Early Bruise Detection in Apple Based on an Improved Faster RCNN Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Imaging Systems
2.3. Dataset
2.4. Model and Evaluation
2.5. Improved Faster RCNN
2.5.1. FPN
2.5.2. NAM Normalization-Based Attention Module
2.5.3. Complete-IoU
3. Results and Discussion
3.1. Validation Based on Hybrid Datasets
3.2. Comparison of Model Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, Z.J.; Zeng, X.Q.; Li, X.X.; Ding, X.M.; Cao, J.K.; Jiang, W.B. Recent advances in imaging techniques for bruise detection in fruits and vegetables. Trends Food Sci. Technol. 2020, 99, 133–141. [Google Scholar] [CrossRef]
- Milajerdi, A.; Ebrahimi-Daryani, N.; Dieleman, L.A.; Larijani, B.; Esmaillzadeh, A. Association of Dietary Fiber, Fruit, and Vegetable Consumption with Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 735–743. [Google Scholar] [CrossRef]
- Opara, U.L.; Pathare, P.B. Bruise damage measurement and analysis of fresh horticultural produce-A review. Postharvest Biol. Technol. 2014, 91, 9–24. [Google Scholar] [CrossRef]
- Komarnicki, P.; Stopa, R.; Szyjewicz, D.; Kuta, A.; Klimza, T. Influence of Contact Surface Type on the Mechanical Damages of Apples Under Impact Loads. Food Bioprocess Technol. 2017, 10, 1479–1494. [Google Scholar] [CrossRef]
- Wani, N.A.; Mishra, U. An integrated circular economic model with controllable carbon emission and deterioration from an apple orchard. J. Clean. Prod. 2022, 374, 133962. [Google Scholar] [CrossRef]
- Springael, J.; Paternoster, A.; Braet, J. Reducing postharvest losses of apples: Optimal transport routing (while minimizing total costs). Comput. Electron. Agric. 2018, 146, 136–144. [Google Scholar] [CrossRef]
- Arango, J.D.; Staar, B.; Baig, A.M.; Freitag, M. Quality control of apples by means of convolutional neural networks—Comparison of bruise detection by color images and near-infrared images. Procedia CIRP 2021, 99, 290–294. [Google Scholar] [CrossRef]
- Leemans, V.; Destain, M.F. A real-time grading method of apples based on features extracted from defects. J. Food Eng. 2004, 61, 83–89. [Google Scholar] [CrossRef]
- Moscetti, R.; Haff, R.P.; Monarca, D.; Cecchini, M.; Massantini, R. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit. Postharvest Biol. Technol. 2016, 120, 204–212. [Google Scholar] [CrossRef]
- Defraeye, T.; Lehmann, V.; Gross, D.; Holat, C.; Herremans, E.; Verboven, P.; Verlinden, B.E.; Nicolai, B.M. Application of MRI for tissue characterisation of ‘Braeburn’ apple. Postharvest Biol. Technol. 2013, 75, 96–105. [Google Scholar] [CrossRef]
- Diels, E.; van Dael, M.; Keresztes, J.; Vanmaercke, S.; Verboven, P.; Nicolai, B.; Saeys, W.; Ramon, H.; Smeets, B. Assessment of bruise volumes in apples using X-ray computed tomography. Postharvest Biol. Technol. 2017, 128, 24–32. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Pandiselvam, R.; Kothakota, A.; Ishwarya, S.P.; Chakraborty, S.K.; Kumar, M.; Cozzolino, D. Emerging non-destructive imaging techniques for fruit damage detection: Image processing and analysis. Trends Food Sci. Technol. 2021, 120, 418–438. [Google Scholar] [CrossRef]
- Azadbakht, M.; Torshizi, M.V.; Mahmoodi, M.J. The use of CT scan imaging technique to determine pear bruise level due to external loads. Food Sci. Nutr. 2019, 7, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, P.; Mazurek, W.; Pastuszka-Wozniak, J. Supervised classification of bruised apples with respect to the time after bruising on the basis of hyperspectral imaging data. Postharvest Biol. Technol. 2013, 86, 249–258. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Mayookha, V.P.; Kothakota, A.; Ramesh, S.V.; Thirumdas, R.; Juvvi, P. Biospeckle laser technique-A novel non-destructive approach for food quality and safety detection. Trends Food Sci. Technol. 2020, 97, 1–13. [Google Scholar] [CrossRef]
- Liu, N.L.; Chen, X.; Liu, Y.; Ding, C.Z.; Tan, Z.J. Deep learning approach for early detection of sub-surface bruises in fruits using single snapshot spatial frequency domain imaging. J. Food Meas. Charact. 2022, 16, 3888–3896. [Google Scholar] [CrossRef]
- Unay, D. Deep learning based automatic grading of bi-colored apples using multispectral images. Multimed. Tools Appl. 2022, 81, 38237–38252. [Google Scholar] [CrossRef]
- Hekim, M.; Comert, O.; Adem, K. A hybrid model based on the convolutional neural network model and artificial bee colony or particle swarm optimization-based iterative thresholding for detection of bruised apples. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 61–79. [Google Scholar] [CrossRef]
- Zhu, X.L.; Li, G.H. Rapid detection and visualization of slight bruise on apples using hyperspectral imaging. Int. J. Food Prop. 2019, 22, 1709–1719. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, H.L.; Liu, X.M. Hyperspectral/multispectral reflectance imaging combining with watershed segmentation algorithm for detection of early bruises on apples with different peel colors. Food Anal. Methods 2019, 12, 1218–1228. [Google Scholar] [CrossRef]
- Pan, X.Y.; Sun, L.J.; Li, Y.S.; Che, W.K.; Ji, Y.M.; Li, J.L.; Li, J.; Xie, X.; Xu, Y.T. Non-destructive classification of apple bruising time based on visible and near-infrared hyperspectral imaging. J. Sci. Food Agric. 2019, 99, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.; Foca, G.; Calvini, R.; Ulrici, A. Fast exploration and classification of large hyperspectral image datasets for early bruise detection on apples. Chemom. Intell. Lab. Syst. 2015, 146, 108–119. [Google Scholar] [CrossRef]
- Gai, Z.D.; Sun, L.J.; Bai, H.Y.; Li, X.X.; Wang, J.Y.; Bai, S.N. Convolutional neural network for apple bruise detection based on hyperspectral. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121432. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, X.F.; He, X.; Zhang, C.; Li, J.B.; Huang, W. Detection of early bruises on apples using hyperspectral reflectance imaging coupled with optimal wavelengths selection and improved watershed segmentation algorithm. J. Sci. Food Agric. 2023, 103, 6689–6705. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Huang, W.Q.; Fan, S.X.; Zhou, Q.; Wang, Z.L.; Tian, X. Detection of early bruises on apples using hyperspectral imaging combining with YOLOv3 deep learning algorithm. J. Process Eng. 2022, 45, 13952. [Google Scholar] [CrossRef]
- Fan, S.X.; Liang, X.T.; Huang, W.Q.; Zhang, V.J.; Pang, Q.; He, X.; Li, L.J.; Zhang, C. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Comput. Electron. Agric. 2022, 193, 106715. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Yang, Z.R.; Liu, H.B.; Wang, H.B.; Li, J.H.; Zhao, L.L. Detection of early bruise in apple using near-infrared camera imaging technology combined with deep learning. Infrared Phys. Technol. 2022, 127, 104442. [Google Scholar] [CrossRef]
- Yang, Z.R.; Yuan, Y.H.; Zheng, J.H.; Wang, H.B.; Li, J.H.; Zhao, L.L. Early apply bruise recognition based on near-infrared imaging and grayscale gradient images. J. Food Meas. Charact. 2023, 17, 2841–2849. [Google Scholar] [CrossRef]
- Keresztes, J.C.; Diels, E.; Goodarzi, M.; Nguyen-Do-Trong, N.; Goos, P.; Nicolai, B.; Saeys, W. Glare based apple sorting and iterative algorithm for bruise region detection using shortwave infrared hyperspectral imaging. Postharvest Biol. Technol. 2017, 130, 103–115. [Google Scholar] [CrossRef]
- Siedliska, A.; Baranowski, P.; Mazurek, W. Classification models of bruise and cultivar detection on the basis of hyperspectral imaging data. Comput. Electron. Agric. 2014, 106, 66–74. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.D.; Yan, Y.J.; Wang, G.T. Detection of early bruises in honey peaches using shortwave infrared hyperspectral imaging. Spectroscopy 2022, 37, 33–41,48. [Google Scholar] [CrossRef]
- Han, Z.Y.; Li, B.; Wang, Q.; Yang, A.K.; Liu, Y.D. Detection storage time of mild bruise’s loquats using hyperspectral imaging. J. Spectrosc. 2022, 2022, 9989002. [Google Scholar] [CrossRef]
- Zhou, X.; Ampatzidis, Y.; Lee, W.S.; Zhou, C.L.; Agehara, S.; Schueller, J.K. Deep learning-based postharvest strawberry bruise detection under UV and incandescent light. J. Chemom. 2022, 202, 107389. [Google Scholar]
- Lopez-Maestresalas, A.; Keresztes, J.C.; Goodarzi, M.; Arazuri, S.; Jaren, C.; Saeys, W. Non-destructive detection of blackspot in potatoes by Vis-NIR and SWIR hyperspectral imaging. Food Contral 2016, 70, 229–241. [Google Scholar] [CrossRef]
- Zhu, Q.B.; Guan, J.Y.; Huang, M.; Lu, R.F.; Mendoza, F. Predicting bruise susceptibility of ‘Golden Delicious’ apples using hyperspectral scattering technique. Postharvest Biol. Technol. 2016, 114, 86–94. [Google Scholar] [CrossRef]
- Xi, R.; Hou, J.; Lou, W. Potato Bud detection with improved Faster R-CNN. Trans. ASABE 2020, 63, 557–569. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhou, S.L.; Chen, H. Attention-based fusion factor in FPN for object detection. Appl. Intell. 2022, 52, 15547–15556. [Google Scholar] [CrossRef]
- Wu, A.; Zhu, J.H.; Ren, T.Y. Detection of apple defect using laser-induced light backscattering imaging and convolutional neural network. Comput. Electr. Eng. 2020, 81, 106454. [Google Scholar] [CrossRef]
- Liu, Y.C.; Shao, Z.R.; Teng, Y.Y. NAM: Normalization-based Attention Module. arXiv 2021, arXiv:2111.12419. [Google Scholar]
- Zhang, T.W.; Zhang, X.L. Squeeze-and-Excitation Laplacian Pyramid Network with Dual-Polarization Feature Fusion for Ship Classification in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4019905. [Google Scholar] [CrossRef]
- Wang, W.; Tan, X.A.; Zhang, P.; Wang, X. A CBAM Based Multiscale Transformer Fusion Approach for Remote Sensing Image Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6817–6825. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Wang, P.; Ren, D.W.; Liu, W.; Ye, R.G.; Hu, Q.H.; Zuo, W.M. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2021, 52, 8574–8586. [Google Scholar] [CrossRef] [PubMed]
- Anzidei, M.; Di Martino, M.; Sacconi, B.; Saba, L.; Boni, F.; Zaccagna, F.; Geiger, D.; Kirchin, M.A.; Napoli, A.; Bezzi, M. Evaluation of image quality, radiation dose and diagnostic performance of dual-energy CT datasets in patients with hepatocellular carcinoma. Clin. Radiol. 2015, 70, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, C.; Luo, H.Z.; Zhao, W.Q.; Zhong, S.; Tang, L.; Peng, J.Y.; Fan, J.P. Automatic learning for object detection. Neurocomputing 2022, 484, 260–272. [Google Scholar] [CrossRef]
- Yao, J.; Qi, J.M.; Zhang, J.; Shao, H.M.; Yang, J.; Li, X. A Real-Time Detection Algorithm for Kiwifruit Defects Based on YOLOv5. Electronics 2021, 10, 1711. [Google Scholar] [CrossRef]
Category | Bruise | Calyx | Stem | ||
---|---|---|---|---|---|
Small | Medium | Large | |||
number | 298 | 285 | 244 | 248 | 270 |
Model | Test Set Type | APbruise | F1 |
---|---|---|---|
Model 1 | dataset A 1 | 77.89% | 0.714 |
dataset B 2 | 68.38% | 0.667 | |
dataset A + B | 72.18% | 0.689 | |
Model 2 | dataset A | 81.04% | 0.750 |
dataset B | 75.34% | 0.702 | |
dataset A + B | 78.28% | 0.729 | |
Model 3 | dataset A | 86.75% | 0.786 |
dataset B | 80.63% | 0.741 | |
dataset A + B | 83.28% | 0.762 |
Network | APbruise | APcalyx | APstem | mAP | F1 | ||
---|---|---|---|---|---|---|---|
Small | Medium | Large | |||||
Faster RCNN [36] | 90.6% | 88.5% | 91.2% | 93.2% | 93.1% | 91.3% | 0.833 |
YOLOv4P [26] | 88.7% | 86.3% | 86.4% | 90.9% | 89.9% | 88.4% | 0.824 |
YOLOv5s [27] | 91.5% | 89.2% | 91.8% | 94.5% | 94.5% | 92.3% | 0.849 |
The improved Faster RCNN | 96.4% | 93.4% | 97.6% | 99.9% | 99.6% | 97.4% | 0.870 |
Model | APbruise | APcalyx | APstem | mAP | F1 | ||
---|---|---|---|---|---|---|---|
Small | Medium | Large | |||||
Model Ⅰ | 90.6% | 88.5% | 91.2% | 93.2% | 93.1% | 91.3% | 0.833 |
Model Ⅱ | 94.2% | 90.9% | 94.8% | 97.1% | 96.9% | 94.8% | 0.856 |
Model Ⅲ | 92.8% | 90.0% | 93.2% | 96.2% | 95.8% | 93.6% | 0.851 |
Model Ⅳ | 91.4% | 89.6% | 92.5% | 94.4% | 94.2% | 92.4% | 0.843 |
Model Ⅴ | 95.8% | 92.6% | 97.1% | 99.5% | 99.4% | 96.9% | 0.865 |
Model Ⅵ | 93.7% | 91.4% | 95.6% | 97.9% | 97.2% | 95.1% | 0.852 |
Model Ⅶ | 94.9% | 91.8% | 96.5% | 98.2% | 97.9% | 95.9% | 0.859 |
Model Ⅷ | 96.4% | 93.4% | 97.6% | 99.9% | 99.6% | 97.4% | 0.870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Che, Y.; Fang, Y.; Bai, H.; Sun, L. Early Bruise Detection in Apple Based on an Improved Faster RCNN Model. Horticulturae 2024, 10, 100. https://doi.org/10.3390/horticulturae10010100
Hou J, Che Y, Fang Y, Bai H, Sun L. Early Bruise Detection in Apple Based on an Improved Faster RCNN Model. Horticulturae. 2024; 10(1):100. https://doi.org/10.3390/horticulturae10010100
Chicago/Turabian StyleHou, Jingli, Yuhang Che, Yanru Fang, Hongyi Bai, and Laijun Sun. 2024. "Early Bruise Detection in Apple Based on an Improved Faster RCNN Model" Horticulturae 10, no. 1: 100. https://doi.org/10.3390/horticulturae10010100
APA StyleHou, J., Che, Y., Fang, Y., Bai, H., & Sun, L. (2024). Early Bruise Detection in Apple Based on an Improved Faster RCNN Model. Horticulturae, 10(1), 100. https://doi.org/10.3390/horticulturae10010100