The Effect of Fermented Momordica charantia with Leuconostoc mesenteroides MKSR on Metabolic Complications Induced by High-Fat High-Cholesterol Diet in C57BL/6 Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice Experiments and Diets
2.2. Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT)
2.3. Biochemical Analysis in Serum, Liver and Feces
2.4. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of the Dietary Momordica charantia on Body and Organ Weight
3.2. Effect of Dietary MC on Oral Glucose Tolerance and ITT Results
3.3. Effect of Dietary MC on Hepatic Functional Indices
3.4. Effect of the Dietary MC on Serum Lipid Profiles and Cardiovascular Parameters
3.5. Effect of the Dietary MC on Hepatic and Fecal Lipid Profiles
3.6. Effect of the Dietary MC on Metabolic mRNA Expressions in the Liver
4. Discussion
Strain | Inducer | Treatment | Biological Markers | Ref. |
---|---|---|---|---|
Wistar Rats | STZ (30 mg/kg) after HFD for 8 weeks | MC (water extract, fermented by Lactobacillus plantarum), 10 mL/kg of BW for 4 weeks | BW, FBG, serum insulin ↓ HOMA-IR ↓ Serum TC, TG, LDL-C levels ↓ Serum HDL-C ↑ Enhance oxidative stress (SOD ↑, CAT ↑, MDA ↓) Improve gut microbiome | [75] |
C57BL/6J | HFD | MC (methanol extract), 0.2–1.0 g/kg BW for 4 weeks | BW ↓ Lpl mRNA expression in adipose tissue ↑ Blood glucose level ↓ Serum TG, TC, insulin levels ↓ Epididymal WAT Pparg mRNA expression ↑ Hepatic Ppara mRNA expression ↑ | [91] |
Sparague-Dawley | HFD | MC powder, 300 mg/kg BW for 8 weeks | Serum TG, TC ↓ HOMA-IR ↓ TNF-α, IL-6, MCP-1 IL-10 ↑ Improve gut microbiome | [66] |
Sparague-Dawley | STZ (50 mg/kg) | MC (water extract), 1.5 g/kg BW for 28 days | Serum TC, TG, LDL ↓ Serum HDL ↑ MDA ↓, NO ↑ e NOS expression ↑ | [68] |
Albino rats | STZ (45 mg/kg) | MC (diluted with distilled water), 10 mL/kg BW for 21 days | Serum glucose, TG, TC ↓ Serum HDL, insulin ↑ Serum TAOC ↑ Pancreatic GSH ↑, MDA ↓ | [67] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kobayashi, M.; Ogawa, S.; Tayama, J.; Sagara, I.; Takeoka, A.; Bernick, P.; Kawano, T.; Abiru, N.; Hayashida, M.; Shirabe, S. Intra-abdominal fat accumulation is an important predictor of metabolic syndrome in young adults. J. Med. 2020, 99, e22202. [Google Scholar] [CrossRef]
- Regufe, V.M.; Pinto, C.M.; Perez, P.M. Metabolic syndrome in type 2 diabetic patients: A review of current evidence. Porto Biomed. J. 2020, 5, e101. [Google Scholar] [CrossRef]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- Yasmin, I.; Khan, W.A.; Naz, S.; Iqbal, M.W.; Awuchi, C.G.; Egbuna, C.; Hassan, S.; Uche, C.Z. Etiology of obesity, cancer, and diabetes. Etiology of Obesity, Cancer, and Diabetes. In Dietary phytochemiclas; Egbuna, C., Hassan, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–27. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Neculae, E.; Costea, C.F.; Ciocoiu, M.; Hurjui, L.L.; Tarniceriu, C.C.; Maranduca, M.A.; Lacatusu, C.M.; Floria, M.; et al. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients 2020, 12, 3719. [Google Scholar] [CrossRef]
- Rodríguez-Correa, E.; González-Pérez, I.; Clavel-Pérez, P.I.; Contreras-Vargas, Y.; Carvajal, K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: What is the best choice? Nutr. Diabetes 2020, 10, 24. [Google Scholar] [CrossRef]
- Hugo, M.; Mehsen-Cetre, N.; Pierreisnard, A.; Schaeverbeke, T.; Gin, H.; Rigalleau, V. Energy expenditure and nutritional complications of metabolic syndrome and rheumatoid cachexia in rheumatoid arthritis: An observational study using calorimetry and actimetry. J. Rheumatol. 2016, 55, 1202–1209. [Google Scholar] [CrossRef] [Green Version]
- Ussar, S.; Griffin, N.W.; Bezy, O.; Bry, L.; Gordon, J.I.; Ronald, C.; Correspondence, K. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015, 22, 516–530. [Google Scholar] [CrossRef] [Green Version]
- Muscogiuri, G.; Barrea, L.; Savastano, S.; Colao, A. Nutritional recommendations for COVID-19 quarantine. Eur. J. Clin. Nutr. 2020, 74, 850–851. [Google Scholar] [CrossRef]
- Aghili, S.M.M.; Ebrahimpur, M.; Arjmand, B.; Shadman, Z.; Pejman Sani, M.; Qorbani, M.; Larijani, B.; Payab, M. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: A review and meta-analysis. Int. J. Obes. 2021, 45, 998–1016. [Google Scholar] [CrossRef]
- Pinheiro, M.M.; Wilson, T. Dietary fat: The good, the bad, and the ugly. Nutr. Res. Pract. 2017, 241–247. [Google Scholar] [CrossRef]
- Kuipers, E.N.; Held, N.M.; Panhuis, W.I.H.; Modder, M.; Ruppert, P.M.M.; Kersten, S.; Kooijman, S.; Guigas, B.; Houtkooper, R.H.; Rensen, P.C.N.; et al. A single day of high-fat diet feeding induces lipid accumulation and insulin resistance in brown adipose tissue in mice. Am. J. Physiol. Metab. Endocrinol. 2019, 317, 820–830. [Google Scholar] [CrossRef]
- Bordoni, A.; Boesch, C.; Malpuech-Brugère, C.; Orfila, C.; Tomás-Cobos, L. The role of bioactives in energy metabolism and metabolic syndrome. Proc. Nutr. Soc. 2019, 78, 340–350. [Google Scholar] [CrossRef]
- Park, S.; Yeo, S.; Lee, Y.; Jeong, Y.; Kim, M. Inhibitory activities of digestive enzymes and antioxidant activities of fermented beverages using Momordica Charantia L. J. Korean Soc. Food Sci. Nutr. 2017, 46, 1308–1315. [Google Scholar]
- Samadov, B.S. The chemical composition of the medicinal plant Momordica Charantia L. used in folk medicine. J. Math. Chem. 2022, 6, 36–51. [Google Scholar]
- Bortolotti, M.; Mercatelli, D.; Polito, L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front. Pharmacol. 2019, 10, 486. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Y.; Kan, W.-C.; Cheng, T.-J.; Yu, S.-H.; Chang, L.-H.; Chuu, J.-J. Differential anti-diabetic effects and mechanism of action of charantin-rich extract of Taiwanese Momordica charantia between type 1 and type 2 diabetic mice. Food Chem. Toxicol. 2014, 69, 347–356. [Google Scholar] [CrossRef]
- Massounga Bora, A.F.M.; Li, X.; Liu, L. Physicochemical and functional characterization of newly designed biopolymeric-based encapsulates with probiotic culture and charantin. Foods 2021, 10, 2677. [Google Scholar] [CrossRef]
- Shim, J.; Kim, J.G.; Lim, E.Y.; Kim, Y.T. Charantin relieves pain by inhibiting pro-inflammatory cytokine induction. Pharmacogn. Mag. 2020, 16, 282–287. [Google Scholar]
- Litwiniuk, A.; Bik, W.; Kalisz, M.; Baranowska-Bik, A. Inflammasome NLRP3 potentially links obesity-associated low-grade systemic inflammation and insulin resistance with Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 5603. [Google Scholar] [CrossRef]
- Varghese, J.F.; Patel, R.; Yadav, U. Novel insights in the metabolic syndrome-induced oxidative stress and inflammation-mediated atherosclerosis. Curr. Cardiol. Rev. 2018, 14, 4–14. [Google Scholar] [CrossRef]
- Desai, S.; Tatke, P. Charantin: An important lead compound from Momordica charantia for the treatment of diabetes. J. Pharmacogn. Phytochem. 2015, 3, 163–166. [Google Scholar]
- Adeoti, I.A.; Hawboldt, K. A review of lipid extraction from fish processing by-product for use as a biofuel. Biomass Bioenergy 2014, 63, 330–340. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M. Leuconostoc mesenteroides MKSR isolated from kimchi possesses α-glucosidase inhibitory activity, antioxidant activity, and cholesterol-lowering effects. LWT 2019, 116, 108570. [Google Scholar] [CrossRef]
- Kim, J.; Yu, S.; Jeong, Y.; Kim, M. Enhancement of bioactive properties in Momordica charantia by Leuconostoc fermentation. Fermentation 2023, 9, 523. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, M. In vitro evaluation of antidiabetic, antidementia, and antioxidant activity of Artemisia capillaris fermented by Leuconostoc spp. LWT 2022, 172, 114163. [Google Scholar] [CrossRef]
- Jeong, S.; Bae, S.; Yu, D.; Yang, H.-S.; Yang, M.-J.; Lee, J.-H.; Ha, J.-H. Dietary intervention with quercetin attenuates diesel exhaust particle-instilled pulmonary inflammation and behavioral abnormalities in mice. J. Med. Food 2023, 26, 93–103. [Google Scholar] [CrossRef]
- Zheng, J.; Lee, J.; Byun, J.; Yu, D.; Ha, J.-H. Partial replacement of high-fat diet with n-3 PUFAs enhanced beef tallow attenuates dyslipidemia and endoplasmic reticulum stress in tunicamycin-injected rats. Front. Nutr. 2023, 10, 1155436. [Google Scholar] [CrossRef]
- Son, H.-K.; Xiang, H.; Park, S.; Lee, J.; Lee, J.-J.; Jung, S.; Ha, J.-H. Partial replacement of dietary fat with polyunsaturated fatty acids attenuates the lipopolysaccharide-induced hepatic inflammation in Sprague-Dawley rats fed a high-fat diet. Int. J. Environ. Res. Public Health 2021, 18, 10986. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.J.; Lee, J.; Lee, J.K.; Byun, J.; Kim, I.; Ha, J.H. Lowering n-6/n-3 ratio as an important dietary intervention to prevent LPS-inducible dyslipidemia and hepatic abnormalities in ob/ob mice. Int. J. Mol. Sci. 2022, 23, 6384. [Google Scholar] [CrossRef] [PubMed]
- Son, H.K.; Kim, B.H.; Lee, J.; Park, S.; Oh, C.B.; Jung, S.; Lee, J.K.; Ha, J.H. Partial replacement of dietary fat with krill oil or coconut oil alleviates dyslipidemia by partly modulating lipid metabolism in lipopolysaccharide-injected rats on a high-fat di-et. Int. J. Environ. Res. Public Health 2022, 19, 843. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-J.; Shin, H.-W.; Jung, S.; Ha, J.-H. Effect of soybean and soybean koji on obesity and dyslipidemia in rats fed a high-fat diet: A comparative study. Int. J. Environ. Res. Public Health 2021, 18, 6032. [Google Scholar] [CrossRef]
- Jeong, S.; Bae, S.; Shin, E.-C.; Lee, J.-H.; Ha, J.-H. Ellagic acid prevents particulate matter-induced pulmonary inflammation and hyperactivity in mice: A pilot study. Int. J. Environ. Res. Public Health 2023, 20, 4523. [Google Scholar] [CrossRef]
- Jeong, S.; Shin, E.-C.; Lee, J.-H.; Ha, J.-H. Particulate matter elevates ocular inflammation and endoplasmic reticulum stress in human retinal pigmented epithelium cells. Int. J. Environ. Res. Public Health 2023, 20, 4766. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, S.; Li, S.; Feng, Y.; Wu, H.; Zeng, M. Microalgae polysaccharides ameliorates obesity in association with modu-lation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int. J. Biol. Macromol. 2021, 182, 1371–1383. [Google Scholar] [CrossRef]
- Tan, J.M.; Cook, E.C.; van den Berg, M.; Scheij, S.; Zelcer, N.; Loregger, A. Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis. Atherosclerosis 2019, 281, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, B.; Recio, C.; Aranda-Tavío, H.; Guerra-Rodríguez, M.; García-Castellano, J.M.; Fernández-Pérez, L. The mevalonate pathway, a metabolic target in cancer therapy. Front. Oncol. 2021, 11, 626971. [Google Scholar] [CrossRef]
- Würtz, P.; Wang, Q.; Soininen, P.; Kangas, A.J.; Fatemifar, G.; Tynkkynen, T.; Tiainen, M.; Perola, M.; Tillin, T.; Hughes, A.D.; et al. Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. J. Am. Coll. Cardiol. 2019, 67, 1200–1210. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, A.K.; Acharya, A.; Karki, P.K. Use of statins as lipid lowering agent in hypercholesterolemia in a tertiary care hos-pital: A descriptive cross-sectional study. JNMA J. Nepal Med. Assoc. 2020, 58, 1031. [Google Scholar] [PubMed]
- Klein-Szanto, A.J.; Bassi, D.E. Keep recycling going: New approaches to reduce LDL-C. Biochem. Pharmacol. 2019, 164, 336–341. [Google Scholar] [CrossRef]
- Ferré, P.; Phan, F.; Foufelle, F. SREBP-1c and lipogenesis in the liver: An update. Biochem. J. 2021, 478, 3723–3739. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, W.; Li, S.; Guo, D.; He, J.; Wang, Y. Acetyl-CoA carboxylases and diseases. Front. Oncol. 2022, 12, 836058. [Google Scholar] [CrossRef]
- Souza-Mello, V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J. Hepatol. 2015, 7, 1012. [Google Scholar] [CrossRef] [PubMed]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef] [PubMed]
- He, P.-P.; Jiang, T.; OuYang, X.-P.; Liang, Y.-Q.; Zou, J.-Q.; Wang, Y.; Shen, Q.-Q.; Liao, L.; Zheng, X.-L. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin. Chim. Acta 2018, 480, 126–137. [Google Scholar] [CrossRef]
- Hayne, C.K.; Lafferty, M.J.; Eglinger, B.J.; Kane, J.P.; Neher, S.B. Biochemical analysis of the lipoprotein lipase truncation variant, LPLS447X, reveals increased lipoprotein uptake. Biochemistry 2017, 56, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Nagaraju, G.P.; Rajitha, B.; Aliya, S.; Kotipatruni, R.P.; Madanraj, A.S.; Hammond, A.; Park, D.; Chigurupati, S.; Alam, A.; Pattnaik, S. The role of adiponectin in obesity-associated female-specific carcinogenesis. Cytokine Growth Factor Rev. 2016, 31, 37–48. [Google Scholar] [CrossRef]
- Howlader, M.; Sultana, M.I.; Akter, F.; Hossain, M.M. Adiponectin gene polymorphisms associated with diabetes mellitus: A descriptive review. Heliyon 2021, 7, e07851. [Google Scholar] [CrossRef]
- Guarner, V.; Rubio-Ruiz, M.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Aging Dis. 2015, 40, 99–106. [Google Scholar]
- Tong, H.V.; Luu, N.K.; Son, H.A.; Hoan, N.V.; Hung, T.T.; Velavan, T.P.; Toan, N.L. Adiponectin and pro-inflammatory cytokines are modulated in Vietnamese patients with type 2 diabetes mellitus. J. Diabetes Investig. 2017, 8, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Burchfield, J.G.; Kebede, M.A.; Meoli, C.C.; Stöckli, J.; Whitworth, P.T.; Wright, A.L.; Hoffman, N.J.; Minard, A.Y.; Ma, X.; Krycer, J.R.; et al. High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. J. Biol. Chem. 2018, 293, 5731–5745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M. Adipose tissue and metabolic syndrome: Too much, too little or neither. Eur. J. Clin. Investig. 2015, 45, 1209–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trouwborst, I.; Bowser, S.M.; Goossens, G.H.; Blaak, E.E. Ectopic fat accumulation in distinct insulin resistant phenotypes; targets for personalized nutritional interventions. Front. Nutr. 2018, 5, 77. [Google Scholar] [CrossRef]
- Ferrara, D.; Montecucco, F.; Dallegri, F.; Carbone, F. Impact of different ectopic fat depots on cardiovascular and metabolic diseases. J. Cell. Physiol. 2019, 234, 21630–21641. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [Green Version]
- Andonian, C.; Langer, F.; Beckmann, J.; Bischoff, G.; Ewert, P.; Freilinger, S.; Kaemmerer, H.; Oberhoffer, R.; Pieper, L.; Neidenbach, R.C. Overweight and obesity: An emerging problem in patients with congenital heart disease. Cardiovasc. Diagn. Ther. 2019, 9, S360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Z.; Lu, W.; Zong, X.F.; Ruan, H.Y.; Liu, Y. Obesity and hypertension. Exp. Ther. Med. 2016, 12, 2395–2399. [Google Scholar] [CrossRef] [Green Version]
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Zhang, B.; Popkin, B.M.; Du, S. Elevated fat intake increases body weight and the risk of overweight and obesity among Chinese adults: 1991–2015 Trends. Nutrients 2020, 12, 3272. [Google Scholar] [CrossRef] [PubMed]
- Swarnamali, H.; Jayawardena, R.; Chourdakis, M.; Ranasinghe, P. Is the proportion of per capita fat supply associated with the prevalence of overweight and obesity? an ecological analysis. BMC Nutr. 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y. Optimal diet strategies for weight loss and weight loss maintenance. J. Obes. Metab. Syndr. 2021, 30, 20. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidi, M.; Koutelidakis, A.E. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazra, P.; Hazra, S.; Acharya, B.; Dutta, S.; Saha, S.; Mahapatra, P.; Pradeepkumar, P.; Pal, H.; Chattopadhyay, A.; Chakraborty, I.; et al. Diversity of nutrient and nutraceutical contents in the fruits and its relationship to morphological traits in bitter gourd (Momordica charantia L.). Sci. Hortic. 2022, 305, 111414. [Google Scholar] [CrossRef]
- Bai, J.; Zhu, Y.; Dong, Y. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J. Ethnopharmacol. 2016, 194, 717–726. [Google Scholar] [CrossRef]
- Mahmoud, M.F.; El Ashry, F.E.Z.Z.; El Maraghy, N.N.; Fahmy, A. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm. Biol. 2017, 55, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Abas, R.; Othman, F.; Thent, Z.C. Effect of Momordica charantia fruit extract on vascular complication in type 1 diabetic rats. EXCLI J. 2015, 14, 179. [Google Scholar] [CrossRef]
- Gayathry, K.S.; John, J.A. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bio-active components for therapeutic foods. Food Prod. Process. Nutr. 2022, 4, 10. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Niaz, B.; Arshad, M.U.; Tufail, T.; Hussain, M.B.; Javed, A. Bitter melon (Momordica charantia): A natural healthy vegetable. Int. J. Food Prop. 2018, 21, 1270–1290. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, P.K.; Doble, M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin. J. Integr. Med. 2011, 17, 563–574. [Google Scholar] [CrossRef]
- Fan, M.; Kim, E.-K.; Choi, Y.-J.; Tang, Y.; Moon, S.-H. The role of Momordica charantia in resisting obesity. Int. J. Environ. Res. Public Health 2019, 16, 3251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, F.; Sultan, M.T.; Riaz, A.; Ahmed, S.; Bigiu, N.; Amarowicz, R.; Manea, R. Bitter Melon (Momordica charantia L.) Fruit bioactives charantin and vicine potential for diabetes prophylaxis and treatment. Plants 2021, 10, 730. [Google Scholar] [CrossRef]
- Xu, X.; Shan, B.; Liao, C.-H.; Xie, J.-H.; Wen, P.-W.; Shi, J.-Y. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int. J. Biol. Macromol. 2015, 81, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wen, J.-J.; Hu, J.-L.; Nie, Q.-X.; Chen, H.-H.; Xiong, T.; Nie, S.-P.; Xie, M.-Y. Fermented Momordica charantia L. juice modulates hyperglycemia, lipid profile, and gut microbiota in type 2 diabetic rats. Food Res. Int. 2019, 121, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Bai, J.; Zhang, Y.; Xiao, X.; Dong, Y. Effects of bitter melon (Momordica charantia L.) on the gut microbiota in high fat diet and low dose streptozocin-induced rats. Int. J. Food Sci. Nutr. 2016, 67, 686–695. [Google Scholar] [CrossRef]
- Poovitha, S.; Parani, M. Protein extracts from Momordica charantia var. charantia and M. charantia var. muricata show anti-lipidemic and antioxidant properties in experimental type 2 diabetic rats. J. Food Biochem. 2020, 44, e13370. [Google Scholar]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.-W.; Yu, E.-Z.; Feng, Q. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef]
- Li, L.; Pan, M.; Pan, S.; Li, W.; Zhong, Y.; Hu, J.; Nie, S. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food Chem. Toxicol. 2020, 135, 110937. [Google Scholar] [CrossRef]
- Khan, A.; Raghunathan, V.; Singaravelu, D.L.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Alamry, K.A.; Asiri, A.M. Extraction and characterization of cellulose fibers from the stem of Momordica Charantia. J. Nat. Fibers 2022, 19, 2232–2242. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, L.; Gutin, B.; Zhu, H. Total, insoluble, and soluble dietary fiber intake and insulin resistance and blood pressure in adolescents. Eur. J. Clin. Nutr. 2019, 73, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.-H.; Jaiswal, R.; Peng, Y.-Y.; Liu, T.-H. Improving bioactivities of Momordica charantia broth through fermentation using mixed cultures of Lactobacillus plantarum, Gluconacetobacter sp. and Saccharomyces cerevisiae. Process. Biochem. 2022, 117, 142–152. [Google Scholar] [CrossRef]
- Koirala, P.; Costantini, A.; Maina, H.N.; Rizzello, C.G.; Verni, M.; Beni, V.D.; Coda, R. Fermented brewers’ spent grain con-taining dextran and oligosaccharides as ingredient for composite wheat bread and its impact on gut metabolome in vitro. Fermentation 2022, 8, 487. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahim, M.A.; Saeed, F.; Khalid, W.; Hussain, M.; Anjum, F.M. Functional and nutraceutical properties of fructo-oligosaccharides derivatives: A review. Int. J. Food Prop. 2021, 24, 1588–1602. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, S.; Liu, F.; Zhang, P.; Muhammad, Z.; Pan, S. Role of the gut microbiota and their metabolites in modulating the cholesterol-lowering effects of citrus pectin oligosaccharides in C57BL/6 Mice. J. Agric. Food Chem. 2019, 67, 11922–11930. [Google Scholar] [CrossRef]
- Wang, J.; He, W.; Yang, D.; Cao, H.; Bai, Y.; Guo, J.; Su, Z. Beneficial metabolic effects of chitosan and chitosan oligosaccharide on epididymal WAT browning and thermogenesis in obese Rats. Molecules 2019, 24, 4455. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Sun, W.; Liu, L.; Wang, G.; Xiao, Z.; Pei, X.; Wang, M. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 Mice. Mar. Drugs 2019, 17, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.K.; Lee, J.-J.; Kim, Y.-K.; Lee, Y.; Ha, J.-H. Stachys sieboldii Miq. root attenuates weight gain and dyslipidemia in rats on a high-fat and high-cholesterol diet. Nutrients 2020, 12, 2063. [Google Scholar] [CrossRef]
- Shih, C.-C.; Lin, C.-H.; Lin, W.-L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res. Clin. Pract. 2008, 81, 134–143. [Google Scholar] [CrossRef]
Diet Composition (g) | ND | HFCD | HFCD + 1M | HFCD + 4M | HFCD + 1F | HFCD + 4F |
---|---|---|---|---|---|---|
Casein | 200 | 200 | 200 | 200 | 200 | 200 |
L-cystine | 3 | 3 | 3 | 3 | 3 | 3 |
Sucrose | 100 | 90 | 90 | 90 | 89.76 | 89.04 |
Corn starch | 397.486 | 259.49 | 259.49 | 259.49 | 259.49 | 259.49 |
Dextrose | 132 | 125 | 125 | 125 | 124.12 | 121.49 |
Lard | 145 | 145 | 145 | 145 | 145 | |
Soybean oil | 70 | 70 | 70 | 70 | 70 | 70 |
Cholesterol | 0 | 10 | 10 | 10 | 10 | 10 |
Cellulose | 50 | 50 | 40 | 10 | 41.12 | 14.46 |
Mineral mix | 35 | 35 | 35 | 35 | 35 | 35 |
Choline bitartrate | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Vitamin mix | 10 | 10 | 10 | 10 | 10 | 10 |
t-Butylhydroquinone | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 |
MC | 10 | 40 | ||||
FMC | 10 | 40 | ||||
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Transcript | Forward | Reverse |
---|---|---|
Hmgcr | CTTGTGGAATGCCTTGTGATTG | AGCCGAAGCAGCACATGAT |
Ldlr | ACTCATGCAGCAGGAACG | GTCATTTTCACAGTCTAC |
Srebp1c | GATGTGCGAACTGGACACAG | CATAGGGGGCGTCAAACAG |
Acc | TGGACAGACTGATCGCAGAGAAAG | TGGAGAGCCCCACACACA |
Srebp2 | GTGGGTGACCGCCGTTCCTG | CTCGGCAGGCCTGAGCACAC |
Pparg | TCATGACCAGGGAGTTCCTC | CAGCAGGTTGTCTTGGATGT |
Ppara | AGAGCCCCATCTGTCCTCTC | ACTGGTAGTCTGCAAAACCAAA |
Lpl | GTGGCCGCAGCAGACGCAGGAAGA | ATGCGAGCACTTCACCAGCTGGTC |
Adiponectin | CTGGCTTTCTTCTCTTCCATGATAC | GTGTCGACGTTCCATGATTCTC |
Gapdh | CATCGCCTTCCGTGTTCCTA | GCGGCACGTCAGATCCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, H.; Ha, J.-H.; Lee, J.; Jang, H.; Kwon, D.; Cho, M.; Kang, D.; Kim, I.; Kim, M. The Effect of Fermented Momordica charantia with Leuconostoc mesenteroides MKSR on Metabolic Complications Induced by High-Fat High-Cholesterol Diet in C57BL/6 Mice. Fermentation 2023, 9, 718. https://doi.org/10.3390/fermentation9080718
Moon H, Ha J-H, Lee J, Jang H, Kwon D, Cho M, Kang D, Kim I, Kim M. The Effect of Fermented Momordica charantia with Leuconostoc mesenteroides MKSR on Metabolic Complications Induced by High-Fat High-Cholesterol Diet in C57BL/6 Mice. Fermentation. 2023; 9(8):718. https://doi.org/10.3390/fermentation9080718
Chicago/Turabian StyleMoon, Heewon, Jung-Heun Ha, Jisu Lee, Hyunsoo Jang, Dain Kwon, Minji Cho, Dahyun Kang, Inyong Kim, and Misook Kim. 2023. "The Effect of Fermented Momordica charantia with Leuconostoc mesenteroides MKSR on Metabolic Complications Induced by High-Fat High-Cholesterol Diet in C57BL/6 Mice" Fermentation 9, no. 8: 718. https://doi.org/10.3390/fermentation9080718
APA StyleMoon, H., Ha, J. -H., Lee, J., Jang, H., Kwon, D., Cho, M., Kang, D., Kim, I., & Kim, M. (2023). The Effect of Fermented Momordica charantia with Leuconostoc mesenteroides MKSR on Metabolic Complications Induced by High-Fat High-Cholesterol Diet in C57BL/6 Mice. Fermentation, 9(8), 718. https://doi.org/10.3390/fermentation9080718