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Abstract: Bruising is a common occurrence in apples that can lead to gradual fruit decay and
substantial economic losses. Due to the lack of visible external features, the detection of early-stage
bruising (occurring within 0.5 h) is difficult. Moreover, the identification of stems and calyxes is
also important. Here, we studied the use of the short-wave infrared (SWIR) camera and the Faster
RCNN model to enable the identification of bruises on apples. To evaluate the effectiveness of early
bruise detection by SWIR bands compared to the visible/near-infrared (Vis/NIR) bands, a hybrid
dataset with images from two cameras with different bands was used for validation. To improve
the accuracy of the model in detecting apple bruises, calyxes, and stems, several improvements are
implemented. Firstly, the Feature Pyramid Network (FPN) structure was integrated into the ResNet50
feature extraction network. Additionally, the Normalization-based Attention Module (NAM) was
incorporated into the residual network, serving to bolster the attention of model towards detection
targets while effectively mitigating the impact of irrelevant features. To reduce false positives and
negatives, the Intersection over Union (IoU) metric was replaced with the Complete-IoU (CIoU).
Comparison of the detection performance of the Faster RCNN model, YOLOv4P model, YOLOv5s
model, and the improved Faster RCNN model, showed that the improved model had the best
evaluation indicators. It achieved a mean Average Precision (mAP) of 97.4% and F1 score of 0.87.
The results of research indicate that it is possible to accurately and effectively identify early bruises,
calyxes, and stems on apples using SWIR cameras and deep learning models. This provides new
ideas for real-time online sorting of apples for the presence of bruises.

Keywords: detection of early-stage-bruising; SWIR image; NAM attention module; improved
Faster RCNN

1. Introduction

Apples, renowned for their high content of vitamins and trace elements, are beloved
by people worldwide [1,2]. However, it is well known that apples can sustain surface
damage from various impacts during harvesting, transportation, and storage processes.
Generally, apples without bruises closely resemble those with bruises in color and texture,
especially during the early stages of bruising. This damage occurs the surface of apple,
making it challenging to discern with the naked eye. Over time, the injured tissue in apples
becomes black and soft, and dries out due to oxidation. If the bruise issues of the apple
remain undetected, extensive rot will occur, which not only affects the appearance and
flavor of apple, but also risks infecting other healthy apples [3,4], resulting in millions of
Euro in loss annually (for example, 10–25% loss in the apple industry of Belgium during
transportation) [5,6]. Severe bruising can be identified through manual inspection or
machine vision technology [7–9]. Due to the lack of visible external features, the detection
of early-stage bruising (occurring within 0.5 h) is difficult to detect. Hence, there is a
pressing need to develop a precise, convenient, and non-destructive method for early-stage
bruise detection of apples.
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In recent years, many imaging techniques have been applied to the non-destructive de-
tection of bruises in fruits and vegetables, such as nuclear magnetic resonance (NMR) [10],
X-ray imaging technology [11–13], and hyperspectral techniques [14–18]. However, the
NMR has not been widely used due to its high cost. Additionally, there is some radiation
risk in X-ray imaging technology [1]. In contrast, hyperspectral/multispectral imaging
technology(H/MSI) [19,20] has gained widespread research attention in bruise detection
for fruits and vegetables by simultaneously providing both image information and spec-
tral information. Therefore, HSI can be combined with traditional image processing and
machine learning or deep learning methods to achieve bruise detection in apples. Many
scholars use hyperspectral imaging techniques in the range of 400–1000 nm, encompassing
both the visible and near-infrared spectra. Pan et al. [21] proposed the use of Vis/NIR
hyperspectral imaging (400–1000 nm) to classify the bruise time of apples. They studied
hyperspectral images of apples during seven bruise stages (0–72 h, at 12 h intervals), se-
lecting feature wavelengths mostly between 700–1000 nm. Then, they employed a random
forest (RF) model to identify bruised areas with an accuracy of 92.86%. Ferrari et al. [22]
investigated two apple varieties “Golden Delicious” and “Pink Lady” in hyperspectral
imaging (400–1000 nm) to detect early bruising and achieved detection rates of 92.42%
and 94.04%, respectively. Gai et al. [23] classified apple bruise regions using the improved
CNN model with a hyperspectral imaging system (400–1000 nm), achieving a classification
accuracy better than 90%. Tian et al. [24] utilized Vis/NIR hyperspectral images to detect
apple bruising. They created an improved watershed algorithm for damage point identifi-
cation, achieving recognition rates better than 92%. In recent years, deep learning-based
target detection techniques [25] have gradually been applied to defect detection in fruits
and vegetables due to their high accuracy and fast speed. Fan et al. [26] proposed a pruned
YOLOv4, called YOLOv4P (You Only Look Once version 4 Pruned) for bruise detection.
The results showed that the mAP of YOLOv4P reached 93.9% for apple defects. Yuan
et al. [27] used a combination of near-infrared cameras and deep learning object-detection
models to detect early bruising in apples. The results showed that the accuracy of YOLOv5s
in detecting bruises with different degrees of damage was more than 96%. The results
meet the requirements of online real-time detection. In the case of industrial assembly line
sorting of apples, it may be sufficient to know whether the apples are damaged or not,
without knowing the shape and size of each bruise. For quality control of apples, object
detection may provide enough information. Therefore, the object detection model is used
to detect apple bruises in this study.

The above research findings of different scholars on apple bruise detection using
HSI of wavelengths in the range of 400–1000 nm with machine learning or deep learning
algorithms, achieved promising research results. In addition, significant progress has been
made in SWIR spectral bands, particularly beyond 1000 nm [28]. Keresztes et al. [29] used
a hyperspectral imaging system (1000–2500 nm) to monitor apples within 1 to 36 h after
damage under five different impact forces. They selected images at 1082 nm to be templates
for region segmentation, where the average spectrum had the strongest contrast to the
background, allowing them to distinguish between undamaged and bruised apple regions.
They achieved an average classification accuracy of 90.1%. Siedliska et al. [30] constructed a
study to determine bruising in five apple varieties using short-wave infrared hyperspectral
imaging technology, and attained a successful classification ratebetter than 93%. Many
researchers investigating food quality using the SWIR spectral range have achieved good
results in other fruits and vegetables, such as peaches [31], loquats [32], strawberries [33],
and potatoes [34]. Therefore, it is also worthwhile to explore early bruise detection in the
short-wave infrared spectral range, especially for events that occur within half an hour.

The research mentioned above primarily focused on studying the equatorial surface
of apples, without considering the interference caused by the apple’s calyx and stem in the
actual production process for detection [18]. This may lead to a decrease in the accuracy
of bruise detection in apples. Therefore, the assistance of fast and highly accurate deep
learning models could be helpful for bruise detection in apples. Additionally, detecting
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apple bruising in both the Vis/NIR and SWIR spectra is feasible. However, high-spectral
imaging techniques still suffer from disadvantages, such as bulky and expensive equipment
and relatively complex data analysis. In contrast, Vis/NIR cameras and SWIR cameras
have the advantages of lower cost and less data processing, making them more accessible.
Moreover, bruising in apples is relatively sensitive to infrared light, enhancing the ability
of both cameras to reveal bruising. Building upon the research conducted by the scholars
mentioned above, this study uses a visible/ near-infrared camera with bands ranging from
300 to 1100 nm and a short-wave infrared camera with bands from 950 to 1700 nm to
capture images of early apple bruising at different locations (occurring within 0.5 h) for
subsequent experimental analysis.

Based on the discussion above, this paper proposes combining Vis/NIR imaging and
SWIR imaging techniques with an object detection model for detecting early apple bruising.
The main objectives include: (1) An impact device is used to create the bruises on “Red
Fuji” apples located near the equator, stem, and calyx regions, then visible/near-infrared
and short-wave infrared cameras are used to acquire an early bruise dataset of the apples;
(2) A hybrid dataset and the Faster RCNN model are used to assess and validate the
effectiveness of SWIR bands in apple bruise detection, comparing it to the performance of
Vis/NIR bands; (3) To improve the accuracy of early apple bruise, calyx, and stem detection
with the SWIR dataset and the improved model. The improvements, encompassing the
Feature Pyramid Network (FPN) structure and Normalization-based Attention Module
(NAM), were incorporated into the ResNet50 network, and IoU Loss was replaced by CIoU
Loss. and the comparison metrics are original Faster RCNN model, YOLOv4P model, and
YOLOv5s model.

2. Materials and Methods
2.1. Experimental Materials

All apples in this study were sourced from a fruit market in Harbin, Heilongjiang,
China. Firstly, about 60 “Red Fuji” apples, with 6–8 cm diameter, no noticeable damage,
and no insect holes on the surface, were manually selected. Then, all apples were cleaned
to remove surface dust and placed in an environment with 25 ◦C and 75% humidity [23].

2.2. Imaging Systems

The image acquisition system used in the experiment consists of a short-wave infrared
camera (BV-C2901-GE, Blue Vision, Yokohama, Japan, 950–1700 nm), a visible/ near-
infrared industrial camera (MER-530-20GM-P NIR, DAHENG Imaging, Beijing, China,
300–1100 nm), a light source (four halogen lamps of 60 W), a dark room, a sample carrier,
and a computer. A light-blocking cloth with 100% opacity was used to cover the perimeter of
the frame, such that light was prevented from affecting image acquisition. The image system
configuration, as illustrated in Figure 1, involved manual camera switching throughout
the process. To minimize the interference of reflected light on image quality, both the
sample mounting platform and the background were made of materials that did not reflect
any light.

Before image acquisition, an impact device was used to strike the apples, as shown
in Figure 1a, to simulate mechanical damage that apples may incur during harvesting or
transportation. The device was composed of a base, a pillar, a pivot, an iron pole, and a
ball. The iron pole is 80 cm long and has a mass of 230 g, which can be rotated around a
pivot axis. At the end of the iron pole, an iron ball with a diameter of 1.6 cm and a mass of
22 g was fixed.
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Figure 1. Flowchart of image acquisition. (a) Impact device; (b) Image acquisition system; (c) Dataset
folder.

The bruise operation is as follows: The iron pole was pulled to an angle of either 25◦,
40◦, or 57◦ and then was released to strike the apple [21]. The heights of the iron ball from
the ground were 7.5 cm, 18.7 cm, and 36.4 cm, respectively. As shown in Figure 2c–e, the
impacts at different angles formed circular bruise areas on the apple surface with diameters
of 0.5 cm, 0.8 cm, and 1.2 cm, respectively. The area of the bruise is calculated to be about
0.2 cm2, 0.5 cm2, and 1.1 cm2. The “Apple Grade Specification (NY/T 1793-2009)” issued
by the Chinese Ministry of Agriculture, was used to classify the bruises as small, medium,
and large [27]. According to the formula of the kinetic energy theorem, we obtained the
impact energy suffered by the apple at different angles of impact as 0.016 J, 0.040 J, and
0.079 J approximately [35].
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Figure 2. Different apple bruise images. (a) Bruise near the stem; (b) Bruise near the calyx; (c) Small
bruise; (d) Medium bruise; (e) Large bruise.

The dataset contains bruises at different locations and different sizes on the apple to
diversify the sample, as shown in Figure 2 (captured by the short-wave infrared camera).
After the apple was hit, bruise images of the apple were immediately collected. The
image collection process was completed by two cameras with different bands, and the
dataset was completed through the above operations. Two sets of images were acquired
for each apple, encompassing the undamaged surface, distinct regions of the bruised
surface (excluding stems and calyxes), stem against the healthy surface, stem against the
bruised surface, calyx against the healthy surface, and calyx against the bruised surface.
Photographic data were captured from diverse perspectives by altering the shooting angles
of the apples. Consequently, a total of 1200 images were obtained for each of the two image
sets, contributing to a comprehensive dataset for analysis and evaluation.

Table 1 shows the sum of the number of individual object categories in all of the
SWIR dataset counted, with the images taking into account the location of bruises near the



Horticulturae 2024, 10, 100 5 of 17

equatorial region of the apple, as well as the presence of bruises near the stems and calyxes
of the apple.

Table 1. Number of all categories in the SWIR dataset.

Category
Bruise

Calyx Stem
Small Medium Large

number 298 285 244 248 270

All bruises created in this experiment were early bruises occurring within half an
hour, as shown in Figure 3, images of an apple taken by different cameras, with blue boxes
marking the locations of the bruises. As shown in Figure 3a, the bruise was practically
invisible to the naked eye and indistinguishable from sound tissue. However, in Figure 3b,c,
the locations of bruise become distinctly visible.
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Figure 3. Different bruise images on the same apple. (a) RGB image from the CCD camera;
(b) Vis/NIR image from the Vis/NIR camera; (c) SWIR figure from the SWIR camera.

The average gray-scale histogram of the 100 SWIR image (selected randomly) of an
apple with early bruises is shown in Figure 4. The low gray-scale area is background, the
region of the bruise, calyx, and stem has a relatively higher gray value than the background,
the normal region occupies the majority of the apple body with the highest number of
pixels, and the bright spot region has a grayscale value higher than the sound region. There
is a clear distinction between the sound regions and the region of the bruise, calyx, and
stem. However, identifying the pixel values corresponding to mixed regions (bruises, stems,
and calyxes) within all SWIR images is crucial for detecting early-stage bruises on apples.
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The gray values of the SWIR image (as shown in Figure 3c) and the extracted three
component values of RGB image (as shown in Figure 3a) were normalized. Then the gray
mean values of the bruised region and the healthy region were calculated to determine
the difference values. The above operation was repeated by six groups of apple images
and the results are shown in Figure 5. It can be seen that the difference value between the
gray values of the bruised region and the normal region of the SWIR images is significantly
higher than that of the R, G, and B components, which, side by side, confirms that the RGB
images are not suitable for this study.
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2.3. Dataset

The dataset consists of two parts: short-wave infrared images (dataset A) captured
by the SWIR camera, and Vis/NIR images (dataset B) taken by the Vis/NIR camera.
Before detection, the dataset was labeled, including categories such as, stem, calyx, and
bruise. This annotation is important for the model to learn effectively. LabelImg was used
to annotate both datasets consistently. After annotation, XML files, containing location
information and category names for bruise, calyx, and stem in the images, were obtained.
This was the preparatory work before model training. To validate the effectiveness of the
spectral bands for early detection of bruises on apples, a hybrid dataset approach was used
in this experiment.

2.4. Model and Evaluation

In order to rapidly and accurately detect bruises, calyxes, and stems on apples, a Faster
RCNN model [36] was established in this experiment. Model optimization was achieved
through modifications to the structure of the backbone feature extraction network and
loss functions.

Given an input image, the Faster RCNN model resizes the image and extracts features
using a feature extraction network. Then, these features are fed into the Region Proposal
Network (RPN), which generates anchor boxes for object detection. The anchor boxes are
correlated with the feature map to form a feature matrix. Finally, the feature matrix is
pooled and passed to the regression and classification module to perform object detection.

The model training process was implemented using a computer with the Windows 10
operating system and a graphics card model NVIDIA GeForce RTX 3060 with 6 GB of video
memory. The programming software used was PyCharm Community Edition 2022.2.2, the
programming language was Python 3.7.17, and the training framework was PyTorch 1.7.1.

The parameters of the model were set as follows. The optimization algorithm chosen
was the SGD algorithm with a momentum of 0.9, weight decay of 0.0001, model confidence
of 0.5, non-maximal suppression (nms-IoU) of 0.3, learning rate of 0.005, and batch size of 4.
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To evaluate the performance of this model, the following metrics were employed. The
loss function is a crucial metric that measures the stability and effectiveness of a model. It
quantifies the discrepancy between predicted values and actual values.

The loss function of Faster RCNN consists of classification loss and regression loss
functions as shown in Equation (1):

L(pi, ti) =
1

Ncls
∑

i
Lcls(pi, p∗i ) +

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (1)

where i is the number of candidate box, pi is the probability of candidate box classifica-
tion, p∗i is 1 when the candidate box is a positive sample and 0 when it is a negative sample,
ti is the 4-parameter coordinates of the predicted bounding box, and t∗i is the 4-parameter
coordinates of the real bounding box.

Lcls(pi, p∗i ) denotes the classification loss that distinguishes between foreground and
background with the following Equation (2):

Lcls(pi, p∗i ) = − log[pi p∗i + (1 − pi)(1 − p∗i )] (2)

Lreg(ti, t∗i ) denotes the bounding box regression loss with the following equation:

Lreg(ti, t∗i ) = smoothL1(ti − t∗i ) (3)

where smoothL1 is formulated as follows:

smoothL1(x) =
{

0.5x2, |x| < 1
|x| − 0.5, others

(4)

In this experiment, the AP, mAP, and F1 score were used as the evaluation indexes of
the model. Some of these formulas are as follows:

P = TP/(TP + FP) (5)

R = TP/(TP + FN) (6)

AP =
∫ 1

0
P(R)d(R) (7)

mAP =
1
N

N

∑
i

API (8)

F1 =
2 × P × R

P + R
(9)

where TP is the number of positive samples predicted to be positive, FP is the number of
negative samples predicted to be positive, and TP + FP is the number of samples predicted
to be positive, and FN denotes the number of samples in which negative samples were
predicted incorrectly. The F1 score is to consider both P and R metrics at the same time,
which can evaluate the performance of a classifier more scientifically.

2.5. Improved Faster RCNN
2.5.1. FPN

In deep convolutional neural networks, the features extracted from the shallow net-
work include larger size, rich geometric information, and weaker semantic information.
Although this is beneficial for target localization, it hinders target classification. On the
other hand, due to pooling operations, the features extracted from higher layers are high-
level features with smaller dimensions, less geometric information, and richer semantic
content, which is beneficial for target classification. However, these features may not work
well in detecting small targets. Traditional image pyramids construct multi-scale features
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by inputting images of different scales. Starting from an input image, images of different
scales are obtained through preprocessing, creating an image pyramid. While this approach
can improve the detection accuracy of algorithms, it requires feature extraction and other
operations for each input image, resulting in high computational cost and low efficiency.
Convolutional neural networks produce feature maps with decreasing dimensions. The
FPN module [37] takes advantage of this characteristic to construct a multi-scale feature
pyramid. This allows the Region Proposed Network (RPN) and detection network to
predict targets at different scales. For example, the area of bruising on an apple is relatively
small compared to the entire apple surface, which is unfavorable for model detection. By
integrating the FPN structure, the model is better able to detect small targets, which greatly
improves the detection accuracy of the model.

The FPN multi-scale detection module consists of two parts: a bottom-up process, and
a top-down and lateral connection fusion process. The schematic diagram of the Faster
RCNN model with the FPN module is illustrated in Figure 6.
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Figure 6. Structure of the improved Faster RCNN model.

The leftmost backbone network represents the bottom-up convolution process of
ResNet50. Each stage corresponds to a level of the feature pyramid, and the output features
of the last residual block of each stage serve as the input features for the corresponding
level in the FPN multi-scale detection module. Due to the excessive semantic information
in the lower levels, the extracted features are generally discarded. The top-down process
involves up-sampling the small feature maps from the top layer to match the size of the
feature maps from the previous stage. This approach allows for the utilization of the strong
semantic features for classification from the top layer and the rich geometric information
for localization from the bottom layers. To combine high-level semantic features with
the precise localization capabilities of the lower layers, a lateral connection structure is
employed. The employment of lateral connection structures involves the addition and
fusion of up-sampled features from the preceding layer with the features of the current
layer. This process results in a feature matrix that contains information about both large
and small objects in the image. This fused feature matrix is then fed into the RPN for anchor
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box determination in the subsequent steps. This approach enhances the detection accuracy
for objects of various sizes.

2.5.2. NAM Normalization-Based Attention Module

Apples are objects with a quasi-spherical nature, and when light is projected onto
the samples, it often results in uneven illumination, making it difficult for the model to
distinguish objects. Additionally, the grayscale values of apple bruises can sometimes be
very close to the grayscale values of stems or calyxes, leading to potential misclassifica-
tions by the model [38]. To bolster the attention of the model towards detection targets
while effectively mitigating the impact of irrelevant features, this study introduced the
NAM [39] mechanism into the main feature extraction network. Since the feature extraction
network in this paper is based on the ResNet50 residual network structure, where the
fundamental residual block (as shown in Figure 7) takes input x, after passing through
three convolutional layers of varying sizes, outputs H(x) = x + F(x), the paper chose to
incorporate the NAM based on normalization after each residual block. This addition is
represented by the dashed boxes in Figure 7, transforming the output into H(x) = x + N(x).
The purpose of NAM is to improve the attention mechanism using contribution factors of
weights. This module is characterized by being lightweight and efficient. It employs the
scale factor of batch normalization, which represents the importance of weights through
the standard deviation. This operation mitigates the issue of increased network complexity
caused by the inclusion of fully connected layers and convolutional layers, as observed
in attention mechanisms such as SE (Squeeze-and-Excitation Networks) [40] and CBAM
(Convolutional Block Attention Module) [41]. Moreover, it leverages weight information to
further suppress interference from less significant channels or pixels. This is accomplished
while preserving both spatial and channel correlations, leading to enhanced computational
efficiency and heightened detection accuracy.
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2.5.3. Complete-IoU

The metric used to filter candidate boxes is the IoU. When using smoothL1 as the
regression loss function, multiple different detection boxes may have the same loss of the
same magnitude, but their IoU values can vary significantly. This can result in deviate or
overlap of the predicted boxes, leading to missed detections and false positives. In order to
solve this problem, this experiment uses CIoU [42] instead of smoothL1 as the bounding box
regression loss function. This adjustment allows the model to filter out prediction boxes
more accurately. The process of CIoU Loss is as follows:

LIoU = 1 − IoU + R
(

B, Bgt) (10)
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where B is the prediction frame, Bgt is the true frame, and R (B, Bgt) is the penalty term for
the prediction and true frames. The CIoU penalty term is calculated using Equation (11).

RCIoU =
p2(b, bgt)

c2 + αv (11)

v =
4
p

(
arctan

wgt

hgt − arctan
w
h

)2

(12)

α =
v

(1 − IoU) + v
(13)

As shown in Figure 8, where b and bgt denote the centroids of the predicted frame (the
blue rectangular box) and real frame (the red rectangular box), p denotes the Euclidean
distance, c is the diagonal distance of the smallest rectangle (the dashed rectangular box)
covering the predicted and real frames, α denotes the equilibrium scale parameter, and v
denotes the congruence of the aspect ratio of the predicted and real frames.
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The CIoU loss function is expressed as:

LCIoU = 1 − IoU +
P2(b, bgt)

c2 + αv (14)

Compared with the use of smoothL1 as a loss function, CIoU can directly minimize
the distance between the predicted boxes and ground truth boxes. To avoid overlapping
two bounding boxes, CIoU combines with three geometric metrics: the overlap area, center
point distance, and aspect ratio consistency. This can reduce the occurrence of missed
detections or false positives, enabling the prediction boxes to regress quickly within a
limited range while maximizing the accuracy of the predicted bounding boxes. As a result,
the loss function converges effectively, further enhancing the accuracy of object detection.

3. Results and Discussion
3.1. Validation Based on Hybrid Datasets

In order to validate the experimental results that demonstrate the superior detection
performance of the SWIR band over the Vis/NIR band for early apple bruise detection, a
hybrid dataset [43] was prepared. Of the 1200 images that were captured in the training
set, the ratio of the SWIR images to Vis/NIR images was 1:1, 2:1, and 3:1, incrementally
increasing the proportion of SWIR images in the dataset. In Model 1, the ratio of the number
of dataset A to dataset B in the training set was 1:1. In Model 2, the ratio of the number
of dataset A to dataset B in the training set was 2:1. In Model 3, the ratio of the number
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of dataset A to dataset B in the training set was 3:1. This step was taken to assess the
effectiveness of the SWIR band in early apple bruise detection. The test dataset comprised
a total of 300 images, evenly divided between the two datasets, and these images remain
consistent throughout the validation process. Different detection ratios were compared
using evaluation metrics on both test datasets. The ResNet50 residual network was used
as the backbone feature extraction network for the Faster RCNN model. Transfer learning
was employed to apply the weight information obtained from pre-training on the Pascal
VOC dataset [44] to a Faster RCNN model. This transfer learning operation accelerated
the convergence speed of the model, allowing it to learn the features of the dataset more
rapidly. Bruises were not classified as large or small, only bruises, stems, and calyxes
were identified.

In Figure 9, the results of testing with the three different training dataset ratios of
the models (Model 1, Model 2, Model 3) are presented. The number above the box rep-
resents the confidence level of detecting it as a category, a value between 0 and 1. An
increase in the proportion of the SWIR images in the training dataset resulted in consis-
tent detection of bruises, accurate location of the bruise, and demonstration of a gradual
increase in confidence. This demonstrates that using SWIR images for detection is feasible
and effective.
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As shown in Figure 10, the loss function is demonstrated for three models (Model 1,
Model 2, Model 3) of the training set with 200 rounds of training for the above model.

From Figure 10, it can be observed that the numerical values of the loss curves for all
three scenarios stabilized with approximately 45 iterations after applying transfer learning.
However, the loss curve for Model 3 exhibits both lower values and greater stability. This
indirectly suggests that when it comes to detecting apple bruises, a higher proportion
of SWIR images leads to more pronounced bruise detection and improved recognition
performance.

As shown in Table 2, the evaluation metrics for the training models are presented and
the test dataset remained consistent throughout. The AP reported in the table represents
the accuracy for the bruise alone, excluding the stem and calyx.
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Table 2. Results of bruise detection.

Model Test Set Type APbruise F1

Model 1
dataset A 1 77.89% 0.714
dataset B 2 68.38% 0.667

dataset A + B 72.18% 0.689

Model 2
dataset A 81.04% 0.750
dataset B 75.34% 0.702

dataset A + B 78.28% 0.729

Model 3
dataset A 86.75% 0.786
dataset B 80.63% 0.741

dataset A + B 83.28% 0.762
1 dataset A: SWIR images; 2 dataset B: Vis/NIR images.

From Table 2, it can be observed that as the proportion of the SWIR images (dataset A)
in the training dataset increases, both indicators of the three test sets for bruise detection
(AP and F1 score) gradually rise. This suggests that the role of the SWIR images in the
training dataset becomes more significant as the proportion increases. Simultaneously,
for both types of test datasets (dataset A and dataset B), although both indicators show
an increase for the Vis/NIR images, the growth is relatively modest. This indicates that
Vis/NIR images are less effective than the SWIR segment for bruise detection. In the
SWIR test dataset, the AP value for bruise detection increased from 77.89% to 86.75%,
improving about 8.86%. Similarly, the F1 score increased from 0.714 to 0.786, improving by
0.072. For dataset A + B in test, both the AP and F1 metrics are steadily increasing as the
proportion of SWIR images in the training set increases, but the test results are consistently
better than Vis/NIR test set and the metrics of the SWIR test set. Based on the above
experimental results, the SWIR bands proved to be superior to the Vis/NIR spectrum in
apple bruise detection.

3.2. Comparison of Model Results

After the validation experiment, the dataset for the next experiment exclusively com-
prises SWIR images. To enhance the precision of bruise detection in SWIR images, a SWIR
dataset was employed. This expanded dataset, in addition to the SWIR images obtained in
the preliminary experiments, adequately meets the dataset requirements stipulated by the
target detection model. The ratio of the training set, test set, and validation set was 8:1:1.

To improve the accuracy of object detection, this study implemented an enhanced
model structure. Specifically, the FPN structure was integrated into the ResNet50 backbone
network. This enhanced bruise (small object) detection efficiency. Additionally, the NAM
was introduced to eliminate irrelevant information related to the targets, capture finer
details, and improve the efficiency of calyx and stem detection. The loss function was
modified to CIoU to improve the accuracy of the predicted bounding boxes of the model.
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Furthermore, ROI pooling was replaced with ROI Align for feature mapping to avoid errors
caused by quantization and improve detection speed. Additionally, the original anchors,
initially sized at 128 × 128, 256 × 256, and 512 × 512 pixels, were expanded by 32 × 32
and 64 × 64 pixels. The number of anchors increased from 9 to 15. This enlargement of the
receptive field range aimed to enhance the detection range for small targets.

To further illustrate the superiority of the improved Faster RCNN network, we com-
pared our results with similar research. Using the pruned YOLOv4 model (YOLOv4P) by
Fan et al. [26], and the YOLOv5s model by Yuan et al. [27], and under consistent experimen-
tal conditions, the performance of these networks was compared with that of the network
in this experiment using our dataset.

Figure 11 presents the detection results of the four models, based on the SWIR dataset,
for apple bruises near the calyxes and stems. The number above each box represents the
confidence level of detecting the bruise as a category with a value between 0 and 1, Different
categories use different color systems. Each model can accurately determine the location of
bruises, stems, and calyxes, but the improved model has the best detection confidence level
for each category.
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Figure 11. The results of different models using SWIR images. (a) Small bruise test result; (b) Medium
bruise test result; (c) Large bruise test result; (d) Bruise and calyx test result; (e) Bruise and stem test
result. The color of confidence level for sbruise, mbruise, lbruise, calyx, and stem are blue, purple,
yellow, green, and pink, respectively.

The following is a comparison of the results between the improved, Faster RCNN,
YOLOv4P, and YOLOv5s models, all trained for 150 epochs.

From Figure 12, it was found that as the number of iterations gradually increased, the
improved Faster RCNN model gradually converged, and the loss value became smaller
and smaller. When the model was iterated 40 times, the loss value was basically stable,
dropping to near 0, and the network basically converged. Compared with the original
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Faster RCNN, YOLOv4P, and YOLOv5s models, the improved model is faster and more
accurate, which proves the effectiveness of the model.
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The performance comparison of different object detection models is shown in Table 3.
The results show that the improved Faster RCNN model outperforms the other three
models, achieving a mAP of 97.4% and an F1 score of 0.870. When detecting large-area
bruises, the improved model achieved the highest AP value of 97.6%. YOLOv5s and
YOLOv4P are relatively better at large bruise detection, but their AP values are not as good
as that of the improved Faster RCNN. The improved Faster RCNN performed relatively
weakly in the detection of medium-area defects, and its AP value in this category was
lower than that of the other categories. All the models achieved better performance in
detecting small bruises, but the improved Faster RCNN was the best with an AP value of
96.4%. In the tasks of stem and calyx detection, the original Faster RCNN performed stably,
but was slightly inferior to the improved Faster RCNN. YOLOv5s performed better in
calyx detection, not as good as the improved Faster RCNN, but better than YOLOv4P and
the original Faster RCNN. The comparison results indicated that the proposed improved
Faster RCNN model performs best in the object detection tasks of apple bruises, stems,
and calyxes.

Table 3. Comparison of performance of different detection algorithms.

Network
APbruise APcalyx APstem mAP F1

Small Medium Large

Faster RCNN [36] 90.6% 88.5% 91.2% 93.2% 93.1% 91.3% 0.833
YOLOv4P [26] 88.7% 86.3% 86.4% 90.9% 89.9% 88.4% 0.824
YOLOv5s [27] 91.5% 89.2% 91.8% 94.5% 94.5% 92.3% 0.849

The improved Faster RCNN 96.4% 93.4% 97.6% 99.9% 99.6% 97.4% 0.870

By repeatedly (1000 times) testing the inference time of the test set of SWIR images,
the improved Faster RCNN model took only about 60 ms to detect a single image, which is
in line with real-time detection [45].

While keeping the experimental condition consistent, this study trained the following
Faster RCNN models with ResNet50 as the backbone network. Model I: the Faster RCNN
model; Model II: the FPN structure of the Faster RCNN model; Model III: the NAM of the
Faster RCNN model; Model IV: the CIoU Loss of the Faster RCNN model; Model V: the FPN
structure and the NAM of the Faster RCNN model; Model VI: the NAM and the CIoU Loss
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of the Faster RCNN model; Model VII: the FPN structure and the CIoU Loss of the Faster
RCNN model; Model VIII: the FPN structure, the NAM and the CIoU Loss of the Faster
RCNN model. To highlight the impact of each architecture on performance improvement,
various types of Faster RCNN models were evaluated by performance metrics. The results
are presented in Table 4.

Table 4. Comparison of performance of different Faster RCNN models.

Model
APbruise APcalyx APstem mAP F1

Small Medium Large

Model I 90.6% 88.5% 91.2% 93.2% 93.1% 91.3% 0.833
Model II 94.2% 90.9% 94.8% 97.1% 96.9% 94.8% 0.856
Model III 92.8% 90.0% 93.2% 96.2% 95.8% 93.6% 0.851
Model IV 91.4% 89.6% 92.5% 94.4% 94.2% 92.4% 0.843
Model V 95.8% 92.6% 97.1% 99.5% 99.4% 96.9% 0.865
Model VI 93.7% 91.4% 95.6% 97.9% 97.2% 95.1% 0.852
Model VII 94.9% 91.8% 96.5% 98.2% 97.9% 95.9% 0.859
Model VIII 96.4% 93.4% 97.6% 99.9% 99.6% 97.4% 0.870

According to the evaluation metrics listed in Table 4, each improved Faster RCNN
model performed better than the original network. Specifically, adding the FPN, NAM,
and CIoU loss individually into the Faster RCNN network results in significant improve-
ments in various class AP values and F1 scores. The FPN structure enhanced the detection
performance for objects of different sizes by fusing features from different scales, leading
to an increase of 3.5% in mAP and 0.023 in F1 score. The addition of attention mecha-
nisms improved mAP by 2.3%, indicating a heightened focus on object features, especially
improvement in the AP values for calyxes and stems.

Furthermore, the CIoU loss offers a more comprehensive and robust IoU calculation to
enhance the accuracy of each object. When combining FPN, NAM, and CIoU loss in the
Faster RCNN network simultaneously, the model achieved an increase of 6.1% in mAP
and 0.037 in F1 score. These results show that introducing FPN, adding the NAM, and
replacing the CIoU loss function can significantly improve the ability of the Faster RCNN
model to detect apple bruises of different sizes, calyxes, and stems.

4. Conclusions

Deep learning methods have provided new insights into the early detection of bruises
on apples. This study successfully investigated the feasibility of early detection of bruises
on apples using a short-wave infrared camera and the deep learning object detection
model—Faster RCNN. An effective imaging system was established using both short-wave
infrared cameras (950–1700 nm) and visible near-infrared cameras (300–1100 nm) to capture
images of early apple bruises in two spectral bands. The model was used with a hybrid
dataset approach to confirm that bruise detection is better in the SWIR bands than in the
Vis/NIR bands. To improve the accuracy of bruise detection, the SWIR dataset was used to
build object detection models using the Faster RCNN network, YOLOv4P, YOLOv5s, and
improved models. Ablation experiments were used to demonstrate the effectiveness of the
improved model components. The results showed that the improved model had the best
performance in detecting bruises. It achieved a mAP of 97.4% and an F1 score of 0.87 for
detection of early apple bruises, stems, and calyxes. Experimental results demonstrated that
the improved model enhanced the accuracy of early apple bruise detection and exhibited
good detection precision for stems and calyxes. The results of this study can be applied to
the sorting of early bruised apples on factory assembly lines to help terminals provide the
exact location of bruises for the next step in the processing of bruised areas of apples.

The proposed method can help end-users, without specialized knowledge, to build an
effective inspection network in expectation of high-precision of detection of early bruises
in apples. Our future research focuses on the discrimination of apple bruises (time of
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damage) using spectral information of images and deep learning methods to enrich the
non-destructive inspection of fruits and vegetables.
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