Assessment of Remediation of Municipal Wastewater Using Activated Carbon Produced from Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Experimental Characterization
2.2. The Sludge-Based Activated Carbon Preparation
2.3. The Preparation of the Stock Solution
2.4. Batch Adsorption Study
2.5. Characterizations
2.5.1. Thermogravimetric Analyses
2.5.2. Scanning Electron Microscopy (SEM)
2.5.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.4. Energy Dispersion X-ray Fluorescence Spectrometer (ED-XRF)
2.5.5. BET: Pore Size Distribution and Specific Surface Area
2.5.6. UV Visual Spectrophotometer
3. Results
3.1. Characterization of Precursor, CGAC & SAC
3.1.1. The Textural Properties
3.1.2. SEM: Morphology Analysis
3.1.3. TGA: Thermogravimetric Analysis
3.1.4. FT-IR Analysis
3.1.5. ED-XRF Analysis
3.2. Material Performance: Comparison
Comparison of SAC against CGAC and Raw Sludge
3.3. SAC Performance: Effect of the Operation Conditions
3.3.1. Effect of the Initial pH
3.3.2. Effect of SAC Dosage
3.3.3. Effect of Initial Concentration on Adsorption Equilibrium
3.3.4. Adsorption Isotherm: Effect of Temperature
3.3.5. Langmuir Isotherm
3.3.6. Freundlich Isotherm
4. Conclusions
- The physical activation and the use of ZnCl2 as the chemical activation were successful in increasing the surface area and enhancement of the porous structure as indicated by the SEM-EDS, TGA, FTIR and EDX results.
- The test performance carried out revealed that batch adsorption studies reported that the highest Cr(VI) removal efficiency was achieved with the SAC by 99.99%, whereas 60.50% and 40.71% removal efficiency was achieved from CGAC and raw sludge, respectively.
- The study on the effect of pH revealed that the competition between H+ and metal ions at low pH values are the main leading factors that affect the adsorption characteristics of SAC.
- The maximum or equilibrium removal (99.99%) of Cr(VI) and Cd(II) was achieved by 0.8 and 1.4 g SAC dosage, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachmann, N. Sustainable Biogas Production in Municipal Wastewater Treatment Plants; IEA Bioenergy: Paris, France, 2015. [Google Scholar]
- Han, M.; Zhang, J.; Chu, W.; Zhou, G.; Chen, J. Surface-modified sewage sludge-derived carbonaceous catalyst as a persulfate activator for phenol degradation. Int. J. Environ. Res. Public Health 2020, 17, 3286. [Google Scholar] [CrossRef] [PubMed]
- Gong, X. Modification and Utilization of Sewage Sludge-Based Activated Carbon as Metal Adsorbents; The University of British Columbia: Vancouver, BC, Canada, 2013; Available online: http://hdl.handle.net/2429/44964 (accessed on 3 August 2021).
- Yao, S.; Wang, M.; Liu, J.; Tang, S.; Chen, H.; Guo, T.; Yang, G.; Chen, Y. Removal of phosphate from aqueous solution by sewage sludge-based activated carbon loaded with pyrolusite. J. Water Reuse Desalin. 2018, 8, 192–201. [Google Scholar] [CrossRef]
- Masindi, V.; Tekere, M. Innovative Routes for Acid Mine Drainage (AMD) Valorization. In Recovery of Byproducts from Acid Mine Drainage Treatment; Wiley: Hoboken, NJ, USA, 2020; pp. 189–218. [Google Scholar] [CrossRef]
- Masindi, V.; Chatzisymeon, E.; Kortidis, I.; Foteinis, S. Assessing the sustainability of acid mine drainage (AMD) treatment in South Africa. Sci. Total Environ. 2018, 635, 793–802. [Google Scholar] [CrossRef]
- Dhar, B.R.; Elbeshbishy, E.; Hafez, H.; Nakhla, G.; Ray, M.B. Comparison between different pretreatment techniques for enhancement of the anaerobic digestibility of different waste streams. In Proceedings of the 87th Annual Water Environment Federation Technical Exhibition and Conference, WEFTEC, New Orleans, LA, USA, 27 September–1 October 2014; Volume 6, pp. 3034–3043. [Google Scholar] [CrossRef]
- Hansen, K. Overview of Wastewater Treatment in South Africa: AWARD Technical Report Series; Association for Water and Rural Development: Hoedspruit, South Africa, 2015. [Google Scholar]
- Turi-Institute. Hexavalent Chromium: Summary of Health and Environmental Effects; Turi-Institute: Lowell, MA, USA, 2013; Available online: www.turi.org (accessed on 25 April 2021).
- Kour, J.; Homagai, P.L.; Cagnin, M.; Masi, A.; Pokhrel, M.R.; Ghimire, K.N. Adsorption of Cd(II), Cu (II), and Zn (II) from Aqueous Solution onto Nitrogen-Functionalized Desmostachya bipinnata. J. Chem. 2013, 2013, 649142. [Google Scholar] [CrossRef]
- Wang, P.; Ding, F.; Huang, Z.; Fu, Z.; Zhao, P.; Men, S. Adsorption behavior and mechanism of Cd(II) by modified coal-based humin. Environ. Technol. Innov. 2021, 23, 101699. [Google Scholar] [CrossRef]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Ragheb, S. Removal of Heavy Metals from Wastewater Using Sewage Sludge Ash (SSA) as Adsorbent. 1st Int. Conf. Better Qual. Life 2017, 1–11. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Shawabkah, R. Production and characterization of granular activated carbon from activated sludge. Braz. J. Chem. Eng. 2009, 26, 127–136. [Google Scholar] [CrossRef]
- Demirbas, E.; Kobya, M.; Senturk, E.; Ozkan, T. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA 2004, 30, 533–539. [Google Scholar] [CrossRef]
- Nkutha, C.S.; Naidoo, E.B.; Shooto, N.D. Adsorptive studies of toxic metal ions of Cr(VI) and Pb(II) from synthetic wastewater by pristine and calcined coral limestones. S. Afr. J. Chem. Eng. 2021, 36, 43–57. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Sillanpää, M.; Alimuddin; Khan, M.A.; Mubarak, N.M.; Tan, Y.H. Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents. Sci. Rep. 2023, 13, 6859. [Google Scholar] [CrossRef] [PubMed]
- Abbou, B.; Lebkiri, I.; Ouaddari, H.; Kadiri, L.; Ouass, A.; Habsaoui, A.; Lebkiri, A.; Rifi, E.H. Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: A kinetic and thermodynamic study. Turk. J. Chem. 2021, 45, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, W.; Zheng, W.; Chen, S.; Zhao, J. Preparation of N-doped carbon nanosheets from sewage sludge for adsorption studies of cr(VI) from aqueous solution. Nanomaterials 2019, 9, 265. [Google Scholar] [CrossRef]
- Vivek Narayanan, N.; Ganesan, M. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. J. Hazard. Mater. 2009, 161, 575–580. [Google Scholar] [CrossRef]
- Ferrasse, J.; Akkache, S.; Roche, N. Thermochemical Conversion of Sewage Sludge by TGA-FTIR Analysis: Influence of Mineral Matter Added. Dry. Technol. Int. J. 2015, 33, 1318–1326. [Google Scholar] [CrossRef]
- Ait Ahsaine, H.; Zbair, M.; El Haouti, R. Mesoporous treated sewage sludge as outstanding low-cost adsorbent for cadmium removal. Desalin. Water Treat. 2017, 85, 330–338. [Google Scholar] [CrossRef]
- Betsholtz, A.; Jacobsson, S.; Haghighatafshar, S. Sewage Sludge-Based Activated Carbon: Production and Potential in Wastewater and Stormwater Treatment; Alexander: Meridian, ID, USA, 2018. [Google Scholar]
- Charlou, C.; Milhé, M.; Sauceau, M.; Arlabosse, P. A new methodology for measurement of sludge residence time distribution in a paddle dryer using X-ray fluorescence analysis. Water Res. 2015, 69, 1–8. [Google Scholar] [CrossRef]
- Bousba, S.; Meniai, A.H. Adsorption of 2-chlorophenol onto sewage sludge-based adsorbent: Equilibrium and kinetic study. Chem. Eng. Trans. 2013, 35, 859–864. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Dimitrios, K.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Bian, Y.; Yuan, Q.; Zhu, G.; Ren, B.; Hursthouse, A.; Zhang, P. Recycling of waste sludge: Preparation and application of sludge-based activated carbon. Int. J. Polym. Sci. 2018, 2018, 8320609. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, H.; He, Y. Application and mechanism of sludge-based activated carbon for phenol and cyanide removal from bio-treated effluent of coking wastewater. Processes 2020, 8, 82. [Google Scholar] [CrossRef]
- Saab, R.; Polychronopoulou, K.; Charisiou, N.; Goula, M.A.; Schiffer, A. Graphene Nanoplatelets-Based Ni-Zeolite Composite Catalysts for Heptane Hydrocracking. C—J. Carbon Res. 2020, 6, 31. [Google Scholar] [CrossRef]
- Mehdi, R.; Khoja, A.H.; Naqvi, S.R.; Gao, N.; Amin, N.A.S. A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts 2022, 12, 798. [Google Scholar] [CrossRef]
- Firdaus, R.M.; Desforges, A.; Rahman Mohamed, A.; Vigolo, B. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. J. Clean. Prod. 2021, 328, 129553. [Google Scholar] [CrossRef]
- Jung, K.W.; Lee, S.Y.; Lee, Y.J. Optimized preparation of activated carbon from municipal sewage sludge and application to the adsorption of azo dye from aqueous solutions. Environ. Prog. Sustain. Energy 2019, 38, S267–S276. [Google Scholar] [CrossRef]
- Faisal, S.; Hafeez, Y.F.; Zafar, Y.; Majeed, S.; Leng, X. A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring. Appl. Sci. 2018, 9, 59. [Google Scholar] [CrossRef]
- De Mes, T.Z.D.; Stams, A.J.M.; Reith, J.H.; Zeeman, G. Methane Production by Anaerobic Digestion of Wastewater and Solid Waste. In Bio-Methane & Bio-Hydrogen: Status and Perspectives of Biological Methane and Hydrogen Production; Dutch Biological Hydrogen Foundation: Petten, The Netherlands, 2003; Volume 286, pp. 58–102. ISBN 9090171657. [Google Scholar] [CrossRef]
- Bodîrlău, R.; Teacă, C.A.; Iuliana, S. Preparation and Characterization of Composites Comprising Modified Hardwood and Wood Polymers/Poly(Vinyl Chloride). BioResources 2009, 4, 1285–1304. [Google Scholar] [CrossRef]
- Netzsch. Thermogravimetric Analysis—TGA Method, Technique and Applications Analyzing; Tarsus: Irvine, CA, USA, 2015. [Google Scholar]
- Bensharada, M.; Telford, R.; Stern, B.; Gaffney, V. Loss on ignition vs. thermogravimetric analysis: A comparative study to determine organic matter and carbonate content in sediments. J. Paleolimnol. 2022, 67, 191–197. [Google Scholar] [CrossRef]
- González, J.; Sánchez, M.; Gómez, X. Enhancing Anaerobic Digestion: The Effect of Carbon Conductive Materials. C 2018, 4, 59. [Google Scholar] [CrossRef]
- De Filippis, P.; Di Palma, L.; Petrucci, E.; Scarsella, M.; Verdone, N. Production and characterization of adsorbent materials from sewage sludge by pyrolysis. Chem. Eng. Trans. 2013, 32, 205–210. [Google Scholar] [CrossRef]
- Pan, W.; Xu, W.; Li, S. Fundamentals of TGA and SDT. Therm. Anal. Fundam. 2005, 1–7. Available online: http://dialnet.unirioja.es/servlet/articulo?codigo=1986690 (accessed on 25 April 2021).
- Kristl, M.; Muršec, M.; Šuštar, V.; Kristl, J. Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils. J. Therm. Anal. Calorim. 2016, 123, 2139–2147. [Google Scholar] [CrossRef]
- Tocharoen, S.; Atong, D.; Sricharoenchaikul, V. Utilization of Sewage Sludge from Beverage Industry as Dye Adsorption Materials. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Xiamen, China, 19–21 November 2019; Volume 219. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 2020, 18, 3273–3294. [Google Scholar] [CrossRef]
- Kaur, S.; Rani, S.; Mahajan, K.R. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. J. Chem. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Aoife, J.; Ijaz, U.Z.; Nzeteu, C.; Aoife, V.; Shirran, S.L.; Botting, C.H.; Quince, C.; O’Flaherty, V.; Abram, F. Linking microbial community structure and function during the acidified anaerobic digestion of grass. Front. Microbiol. 2018, 9, 540. [Google Scholar] [CrossRef]
- Deng, L.Y.; Xu, G.R.; Li, G.B. Surface properties and adsorption characteristics to methylene blue and iodine of adsorbents from sludge. Water Sci. Technol. 2010, 62, 1705–1712. [Google Scholar] [CrossRef]
- Mu, B.; Wang, A. Adsorption of dyes onto palygorskite and its composites: A review. J. Environ. Chem. Eng. 2016, 4, 1274–1294. [Google Scholar] [CrossRef]
- Masindi, V. Integrated treatment of acid mine drainage using cryptocrystalline magnesite and barium chloride. Water Pract. Technol. 2017, 12, 727–736. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Rio, S.; Faur-Brasquet, C.; Le Coq, L.; Le Cloirec, P. Structure characterization and adsorption properties of pyrolyzed sewage sludge. Environ. Sci. Technol. 2005, 39, 4249–4257. [Google Scholar] [CrossRef]
- Zhao, J.J.; Shen, X.J.; Domene, X.; Alcañiz, J.M.; Liao, X.; Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef]
- Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S.N.A. Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. Bioinorg. Chem. Appl. 2018, 2018, 3463724. [Google Scholar] [CrossRef]
- Salihi, I.U.; Kutty, S.R.M.; Ismail, H.H.M. Copper Metal Removal using Sludge Activated Carbon Derived from Wastewater Treatment Sludge. MATEC Web Conf. 2018, 203, 03009. [Google Scholar] [CrossRef]
- Setshedi, K.Z.; Bhaumik, M.; Songwane, S.; Onyango, M.S.; Maity, A. Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal. Chem. Eng. J. 2013, 222, 186–197. [Google Scholar] [CrossRef]
- Al-Asheh, S.; Bagheri, M.; Aidan, A. Removal of heavy metals from industrial wastewater using microbial fuel cell. Eng. Life Sci. 2022, 22, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Kim, N.; Park, M.; Lee, S.; Yeon, S.; Park, D. Evaluation of metal removal performance of rod-type biosorbent prepared from sewage-sludge. Environ. Eng. Res. 2019, 25, 700–706. [Google Scholar] [CrossRef]
- Boumediene, M.; Benaïssa, H.; George, B.; Molina, S.; Merlin, A. Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study. J. Mater. Environ. Sci. 2018, 9, 1700–1711. [Google Scholar]
- Hu, S.H.; Hu, S.C. Application of magnetically modified sewage sludge ash (SSA) in ionic dye adsorption. J. Air Waste Manag. Assoc. 2014, 64, 141–149. [Google Scholar] [CrossRef]
- Rashed, M.N. Heavy Metals Removal from Wastewater by Adsorption on Modified Physically Activated Sewage Sludge. Arch. Org. Inorg. Chem. Sci. 2018, 1, 18–25. [Google Scholar] [CrossRef]
- Okeola, O.F.; Odebunmi, E.O.; Ameen, O.M. Comparison of sorption capacity and surface area of activated carbon prepared from jatropha curcas fruit pericarp and seed coat. Bull. Chem. Soc. Ethiop. 2012, 26, 171–180. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | VT (cm3/g) | VMIC (cm3/g) | VMES (cm3/g) | DP (nm) |
---|---|---|---|---|---|
Raw sludge | 53.389 | 0.148 | 0.019 | 0.010 | 7.627 |
SAC | 481.370 | 0.337 | 0.341 | 0.21 | 4.814 |
CGAC | 986.601 | 0.513 | 0.155 | 0.120 | 16.1 |
Solution T (K) | Equation | R2 | 1/Qo | Qo | 1/QoKL | KL |
---|---|---|---|---|---|---|
298 | y = 0.054x − 0.0183 | 0.985 | 0.054 | 18.519 | 0.018 | 0.339 |
303 | y = 0.081x − 0.0015 | 0.989 | 0.081 | 12.346 | 0.002 | 0.019 |
308 | y = 0.0004x − 0.0193 | 0.987 | 0.0004 | 2500.00 | 0.019 | 48.250 |
Solution T (K) | Equation | R2 | 1/n | logKF | KF |
---|---|---|---|---|---|
298 | y = −0.0506x + 1.4786 | 0.982 | 0.051 | 1.479 | 30.102 |
303 | y = −0.008x + 2.1885 | 0.717 | 0.008 | 2.189 | 154.348 |
308 | y = −0.0112x + 2.4865 | 0.821 | 0.011 | 2.487 | 306.549 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudzanani, K.; Iyuke, S.; Daramola, M.O. Assessment of Remediation of Municipal Wastewater Using Activated Carbon Produced from Sewage Sludge. Fermentation 2023, 9, 769. https://doi.org/10.3390/fermentation9080769
Mudzanani K, Iyuke S, Daramola MO. Assessment of Remediation of Municipal Wastewater Using Activated Carbon Produced from Sewage Sludge. Fermentation. 2023; 9(8):769. https://doi.org/10.3390/fermentation9080769
Chicago/Turabian StyleMudzanani, Khuthadzo, Sunny Iyuke, and Michael O. Daramola. 2023. "Assessment of Remediation of Municipal Wastewater Using Activated Carbon Produced from Sewage Sludge" Fermentation 9, no. 8: 769. https://doi.org/10.3390/fermentation9080769
APA StyleMudzanani, K., Iyuke, S., & Daramola, M. O. (2023). Assessment of Remediation of Municipal Wastewater Using Activated Carbon Produced from Sewage Sludge. Fermentation, 9(8), 769. https://doi.org/10.3390/fermentation9080769