Initial Physiological, Biochemical and Elemental Garlic (Allium sativum L.) Clove Responses to T. vulgaris and S. aromaticum Extract Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Extracts
2.2. Treatment of Garlic Cloves
2.3. Germination and Physiological Parameters of Garlic Cloves
2.4. Determination of Macro- and Microelements
2.5. Antioxidant Activity Determination
2.6. Total Phenolic Compounds and Flavonoids
2.7. Statistical Analysis
3. Results
3.1. Germination and Physiological Parameters of the Garlic Cloves
3.2. Macro- and Microelements in the Plant Extract-Treated Garlic Cloves
3.3. Antioxidant Response, Total Phenolic Compounds and Total Flavonoids in the Plant Extract-Treated Garlic Cloves
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mancini, V.; Romanazzi, G. Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Manag. Sci. 2014, 70, 860–868. [Google Scholar] [CrossRef]
- Abdel-Rasheed, K.G.; Moustafa, Y.M.M.; Hassan, E.A.; Abdel-Ati, Y.Y.; Gadel-Hak, S.H. Traits under laboratory conditions to identify garlic genotypes suitable for organic agriculture. Egypt. J. Agric. Res. 2016, 94, 73–88. [Google Scholar] [CrossRef]
- Kaur, J.; Sharma, R.; Sharma, M.; Chhabra, R. Evaluation of physiological and biochemical changes in garlic (Allium sativum L.) bulbs stored under different temperature conditions. Plant Physiol. Rep. 2021, 26, 412–418. [Google Scholar] [CrossRef]
- Karklelienė, R.; Juškevičienė, D.; Radzevičius, A.; Sasnauskas, A. Productivity and adaptability of the new carrot and garlic cultivars in Lithuania. Zemdirb.-Agric. 2018, 105, 165–170. [Google Scholar] [CrossRef]
- Divya, B.J.; Suman, B.; Venkataswamy, M.; Thyagaraju, K. a Study on Phytochemicals, Functional Groups and Mineral Composition of Allium sativum (Garlic) Cloves. Int. J. Curr. Pharm. Res. 2017, 9, 42–45. [Google Scholar] [CrossRef]
- Li, F.M.; Li, T.; Li, W.; Yang, L.D. Changes in antioxidant capacity, levels of soluble sugar, total polyphenol, organosulfur compound and constituents in garlic clove during storage. Ind. Crops Prod. 2015, 69, 137–142. [Google Scholar] [CrossRef]
- Mondani, L.; Chiusa, G.; Battilani, P. Chemical and biological control of Fusarium species involved in garlic dry rot at early crop stages. Eur. J. Plant Pathol. 2021, 160, 575–587. [Google Scholar] [CrossRef]
- Moharam, M.H.A.; Farrag, E.S.H.; Mohamed, M.D.A. Pathogenic fungi in garlic seed cloves and first report of Fusarium proliferatum causing cloves rot of stored bulbs in upper Egypt. Arch. Phytopathol. Plant Prot. 2013, 46, 2096–2103. [Google Scholar] [CrossRef]
- Gonçalves, D.C.; de Queiroz, V.T.; Costa, A.V.; Lima, W.P.; Belan, L.L.; Moraes, W.B.; Iorio, N.L.P.P.; Póvoa, H.C.C. Reduction of Fusarium wilt symptoms in tomato seedlings following seed treatment with Origanum vulgare L. essential oil and carvacrol. Crop Prot. 2021, 141, 105487. [Google Scholar] [CrossRef]
- Van Der Wolf, J.M.; Birnbaum, Y.; Van Der Zouwen, P.S.; Groot, S.P.C. Disinfection of vegetable seed by treatment with essential oils, organic acids and plant extracts. Seed Sci. Technol. 2008, 36, 76–88. [Google Scholar] [CrossRef]
- Chandrashekhara; Niranjan Raj, S.; Manjunath, G.; Deepak, S.; Shekar Shetty, H. Seed treatment with aqueous extract of Viscum album induces resistance to pearl millet downy mildew pathogen. J. Plant Interact. 2010, 5, 283–291. [Google Scholar] [CrossRef]
- da Silva, A.C.; de Souza, P.E.; Machado, J.d.C.; da Silva, B.M.; Pinto, J.E.B.P. Effectiveness of essential oils in the treatment of Colletotrichum truncatum-infected soybean seeds. Trop. Plant Pathol. 2012, 37, 305–313. [Google Scholar] [CrossRef]
- Mbega, E.R.; Mortensen, C.N.; Mabagala, R.B.; Wulff, E.G. The effect of plant extracts as seed treatments to control bacterial leaf spot of tomato in Tanzania. J. Gen. Plant Pathol. 2012, 78, 277–286. [Google Scholar] [CrossRef]
- Ahmed, M.; Hossain, M.; Hassan, K.; Kanta Dash, C. Efficacy of Different Plant Extract on Reducing Seed Borne Infection and Increasing Germination of Collected Rice Seed Sample. Univers. J. Plant Sci. 2013, 1, 66–73. [Google Scholar] [CrossRef]
- Lopez-Reyes, J.G.; Gilardi, G.; Garibaldi, A.; Gullino, M.L. In vivo Evaluation of Essential Oils and Biocontrol Agents Combined with Hot Water Treatments on Carrot Seeds against Alternaria radicina. J. Phytopathol. 2016, 164, 131–135. [Google Scholar] [CrossRef]
- Masangwa, J.I.G.; Kritzinger, Q.; Aveling, T.A.S. Germination and seedling emergence responses of common bean and cowpea to plant extract seed treatments. J. Agric. Sci. 2017, 155, 18–31. [Google Scholar] [CrossRef]
- Ben-Jabeur, M.; Vicente, R.; López-Cristoffanini, C.; Alesami, N.; Djébali, N.; Gracia-Romero, A.; Serret, M.D.; López-Carbonell, M.; Araus, J.L.; Hamada, W. A novel aspect of essential oils: Coating seeds with thyme essential oil induces drought resistance in wheat. Plants 2019, 8, 371. [Google Scholar] [CrossRef]
- Moumni, M.; Allagui, M.B.; Mezrioui, K.; Ben Amara, H.; Romanazzi, G. Evaluation of seven essential oils as seed treatments against seedborne fungal pathogens of Cucurbita maxima. Molecules 2021, 26, 2354. [Google Scholar] [CrossRef]
- Holc, M.; Primc, G.; Iskra, J.; Titan, P.; Kovač, J.; Mozetič, M.; Junkar, I. Effect of oxygen plasma on sprout and root growth, surface morphology and yield of garlic. Plants 2019, 8, 462. [Google Scholar] [CrossRef]
- Liu, H.J.; Huang, C.P.; Tong, P.J.; Yang, X.; Cui, M.M.; Cheng, Z.H. Response of axillary bud development in garlic (Allium sativum L.) to seed cloves soaked in gibberellic acid (GA3) solution. J. Integr. Agric. 2020, 19, 1044–1054. [Google Scholar] [CrossRef]
- Holc, M.; Junkar, I.; Primc, G.; Iskra, J.; Titan, P.; Grobelnik Mlakar, S.; Mozetic, M. Improved Sprout Emergence of Garlic Cloves by Plasma Treatment. Plasma Med. 2016, 6, 325–338. [Google Scholar] [CrossRef]
- Geraldine, R.M.; Soares, N.d.F.F.; Botrel, D.A.; de Almeida Gonçalves, L. Characterization and effect of edible coatings on minimally processed garlic quality. Carbohydr. Polym. 2008, 72, 403–409. [Google Scholar] [CrossRef]
- Srivastava, A.; Rao, D.P. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur. Chem. Bull. 2014, 3, 502–504. [Google Scholar] [CrossRef]
- Wu, C.; Wang, M.; Dong, Y.; Cheng, Z.; Meng, H. Growth, bolting and yield of garlic (Allium sativum L.) in response to clove chilling treatment. Sci. Hortic. 2015, 194, 43–52. [Google Scholar] [CrossRef]
- Youssef, N.S. Growth and bulbing of garlic as influenced by low temperature and storage period treatments. World Rural Obs. 2013, 5, 47–57. [Google Scholar]
- Cantwell, M.I.; Kang, J.; Hong, G. Heat treatments control sprouting and rooting of garlic cloves. Postharvest Biol. Technol. 2003, 30, 57–65. [Google Scholar] [CrossRef]
- De Santis, D.; Garzoli, S.; Vettraino, A.M. Effect of gaseous ozone treatment on the aroma and clove rot by Fusarium proliferatum during garlic postharvest storage. Heliyon 2021, 7, e06634. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, J.G. Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biol. Technol. 2015, 100, 109–112. [Google Scholar] [CrossRef]
- Andresen, M.; Cedergreen, N. Plant growth is stimulated by tea-seed extract: A new natural growth regulator? HortScience 2010, 45, 1848–1853. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Nawaz, M.; Hussain, I.; Foidl, N. Combined application of moringa leaf extract and chemical growth-promoters enhances the plant growth and productivity of wheat crop (Triticum aestivum L.). S. Afr. J. Bot. 2020, 129, 74–81. [Google Scholar] [CrossRef]
- Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Shao, X.; Wei, Y.; Xu, F.; Wang, H. Effect of preharvest application of tea tree oil on strawberry fruit quality parameters and possible disease resistance mechanisms. Sci. Hortic. 2018, 241, 18–28. [Google Scholar] [CrossRef]
- Mulugeta, T.; Muhinyuza, J.B.; Gouws-Meyer, R.; Matsaunyane, L.; Andreasson, E.; Alexandersson, E. Botanicals and plant strengtheners for potato and tomato cultivation in Africa. J. Integr. Agric. 2020, 19, 406–427. [Google Scholar] [CrossRef]
- Ramírez, P.G.; Ramírez, D.G.; Mejía, E.Z.; Ocampo, S.A.; Díaz, C.N.; Rojas Martínez, R.I. Extracts of Stevia rebaudiana against Fusarium oxysporum associated with tomato cultivation. Sci. Hortic. 2020, 259, 108683. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiutė, N.; Valiuškaitė, A. The extracts of cinnamon and clove as potential biofungicides against strawberry grey mould. Plants 2020, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Achimón, F.; Brito, V.D.; Pizzolitto, R.P.; Ramirez Sanchez, A.; Gómez, E.A.; Zygadlo, J.A. Chemical composition and antifungal properties of commercial essential oils against the maize phytopathogenic fungus Fusarium verticillioides. Rev. Argent. Microbiol. 2021, 53, 292–303. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiūtė, N.; Dambrauskienė, E.; Viškelis, P.; Valiuškaitė, A. Biocontrol of strawberry pathogen Botrytis cinerea using plant extracts and essential oils. Zemdirb.-Agric. 2020, 107, 147–152. [Google Scholar] [CrossRef]
- Rolli, E.; Marieschi, M.; Maietti, S.; Sacchetti, G.; Bruni, R. Comparative phytotoxicity of 25 essential oils on pre- and post-emergence development of Solanum lycopersicum L.: A multivariate approach. Ind. Crops Prod. 2014, 60, 280–290. [Google Scholar] [CrossRef]
- Morkeliūnė, A.; Rasiukevičiūtė, N.; Šernaitė, L.; Valiuškaitė, A. The use of essential oils from thyme, sage and peppermint against colletotrichum acutatum. Plants 2021, 10, 114. [Google Scholar] [CrossRef]
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Control of Seed-Borne Fungi by Selected Essential Oils. Horticulturae 2022, 8, 220. [Google Scholar] [CrossRef]
- Dėnė, L.; Laužikė, K.; Rasiukevičiūtė, N.; Chrapačienė, S.; Brazaityte, A.; Viršilė, A.; Vaštakaitė-Kairienė, V.; Miliauskienė, J.; Sutulienė, R.; Samuolienė, G.; et al. Defense response of strawberry plants against Botrytis cinerea influenced by coriander extract and essential oil. Front. Plant Sci. 2023, 13, 1098048. [Google Scholar] [CrossRef] [PubMed]
- Maksoud, S.A.; Gad, K.I.; Hamed, E.Y.M. The potentiality of biostimulant (Lawsonia inermis L.) on some morpho-physiological, biochemical traits, productivity and grain quality of Triticum aestivum L. BMC Plant Biol. 2023, 23, 95. [Google Scholar] [CrossRef] [PubMed]
- Findura, P.; Kocira, S.; Hara, P.; Pawłowska, A.; Szparaga, A.; Kangalov, P. Extracts from Artemisia vulgaris L. in Potato Cultivation—Preliminary Research on Biostimulating Effect. Agriculture 2020, 10, 356. [Google Scholar] [CrossRef]
- Khaliq, G.; Ramzan, M.; Baloch, A.H. Effect of Aloe vera gel coating enriched with Fagonia indica plant extract on physicochemical and antioxidant activity of sapodilla fruit during postharvest storage. Food Chem. 2019, 286, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ainsworth, E.; Gillespie, K. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Engida, A.M.; Kasim, N.S.; Tsigie, Y.A.; Ismadji, S.; Huynh, L.H.; Ju, Y.H. Extraction, identification and quantitative HPLC analysis of flavonoids from sarang semut (Myrmecodia pendan). Ind. Crops Prod. 2013, 41, 392–396. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Costa, W.A.; Pereira, D.S.; Botelho, J.R.S.; Menezes, T.O.A.; Andrade, E.H.A.; Silva, S.H.M.; Filho, A.P.S.S.; Carvalho Junior, R.N. Chemical composition and phytotoxic activity of clove (Syzygium aromaticum) essential oil obtained with supercritical CO2. J. Supercrit. Fluids 2016, 118, 185–193. [Google Scholar] [CrossRef]
- Škrovánková, S.; Mlček, J.; Snopek, L.; Planetová, T. Polyphenols and antioxidant capacity in different types of garlic. Potravin. Slovak J. Food Sci. 2018, 12, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Soare, R.; Babeanu, C.; Botu, M. Evaluation of Productivity Components and Antioxidant Activity of Different Types of Garlic Depending on the Morphological Organs. Horticulturae 2023, 9, 1039. [Google Scholar] [CrossRef]
- Chen, S.; Shen, X.; Cheng, S.; Li, P.; Du, J.; Chang, Y.; Meng, H. Evaluation of Garlic Cultivars for Polyphenolic Content and Antioxidant Properties. PLoS ONE 2013, 8, e79730. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Treatment | Biomass Gain, g | Dry Matter, % |
---|---|---|---|
Jarus | Untreated | 1.332 ± 0.20 a | 33.039 ± 0.62 b |
THY | 0.543 ± 0.32 b | 35.613 ± 0.35 a | |
SYZ | 0.734 ± 0.27 ab | 30.391 ± 0.71 c | |
Vasariai | Untreated | 2.558 ± 0.52 a | 28.006 ± 0.79 c |
THY | 0.477 ± 0.42 b | 37.215 ± 0.55 a | |
SYZ | 0.914 ± 0.12 b | 35.078 ± 0.52 b |
Cultivar | Treatment | P | K | S | Ca | Cu | Fe | Mg | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Jarus | Untreated | 0.131 ± 0.002 b | 0.005 ± 0.001 b | 0.291± 0.002 c | 0.014 ± 0.000 a | 0.370 ± 0.007 b | 0.004 ± 0.000 a | 3.167 ± 0.093 b | 0.254 ± 0.001 b | 0.046 ± 0.003 c |
THY | 0.230 ± 0.027 a | 0.011 ± 0.003 a | 0.358 ± 0.014 a | 0.012 ± 0.001 b | 0.577 ± 0.052 a | 0.002 ± 0.001 b | 4.651 ± 0.302 a | 0.416 ± 0.036 a | 0.124 ± 0.013 a | |
SYZ | 0.149 ± 0.001 b | 0.005 ± 0.001 b | 0.292 ± 0.004 b | 0.014 ± 0.000 a | 0.356 ± 0.049 b | 0.004 ± 0.000 a | 3.490 ± 0.005 b | 0.276 ± 0.000 b | 0.082 ± 0.010 b | |
Vasariai | Untreated | 0.123 ± 0.002 c | 0.005 ± 0.001 a | 0.194 ± 0.002 c | 0.010 ± 0.000 c | 0.285 ± 0.016 b | 0.003 ± 0.000 b | 2.753 ± 0.024 c | 0.226 ± 0.003 c | 0.089 ± 0.006 a |
THY | 0.153 ± 0.000 a | 0.005 ± 0.000 a | 0.277 ± 0.001 a | 0.016 ± 0.001 a | 0.410 ± 0.011 a | 0.004 ± 0.001 a | 3.601 ± 0.026 a | 0.277 ± 0.002 a | 0.088 ± 0.003 a | |
SYZ | 0.148 ± 0.002 b | 0.003 ± 0.001 b | 0.249 ± 0.003 b | 0.014 ± 0.000 b | 0.290 ± 0.001 b | 0.004 ± 0.000 a | 3.491 ± 0.000 b | 0.252 ± 0.001 b | 0.059 ± 0.006 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dėnė, L.; Laužikė, K.; Juškevičienė, D.; Valiuškaitė, A.; Karklelienė, R. Initial Physiological, Biochemical and Elemental Garlic (Allium sativum L.) Clove Responses to T. vulgaris and S. aromaticum Extract Application. Horticulturae 2024, 10, 99. https://doi.org/10.3390/horticulturae10010099
Dėnė L, Laužikė K, Juškevičienė D, Valiuškaitė A, Karklelienė R. Initial Physiological, Biochemical and Elemental Garlic (Allium sativum L.) Clove Responses to T. vulgaris and S. aromaticum Extract Application. Horticulturae. 2024; 10(1):99. https://doi.org/10.3390/horticulturae10010099
Chicago/Turabian StyleDėnė, Lina, Kristina Laužikė, Danguolė Juškevičienė, Alma Valiuškaitė, and Rasa Karklelienė. 2024. "Initial Physiological, Biochemical and Elemental Garlic (Allium sativum L.) Clove Responses to T. vulgaris and S. aromaticum Extract Application" Horticulturae 10, no. 1: 99. https://doi.org/10.3390/horticulturae10010099
APA StyleDėnė, L., Laužikė, K., Juškevičienė, D., Valiuškaitė, A., & Karklelienė, R. (2024). Initial Physiological, Biochemical and Elemental Garlic (Allium sativum L.) Clove Responses to T. vulgaris and S. aromaticum Extract Application. Horticulturae, 10(1), 99. https://doi.org/10.3390/horticulturae10010099