J.Y.; Kang, I.; et al. Comparative analysis of physicochemical properties and storability of a new citrus variety, Yellowball, and its parent. Plants 2023, 12, 2863. [Google Scholar] [CrossRef]
- Jin, L.F.; Guo, D.Y.; Ning, D.Y.; Hussain, S.B.; Liu, Y.Z. Covering the trees of Kinokuni tangerine with plastic film during fruit ripening improves sweetness and alters the metabolism of cell wall components. Acta Physiol. Plant. 2018, 40, 182. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Lin, Q.; Qian, J.; Zhao, C.; Wang, D.; Liu, C.; Wang, Z.; Sun, C.; Chen, K. Low temperature induced changes in citrate metabolism in ponkan (Citrus reticulata Blanco cv. Ponkan) fruit during maturation. PLoS ONE 2016, 11, e0156703. [Google Scholar] [CrossRef]
- Yue, X.; Wei, S.; Liu, W.; Lu, J.; Fang, Y.; Zhang, Z.; Ju, Y. Effect of rain-shelter cultivation on the monoterpenes profile of Muscat Hamburg grapes and wines. Sci. Hortic. 2021, 285, 110136. [Google Scholar] [CrossRef]
- Bülent, K. Effect of light intensity and temperature on growth and quality parameters of grafted vines. Not. Bot. Horti Agrobot. 2014, 42, 507–515. [Google Scholar] [CrossRef]
- Blanco, V.; Zoffoli, J.P.; Ayala, M. High tunnel cultivation of sweet cherry (Prunus avium L.): Physiological and production variables. Sci. Hortic. 2019, 251, 108–117. [Google Scholar] [CrossRef]
- Shimazaki, M.; Nesumi, H. A method for high-quality citrus production using drip fertigation and plastic sheet mulching. Jpn. Agric. Res. Q. 2016, 50, 301–306. [Google Scholar] [CrossRef]
- Alam, A.; Hariyanto, B.; Ullah, H.; Salin, K.R.; Datta, A. Effects of silicon on growth, yield and fruit quality of cantaloupe under drought stress. Silicon 2021, 13, 3153–3162. [Google Scholar] [CrossRef]
- Lado, J.; Rodrigo, M.J.; Zacarías, L. Maturity indicators and citrus fruit quality. Stewart Postharvest Rev. 2014, 10, 1–6. Available online: https://access.portico.org/stable?au=phx64r3rfpq (accessed on 13 September 2023).
- Wang, Y.; Liu, L.; Wang, Y.; Tao, H.; Fan, J.; Zhao, Z.; Guo, Y. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’ apple. Sci. Hortic. 2019, 258, 108753. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.; Arapitsas, P.; Miculan, M.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 2016, 16, 67. [Google Scholar] [CrossRef]
- Rienth, M.; Vigneron, N.; Darriet, P.; Sweetman, C.; Burbidge, C.; Bonghi, C.; Walker, R.P.; Famiani, F.; Castellarin, S.D. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario–a review. Front. Plant Sci. 2021, 12, 262. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Morianou, G.; Kourgialas, N. Drought and salinity in citriculture: Optimal practices to alleviate salinity and water stress. Agronomy 2021, 11, 1283. [Google Scholar] [CrossRef]
- Rafie-Rad, Z.; Moradkhani, M.; Golchin, A.; Razam, T.; Eash, N.S. Abiotic Stresses Management in Citrus. In Citrus Research—Horticultural and Human Health Aspects; Gonzatto, M.P., Santos, J.S., Eds.; IntechOpen: London, UK, 2022; pp. 1–19. [Google Scholar] [CrossRef]
- Rao, M.J.; Feng, B.; Ahmad, M.H.; Tahir ul Qamar, M.; Aslam, M.Z.; Khalid, M.F.; Hussain, S.; Zhong, R.; Ali, Q.; Xu, Q.; et al. LC-MS/MS-based metabolomics approach identified novel antioxidant flavonoids associated with drought tolerance in citrus species. Front. Plant Sci. 2023, 14, 1150854. [Google Scholar] [CrossRef]
- Thakur, A.; Singh, Z. Responses of ‘Spring Bright’ and ‘Summer Bright’ nectarines to deficit irrigation: Fruit growth and concentration of sugars and organic acids. Sci. Hortic. 2012, 135, 112–119. [Google Scholar] [CrossRef]
- Geng, K.; Zhang, Y.; Lv, D.; Li, D.; Wang, Z. Effects of water stress on the sugar accumulation and organic acid changes in Cabernet Sauvignon grape berries. Hort. Sci. 2022, 49, 164–178. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, S. Influence of water stress on the citric acid metabolism related gene expression in the ponkan fruits. Agric. Sci. 2014, 5, 1513–1521. [Google Scholar] [CrossRef]
- Eirini, S.; Paschalina, C.; Ioannis, T.; Kortessa, D.T. Effect of drought and salinity on volatile organic compounds and other secondary metabolites of Citrus aurantium leaves. Nat. Prod. Commun. 2017, 12, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Lamine, M.; Gargouri, M.; Mliki, A. Identification of the NaCl-responsive metabolites in Citrus roots: A lipidomic and volatomic signature. Plant Signal. Behav. 2020, 15, 1777376. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.X.; Son, S.; Lee, S.; Jung, E.; Lee, Y.; Sung, J.; Lee, C. Combined effects of nutrients × water × light on metabolite composition in tomato fruits (Solanum lycopersicum L.). Plants 2021, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Delgado, R.; Martín, P.; Álamo, M.; González, M.R. Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates. J. Sci. Food Agric. 2004, 84, 623–630. [Google Scholar] [CrossRef]
- Ormeño, E.; Fernandez, C. Effect of soil nutrient on production and diversity of volatile terpenoids from plants. Curr. Bioact. Compd. 2012, 8, 71–79. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Ayad, H.S.; Hendawy, S.F. Effect of potassium humate and nitrogen fertilizer on herb and essential oil of oregano under different irrigation intervals. Ozean J. Appl. Sci. 2009, 2, 319–323. [Google Scholar]
- Davies, M.J.; Atkinson, C.J.; Burns, C.; Woolly, J.G.; Hipps, N.A.; Arroo, R.R.J.; Dungey, N.; Robinson, T.; Brown, P.; Flockart, I.; et al. Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. Ann. Bot. 2009, 104, 315–323. [Google Scholar] [CrossRef]
- Shi, Y.; Pu, D.; Zhou, X.; Zhang, Y. Recent progress in the study of taste characteristics and the nutrition and health properties of organic acids in foods. Foods 2022, 11, 3408. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, F.; Wu, Y.; Xhou, T.; Chang, Y.; Lian, X.; Yin, T.; Ye, L.; Li, Y.; Lu, X. Profiles of citrus orchard nutrition and fruit quality in Hunan Province, China. Int. J. Fruit Sci. 2022, 22, 779–793. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, fruit Yield, photosynthetic characteristics, and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef]
- Feng, S.; Gmitter, F.G., Jr.; Grosser, J.W.; Wang, Y. Identification of key flavor compounds in citrus fruits: A flavoromics approach. ACS Food Sci. Technol. 2021, 1, 2076–2085. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Ding, F.; Sun, D.; Ma, Z.; Cheng, Y.; Xu, J. Content changes of bitter compounds in ‘Guoqing No. 1’Satsuma mandarin (Citrus unshiu Marc.) during fruit development of consecutive 3 seasons. Food Chem. 2014, 145, 963–969. [Google Scholar] [CrossRef]
- Glabasnia, A.; Dunkel, A.; Frank, O.; Hofmann, T. Decoding the nonvolatile sensometabolome of orange juice (Citrus sinensis). J. Agric. Food Chem. 2018, 66, 2354–2369. [Google Scholar] [CrossRef]
- Jin, H.; Fishman, Z.H.; Ye, M.; Wang, L.; Zuker, C.S. Top-down control of sweet and bitter taste in the mammalian brain. Cell 2021, 184, 257–271.e16. [Google Scholar] [CrossRef]
Cultivation Methods | Water Content (%) | pH | Mineral Content (mg/g Dry Soil) | ||
---|---|---|---|---|---|
N+ | P+ | K+ | |||
Open field | 36.59 a | 6.05 a | 7.15 ab | 1.93 b | 2.84 b |
Greenhouse | 32.66 ab | 4.53 c | 4.88 b | 4.59 a | 4.45 a |
Film mulching | 20.37 c | 5.17 b | 5.22 b | 1.99 b | 2.53 b |
Tunnel farming | 25.89 bc | 4.60 c | 8.21 a | 2.32 b | 3.45 ab |
Compound | VIP | p-Value | |
---|---|---|---|
Sugars | Sucrose | 0.86 | 5.48 × 10−7 |
Myo-inositol | 0.97 | 4.22 × 10−9 | |
Xylofuranose | 2.22 | 9.75 × 10−60 | |
Mannose | 1.49 | 2.41 × 10−38 | |
Acidic compounds | Citric acid | 1.07 | 1.91 × 10−10 |
Oxalic acid | 1.52 | 1.33 × 10−44 | |
Malic acid | 0.76 | 3.29 × 10−7 | |
Ascorbic acid | 1.00 | 6.63 × 10−7 | |
Amino acids | Aspartic acid | 2.06 | 5.94 × 10−68 |
Asparagine | 2.46 | 3.53 × 10−96 | |
Stachydrine | 1.14 | 1.86 × 10−15 | |
Acetylvaline | 0.97 | 2.12 × 10−9 | |
Arginine | 1.13 | 9.48 × 10−17 | |
Serine | 1.99 | 1.14 × 10−68 | |
Tryptophan | 1.11 | 7.20 × 10−17 | |
Phenylalanine | 1.19 | 2.05 × 10−19 | |
Lipids | Palmitic acid | 1.44 | 1.02 × 10−38 |
Stearic acid | 1.48 | 1.69 × 10−42 | |
Oleamide | 1.64 | 4.02 × 10−28 | |
LPC(C16:0) | 0.88 | 6.12 × 10−7 | |
LPC(C18:1) | 0.84 | 7.94 × 10−4 | |
LPE(C16:0) | 0.80 | 6.12 × 10−7 | |
Phytosphingosine | 1.07 | 1.04 × 10−15 | |
Limonoids | Nomilin | 1.02 | 1.09 × 10−8 |
Limonin | 1.15 | 1.70 × 10−11 | |
Zapoterin | 0.70 | 9.61 × 10−6 | |
Flavonoids | Hesperidin | 0.76 | 1.02 × 10−4 |
Didymin | 0.79 | 4.12 × 10−4 | |
Monoterpenes | β-myrcene | 1.84 | 2.16 × 10−42 |
Limonene | 1.48 | 1.75 × 10−17 | |
β-phellandrene | 1.03 | 2.03 × 10−10 | |
γ-terpinene | 1.01 | 2.07 × 10−21 | |
m-cymene | 1.94 | 1.75 × 10−49 | |
α-terpinolene | 1.86 | 3.16 × 10−57 | |
Linalool | 1.43 | 8.09 × 10−22 | |
α-terpineol | 0.94 | 8.86 × 10−16 | |
Sesquiterpenes | Valencene | 1.58 | 2.83 × 10−19 |
α-farnesene | 1.75 | 3.70 × 10−64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-M.; Kim, D.-S.; Kim, S.S.; Kim, H.-J. Effects of the Cultivation Methods on the Sensory Quality and Phytochemical Profiles of Satsuma Mandarin (Citrus unshiu). Horticulturae 2024, 10, 54. https://doi.org/10.3390/horticulturae10010054
Jeong S-M, Kim D-S, Kim SS, Kim H-J. Effects of the Cultivation Methods on the Sensory Quality and Phytochemical Profiles of Satsuma Mandarin (Citrus unshiu). Horticulturae. 2024; 10(1):54. https://doi.org/10.3390/horticulturae10010054
Chicago/Turabian StyleJeong, Sung-Man, Dong-Shin Kim, Sang Suk Kim, and Hyun-Jin Kim. 2024. "Effects of the Cultivation Methods on the Sensory Quality and Phytochemical Profiles of Satsuma Mandarin (Citrus unshiu)" Horticulturae 10, no. 1: 54. https://doi.org/10.3390/horticulturae10010054
APA StyleJeong, S. -M., Kim, D. -S., Kim, S. S., & Kim, H. -J. (2024). Effects of the Cultivation Methods on the Sensory Quality and Phytochemical Profiles of Satsuma Mandarin (Citrus unshiu). Horticulturae, 10(1), 54. https://doi.org/10.3390/horticulturae10010054