The Effect of Dietary Fermented Grape Pomace Supplementation on In Vitro Total Gas and Methane Production, Digestibility, and Rumen Fermentation
Abstract
:1. Introduction
2. Material and Methods
2.1. Fermented Grape Pomace
2.2. Experimental TMRs for In Vitro Treatment
2.3. Chemical Analysis of Fermented Grape Pomace and TMRs
2.4. Detection of In Vitro Total Gas and Methane Production
2.5. Detection of Metabolic Energy, Net Energy Lactation, and Organic Matter Digestion
2.6. Determination of In Vitro Fermentation Fluid Variables
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Fermented Grape Pomace
3.2. Chemical Composition of TMRs
3.3. In Vitro Ruminal Fermentation Values
3.4. In Vitro Fermentation Fluid Variables
4. Discussion
4.1. The Chemical Composition of Fermented Grape Pomace
4.2. In Vitro Ruminal Fermentation Values
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eskicioglu, V.; Kamiloglu, S.; Nilufer-Erdil, D. Antioxidant dietary fibres: Potential functional food ingredients from plant processing by-products. Czech J. Food Sci. 2015, 3, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Prozil, S.O.; Costa, E.V.; Evtuguin, D.V.; Cruz-Lopes, L.P.; Domingues, M.R.M. Structural characterization of polysaccharides isolated from grape stems of Vitis vinifera L. Carbohydr. Res. 2012, 356, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Prozil, S.O.; Evtuguin, D.V.; Cruz-Lopes, L.P. Chemical composition of grape stems of Vitis vinifera L. from red grape pomaces. Ind. Crops Prod. 2012, 35, 178–184. [Google Scholar] [CrossRef]
- Ageyeva, N.M.; Tikhonova, A.N.; Burtsev, B.V.; Biryukova, S.A.; Globa, E.V. Grape pomace treatment methods and their effects on storage. Foods Raw Mater. 2021, 9, 215–223. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Fiol, N.; Olivella, M.A.; Gominho, J.; Villaescusa, I.; Pereira, H. Chemical characterization of different granulometric fractions of grape stems waste. Ind. Crops Prod. 2013, 50, 494–500. [Google Scholar] [CrossRef]
- Erinle, T.J.; Adewole, D.I. Fruit pomaces-their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. Anim. Nutr. 2022, 9, 357–377. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of grape pomace: An approach that is increasingly reaching its maturity–A review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Jin, Q.; O’Hair, J.; Stewart, A.C.; O’Keefe, S.F.; Neilson, A.P.; Kim, Y.T.; McGuire, M.; Lee, A.; Wilder, G.; Huang, H. Compositional characterization of different industrial white and red grape pomaces in Virginia and the potential valorization of the major components. Foods 2019, 8, 667. [Google Scholar] [CrossRef] [Green Version]
- Pedras, B.M.; Regalin, G.; Sá-Nogueira, I.; Simões, P.; Pavia, A.; Barreiros, S. Fractionation of red wine grape pomace by subcritical water extraction/hydrolysis. J. Supercrit. Fluids 2020, 160, 104793. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; Morais, S.M.D.; Lima, A.D.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Goñi, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Kara, K.; Güçlü, B.K.; Baytok, E.; Şentürk, M. Effects of grape pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. J. Appl. Anim. Res. 2016, 44, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Bennato, F.; Di Luca, A.; Martino, C.; Ianni, A.; Marone, E.; Grotta, L.; Ramazzotti, S.; Cichelli, A.; Martino, G. Influence of grape pomace intake on nutritional value, lipid oxidation and volatile profile of poultry meat. Foods 2020, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- Arend, F.A.; Murdoch, G.K.; Doumit, M.E.; Chibisa, G.E. Inclusion of grape pomace in finishing cattle diets: Carcass traits, meat quality and fatty acid composition. Animals 2022, 12, 2597. [Google Scholar] [CrossRef] [PubMed]
- Ianno, A.; Martino, G. Dietary grape pomace supplementation in dairy cows: Effect on nutritional quality of milk and its derived dairy products. Foods 2020, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Kafantaris, I.; Kotsampasi, B.; Christodoulou, V.; Kokka, E.; Kouka, P.; Terzopoulou, Z.; Gerasopoulos, K.; Stagos, D.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves antioxidant capacity and faecal microflora of lambs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 108–121. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Makkar, H.P.S. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed Sci. Technol. 2005, 123, 291–302. [Google Scholar] [CrossRef]
- Kara, K. Effect of dietary fibre and condensed tannins concentration from various fibrous feedstuffs on in vitro gas production kinetics with rabbit faecal inoculum. J. Anim. Feed Sci. 2016, 25, 266–272. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Wang, X.; Wang, M.; Wu, F. An affective GC method for the determination of the fatty acid composition in silkworm pupae oil using a two-step methylation process. J. Serb. Chem. Soc. 2015, 80, 9–20. [Google Scholar] [CrossRef]
- Kara, K. Milk urea nitrogen and milk fatty acid compositions in dairy cows with subacute ruminal acidosis. Vet. Med. 2020, 65, 336–345. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Kara, K.; Güçlü, B.K.; Baytok, E. Comparison of nutrient composition and anti-methanogenic properties of different Rosaceae species. J. Anim. Feed Sci. 2015, 24, 308–314. [Google Scholar] [CrossRef]
- Menke, H.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Ersahince, A.C.; Kara, K. Nutrient composition and in vitro digestion parameters of Jerusalem artichoke (Helianthus tuberosus L.) herbage at different maturity stages in horse and ruminant. J. Anim. Feed Sci. 2017, 26, 213–225. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J. Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem. 2009, 114, 1386–1390. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Costa, M.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Use of grape by-products to enhance meat quality and nutritional value in monogastrics. Foods 2022, 11, 2754. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Dumitra Panaite, T.; Dragotoiu, D.; Ropota, M.; Bobe, E.; Olteanu, M. Feeding quality of the meat from broilers fed with dietary food industry by-products (flaxseed, rapeseeds and buckthorn meal, grape pomace). Sci. Pap. Ser. D Anim. Sci. 2017, 60, 123–130. [Google Scholar]
- Oliveira, B.E.; Contini, L.; Garcia, V.A.S.G.; Cilli, L.P.L.; Chagas, E.G.L.; Andreo, M.A.; Vanin, F.M.; Carvalho, A.; Sinnecker, P.; Venturini, A.C.; et al. Valorization of grape by-products as functional and nutritional ingredients for healthy pasta development. J. Food. Process Preserv. 2022, 46, e17245. [Google Scholar] [CrossRef]
- Beveridge, T.H.J.; Girard, B.; Kopp, T.; Drover, J.C.G. Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: Varietal effects. J. Agric. Food Chem. 2005, 53, 1799–1804. [Google Scholar] [CrossRef]
- Rubio, M.; Alvarez-Ortí, M.; Fernández, E.; Pardo, J.E. Characterization of oil obtained from grape seeds collected during berry development. J. Agric. Food Chem. 2009, 57, 2812–2815. [Google Scholar] [CrossRef]
- Crews, C.; Hough, P.; Godward, J.; Brereton, P.; Lees, M.; Guiet, S.; Winkelmann, W. Quantitation of the main constituents of some authentic grape-seed oils of different origin. J. Agric. Food Chem. 2006, 54, 6261–6265. [Google Scholar] [CrossRef] [PubMed]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of grape seed oil from wines with protected denomination of origin (PDO) from Spain. Grasas Y Aceites 2015, 66, e085. [Google Scholar]
- Sabir, A.; Unver, A.; Kara, Z. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.). J. Sci. Food Agric. 2012, 92, 1982–1987. [Google Scholar] [CrossRef]
- Shinagawa, F.B.; De Santana, F.C.; Torres, L.R.O.; Mancini-Filho, J. Grape seed oil: A potential functional food? Food Sci. Technol. 2015, 35, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Tangolar, S.G.; Ozoğul, Y.; Tangolar, S.; Torun, A. Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. Int. J. Food Sci. Nutr. 2009, 60, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Global Rumen Census Collaborators; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [Green Version]
- Betancur-Murillo, C.L.; Aguilar-Marín, S.B.; Jovel, J. Prevotella: A key player in ruminal metabolism. Microorganisms 2023, 11, 1. [Google Scholar] [CrossRef]
- Kara, K.; Yilmaz, S.; Önel, S.E.; Özbilgin, A. Effects of plantago species herbage and silage on in vitro ruminal fermentation and microbiome. Ital. J. Anim. Sci. 2022, 21, 1569–1583. [Google Scholar] [CrossRef]
- Rabee, A.E.; Sayed Alahl, A.A.; Lamara, M.; Ishaq, S.L. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production. PLoS ONE 2022, 17, e0262304. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.K.; Zhu, W.; Pu, Y.Y.; Guan, L.; Liu, J.X. Monitoring the rumen pectinolytic bacteria Treponema saccharophilum using real-time PCR. FEMS Microbiol. Ecol. 2014, 87, 576–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Nan, X.; Zhao, Y.; Wang, Y.; Jiang, L.; Xiong, B. Ruminal degradation of rumen-protected glucose influences the ruminal microbiota and metabolites in early-lactation dairy cows. Appl. Environ. Microbiol. 2021, 87, e01908-20. [Google Scholar] [CrossRef]
- Poulsen, M.; Schwab, C.; Borg-Jensen, B. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 2013, 4, 1428. [Google Scholar] [CrossRef] [Green Version]
- Danielsson, R.; Dicksved, J.; Sun, L.; Gonda, H.; Müller, B.; Schnürer, A. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol. 2017, 8, 226. [Google Scholar] [CrossRef] [Green Version]
- Kara, K.; Ozkaya, S.; Baytok, E.; Guclu, B.K.; Aktug, E.; Erbas, S. Effect of phenological stage on nutrient composition, in vitro fermentation and gas production kinetics of Plantago lanceolata herbage. Vet. Med. 2018, 63, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Moate, P.J.; Williams, S.R.O.; Torok, V.A.; Hannah, M.C.; Ribaux, B.E.; Tavendale, M.H.; Eckard, R.J.; Jacobs, J.L.; Auldist, M.J.; Wales, W.J. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef] [Green Version]
- Foiklang, S.; Wanapat, M.; Norrapoke, T. Effect of grape pomace powder, mangosteen peel powder, and monensin on nutrient digestibility, rumen fermentation, nitrogen balance, and microbial protein synthesis in dairy steers. Asian-Australas J. Anim. Sci. 2016, 29, 1416–1423. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, A.M.; Navarro-Villa, A.; Purcell, P.J.; Boland, T.M.; O’Kiely, A.P. Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives. Anim. Prod. Sci. 2014, 54, 41–157. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Panzella, M.; Napolitano, A. Condensed tannins, a viable solution to meet the need for sustainable and effective multifunctionality in food packaging: Structure, sources, and properties. J. Agric. Food Chem. 2022, 70, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.; Jensen, B.B.; Engberg, R.M. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Anaerobe 2012, 18, 83–90. [Google Scholar] [CrossRef]
- Li, W.; Khalid, H.; Zhu, Z.; Zhang, R.; Liu, G.; Chen, C.; Thorin, E. Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl. Energy 2018, 226, 1219–1228. [Google Scholar] [CrossRef]
- Rira, M.; Marie-Magdeleine, C.; Archimède, H.; Morgavi, D.P.; Doreau, M. Effect of condensed tannins on methane emission and ruminal microbial populations. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; Oltjen, J.W., Kebreab, E., Lapierre, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; Volume 134. [Google Scholar]
- Yılmaz, K.; Kara, K. The effect of vegetable and animal oils added to different forages and concentrates on the in vitro fermentation parameters in ruminants. J. Appl. Anim. Res. 2022, 50, 548–559. [Google Scholar] [CrossRef]
- Abubakr, A.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats. PLoS ONE 2014, 9, e95713. [Google Scholar] [CrossRef]
- Griswold, K.E.; White, B.A.; Mackie, R.I. Diversity of extracellular proteolytic activities among Prevotella species from the rumen. Curr. Microbiol. 1999, 39, 187–194. [Google Scholar] [CrossRef]
TMRs Containing FGP, kg/day DM | ||||
---|---|---|---|---|
Feedstuffs | 0% | 7.5% | 15% | 22.5% |
FGP | 0.00 | 1.68 | 3.37 | 5.05 |
Corn silage | 6.20 | 4.52 | 3.00 | 2.80 |
Wheat straw | 3.59 | 3.59 | 3.33 | 2.11 |
Alfalfa hay | 3.68 | 3.68 | 3.68 | 3.50 |
Barley flake | 1.38 | 1.38 | 1.75 | 2.12 |
Wheat grain | 1.38 | 1.38 | 1.38 | 1.38 |
Corn flake | 1.38 | 1.38 | 1.38 | 1.38 |
Sunflower meal, 28% CP | 2.76 | 2.76 | 2.48 | 2.21 |
Cottonseed meal, 28% CP | 2.30 | 2.30 | 2.30 | 2.12 |
Total (kg) | 22.67 | 22.67 | 22.67 | 22.67 |
Chemical Composition | %, in DM |
---|---|
DM, % (as fed) | 36.88 |
OM | 94.60 |
CP | 10.92 |
EE | 7.01 |
aNDFom | 56.50 |
ADFom | 51.49 |
Lignin | 35.76 |
Ash | 5.60 |
NFC | 19.98 |
Cellulose | 15.75 |
Hemicellulose | 4.99 |
TCT | 0.37 |
BCT | 0.33 |
In vitro ruminal fermentation values | |
In vitro GP | 44.25 |
In vitro Methane, % | 17.96 |
In vitro Methane, mL | 8.48 |
ME | 10.61 |
NEL | 5.51 |
OMD | 57.59 |
Fatty Acids | As % in Total Fatty Acid |
---|---|
Myristic acid (C14:0) | 0.21 |
Myristoleic acid (C14:1) | 0.02 |
Pentadecanoic acid (C15:0) | 0.06 |
Palmitic acid (C16:0) | 12.39 |
Palmitoleic acid (C16:1) | 0.10 |
Heptadecanoic acid (C17:0) | 0.60 |
cis-10-Heptadecenoic acid (C17:1) | 0.06 |
Stearic acid (C18:0) | 5.80 |
Oleic acid (C18:1 w9 cis) | 17.01 |
Linoleic acid (C18:2 w6 cis) | 60.54 |
Arachidic acid (C20:0) | 0.23 |
cis-11-Eicosenoic acid (C20:1) | 0.01 |
α-Linolenic acid (C18:3 w3) | 2.22 |
Heneicosanoic acid (C21:0) | 0.02 |
cis-11,14,17-Eicosadienoic acid (C20:2) | 0.05 |
cis-8,11,14-Eicosatrienoic acid (C20:3 w6) | 0.03 |
Erucic acid (C22:1 w9) | 0.05 |
cis-11,14,17-Eicosatrienoic acid (C20:3 w3) | 0.00 |
Arachidonic acid (C20:4 w6) | 0.04 |
Trichosanoic acid (C23:0) | 0.00 |
cis-13,16-Docosadienoic acid (C22:2) | 0.10 |
Lignoceric acid (C24:0) | 0.20 |
cis-5,8,11,14,17-Eicosapentaenoic acid (C20:5 w3) | 0.04 |
Nervonic acid (C24:1) | 0.01 |
cis-4,7,10,13,16,19-Docosahexaenoic acid (C22:6 w3) | 0.08 |
Saturated fatty acid, % | 19.66 |
Unsaturated fatty acid, % | 80.33 |
MUFA | 17.24 |
PUFA | 63.09 |
ω-3 | 2.34 |
ω-6 | 60.75 |
ω-9 | 17.07 |
ω-3/ω-6 | 0.04 |
MCFA | 0.09 |
LCFA | 99.37 |
VLCFA | 0.45 |
%, DM | ||||
---|---|---|---|---|
Chemical Compositions, % in DM | 0% FGP | 7.5% FGP | 15% FGP | 22.5% FGP |
Starch | 20.83 | 21.19 | 19.37 | 17.26 |
CP | 11.22 | 11.29 | 11.50 | 12.55 |
EE | 2.27 | 2.81 | 3.12 | 3.88 |
aNDFom | 45.69 | 41.35 | 41.35 | 43.78 |
ADFom | 29.94 | 30.26 | 30.74 | 32.30 |
Lignin | 13.74 | 14.46 | 13.60 | 15.25 |
Ash | 8.95 | 8.36 | 8.08 | 7.48 |
NFC | 31.85 | 36.17 | 35.95 | 32.29 |
Starch-free NFC | 11.02 | 14.98 | 16.57 | 15.03 |
Cellulose | 16.20 | 15.80 | 17.14 | 17.05 |
Hemicellulose | 15.75 | 11.09 | 10.60 | 11.47 |
TCT | 0.12 | 0.13 | 0.19 | 0.23 |
BCT | 0.11 | 0.12 | 0.15 | 0.20 |
In Vitro Cumulative Total Gas Production, mL/0.2 g DM | |||||
---|---|---|---|---|---|
6th h | 12th h | 18th h | 24th h | ||
TMR with 0% FGP | 21.14 | 31.41 | 35.77 | 41.42 | |
TMR with 7.5% FGP | 20.84 | 30.49 | 36.17 | 40.16 | |
TMR with 15% FGP | 22.48 | 31.67 | 36.09 | 40.56 | |
TMR with 22.5% FGP | 19.40 | 28.31 | 32.47 | 40.09 | |
SD | 2.39 | 4.22 | 5.37 | 3.51 | |
SEM | 0.48 | 0.86 | 1.09 | 0.50 | |
p-value (combined) | 0.170 | 0.532 | 0.608 | 0.792 | |
p-value | L | 0.399 | 0.314 | 0.333 | 0.448 |
Q | 0.150 | 0.496 | 0.383 | 0.707 | |
C | 0.124 | 0.407 | 0.765 | 0.583 |
In Vitro Methane % | In Vitro Methane mL | ME | NEL | OMD | NH3-N | pH | ||
---|---|---|---|---|---|---|---|---|
TMR with 0% FGP | 19.87 a | 8.27 a | 8.52 | 4.89 | 62.77 | 81.99 | 6.62 | |
TMR with 7.5% FGP | 19.70 a | 7.72 ab | 8.33 | 4.73 | 61.02 | 84.62 | 6.64 | |
TMR with 15% FGP | 18.72 ab | 7.33 ab | 8.37 | 4.84 | 61.04 | 86.95 | 6.65 | |
TMR with 22.5% FGP | 18.25 b | 7.07 b | 8.34 | 4.93 | 60.50 | 82.58 | 6.63 | |
SD | 1.02 | 0.35 | 0.473 | 0.39 | 3.14 | 5.46 | 0.05 | |
SEM | 0.30 | 0.19 | 0.06 | 0.05 | 0.45 | 1.09 | 0.01 | |
p-value (combined) | 0.035 | 0.025 | 0.743 | 0.644 | 0.316 | 0.384 | 0.951 | |
p-value | L | 0.027 | 0.021 | 0.432 | 0.666 | 0.099 | 0.674 | 0.728 |
Q | 0.784 | 0.693 | 0.547 | 0.286 | 0.505 | 0.124 | 0.666 | |
C | 0.887 | 0.998 | 0.622 | 0.571 | 0.563 | 0.526 | 0.938 |
mmol/L, In Vitro Ruminal Fermentation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SCFA | BSCFA | T-SCFA | A/P | (A + B)/P | |||||||||
AA | PA | BA | VA | HEXA | HEPA | IBA | IVA | ICA | |||||
TMR with 0% FGP | 89.79 a | 16.04 a | 12.65 ab | 1.44 ab | 0.39 | 0.23 | 1.23 a | 2.23 a | 0.26 | 124.01 a | 5.77 | 6.56 | |
TMR with 7.5% FGP | 91.31 a | 17.13 a | 13.47 a | 1.52 a | 0.41 | 0.35 | 1.23 a | 2.39 a | 0.39 | 127.86 a | 5.42 | 6.21 | |
TMR with 15% FGP | 75.74 ab | 14.20 ab | 11.16 ab | 1.26 ab | 0.35 | 0.34 | 1.04 ab | 2.05 ab | 0.26 | 106.13 b | 5.38 | 6.16 | |
TMR with 22.5% FGP | 62.34 c | 12.60 b | 9.43 b | 1.18 b | 0.36 | 0.34 | 0.87 b | 1.88 b | 0.39 | 88.21 c | 5.08 | 5.83 | |
SD | 12.50 | 2.66 | 2.48 | 0.20 | 0.09 | 0.10 | 0.26 | 0.33 | 0.15 | 17.19 | 0.87 | 0.87 | |
SEM | 2.50 | 0.53 | 0.49 | 0.04 | 0.01 | 0.02 | 0.05 | 0.06 | 0.04 | 3.44 | 0.17 | 0.17 | |
p-value (combined) | <0.001 | 0.007 | 0.014 | 0.007 | 0.768 | 0.428 | 0.028 | 0.033 | 0.586 | <0.001 | 0.548 | 0.548 | |
p-value | L | <0.001 | 0.002 | 0.005 | 0.002 | 0.749 | 0.245 | 0.004 | 0.012 | 0.550 | 0.027 | 0.171 | 0.934 |
Q | <0.001 | 0.134 | 0.140 | 0.236 | 0.460 | 0.292 | 0.362 | 0.175 | 0.986 | 0.001 | 0.980 | 0.976 | |
C | 0.015 | 0.184 | 0.338 | 0.106 | 0.460 | 0.628 | 0.629 | 0.219 | 0.233 | 0.027 | 0.716 | 0.716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, K.; Öztaş, M.A. The Effect of Dietary Fermented Grape Pomace Supplementation on In Vitro Total Gas and Methane Production, Digestibility, and Rumen Fermentation. Fermentation 2023, 9, 741. https://doi.org/10.3390/fermentation9080741
Kara K, Öztaş MA. The Effect of Dietary Fermented Grape Pomace Supplementation on In Vitro Total Gas and Methane Production, Digestibility, and Rumen Fermentation. Fermentation. 2023; 9(8):741. https://doi.org/10.3390/fermentation9080741
Chicago/Turabian StyleKara, Kanber, and Mehmet Akif Öztaş. 2023. "The Effect of Dietary Fermented Grape Pomace Supplementation on In Vitro Total Gas and Methane Production, Digestibility, and Rumen Fermentation" Fermentation 9, no. 8: 741. https://doi.org/10.3390/fermentation9080741
APA StyleKara, K., & Öztaş, M. A. (2023). The Effect of Dietary Fermented Grape Pomace Supplementation on In Vitro Total Gas and Methane Production, Digestibility, and Rumen Fermentation. Fermentation, 9(8), 741. https://doi.org/10.3390/fermentation9080741