Cellulase and Xylanase Production by a Newly Isolated Penicillium crustosum Strain under Solid-State Fermentation, Using Water Hyacinth Biomass as Support, Substrate, and Inducer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Treatment of Water Hyacinth
2.2. Isolation of Cellulases and Xylanases Producing Fungi
2.3. Inoculum Preparation
2.4. Screening of Fungal Strains Producing Cellulases and Xylanases
2.5. Molecular Identification of the Isolated Fungal Strain
2.6. Radial Growth Rate Determination of P. crustosum ABQ1
2.7. Solid-State Fermentation for Cellulase and Xylanase Production Using Penicillium crustosum ABQ1 and a Non-Pretreated Support
2.8. Solid-State Fermentation for Cellulase and Xylanase Production Using Penicillium crustosum ABQ1 and a Pretreated Support
2.9. Assay Techniques
2.10. Analysis of Sugars by HPLC
2.11. CMCase and Xylanases Assays
2.12. Effect of Temperature and pH on the Activity and Stability of CMCase and Xylanases from the Crude Enzymatic Extract of Penicillium crustosum
3. Results and Discussion
3.1. Isolation and Identification of a Fungal Strain Producing Cellulases and Xylanases
3.2. Characterization of the Radial Growth Rate of P. crustosum ABQ1
3.3. Cellulase and Xylanase Production of P. crustosum ABQ1 by Solid-State Fermentation (SSF), Using Glucose and Xylose as Starters for Fungal Growth
3.4. Cellulase and Xylanase Production of P. crustosum ABQ1 by Solid-State Fermentation (SSF) Using Chemically Pretreated Water Hyacinth Biomass as the Support, Carbon Source, and Inducer
3.5. Effects of the Particle Size of Water Hyacinth-Pretreated Biomass and the Inoculum Size on Cellulase and Xylanase Production
3.6. Effects of Temperature and pH on Cellulase and Xylanase Activity and Stability Using the Crude Enzymatic Extract of P. crustosum ABQ1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villamagna, A.M.; Murphy, B.R. Ecological and Socio-Economic Impacts of Invasive Water Hyacinth (Eichhornia crassipes): A Review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Sharma, A.; Aggarwal, N.K.; Saini, A.; Yadav, A. Beyond Biocontrol: Water Hyacinth. Opportunities and Challenges. J. Environ. Sci. Technol. 2016, 9, 26–48. [Google Scholar] [CrossRef] [Green Version]
- Dirar, H.A.; El Amin, H.B. Methane Fermentation of Water Hyacinth: Effect of Solids Concentration and Inoculum Source. Mircen J. Appl. Microbiol. Biotechnol. 1988, 4, 299–312. [Google Scholar] [CrossRef]
- Malik, A. Environmental Challenge Vis a Vis Opportunity: The Case of Water Hyacinth. Environ. Int. 2007, 33, 122–138. [Google Scholar] [CrossRef]
- Thamaga, K.H.; Dube, T. Remote Sensing of Invasive Water Hyacinth (Eichhornia crassipes): A Review on Applications and Challenges. Remote Sens. Appl. Soc. Environ. 2018, 10, 36–46. [Google Scholar] [CrossRef]
- Wu, H.; Ding, J. Abiotic and Biotic Determinants of Plant Diversity in Aquatic Communities Invaded by Water Hyacinth [Eichhornia crassipes (Mart.) Solms]. Front. Plant Sci. 2020, 11, 1306. [Google Scholar] [CrossRef] [PubMed]
- Forrest, A.K.; Hernandez, J.; Holtzapple, M.T. Effects of Temperature and Pretreatment Conditions on Mixed-Acid Fermentation of Water Hyacinths Using a Mixed Culture of Thermophilic Microorganisms. Bioresour. Technol. 2010, 101, 7510–7515. [Google Scholar] [CrossRef]
- Su, W.; Sun, Q.; Xia, M.; Wen, Z.; Yao, Z. The Resource Utilization of Water Hyacinth (Eichhornia crassipes [Mart.] Solms) and Its Challenges. Resources 2018, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Mathur, P.; Mathur, S.M. Water Hyacinth: A Useful Plant to Improve Rural Economy. In Energy and Environment: Select Proceedings of ICWEES-2016; Springer: Singapore, 2018; pp. 31–38. [Google Scholar] [CrossRef]
- Gaurav, G.K.; Mehmood, T.; Cheng, L.; Klemeš, J.J.; Shrivastava, D.K. Water Hyacinth as a Biomass: A Review. J. Clean. Prod. 2020, 277, 122214. [Google Scholar] [CrossRef]
- Jafari, N. Ecological and Socio-Economic Utilization of Water Hyacinth (Eichhornia crassipes Mart Solms). J. Appl. Sci. Environ. Manag. 2010, 14, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; He, X.; Srishti, A.; Song, S.; Tan, H.T.W.; Sweeney, D.J.; Ghosh, S.; Wang, C.H. Water Hyacinth for Energy and Environmental Applications: A Review. Bioresour. Technol. 2021, 327, 124809. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A.; Madhavan, A.; Alphonsa, J.A.; Vivek, N.; Gnansounou, E.; Castro, E.; Faraco, V. Water Hyacinth a Potential Source for Value Addition: An Overview. Bioresour. Technol. 2017, 230, 152–162. [Google Scholar] [CrossRef]
- Wilkie, A.C.; Evans, J.M. Aquatic Plants: An Opportunity Feedstock in the Age of Bioenergy. Biofuels 2010, 1, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Karouach, F.; Ben Bakrim, W.; Ezzariai, A.; Sobeh, M.; Kibret, M.; Yasri, A.; Hafidi, M.; Kouisni, L. A Comprehensive Evaluation of the Existing Approaches for Controlling and Managing the Proliferation of Water Hyacinth (Eichhornia crassipes): Review. Front. Environ. Sci. 2022, 9, 767871. [Google Scholar] [CrossRef]
- Nigam, J.N. Bioconversion of Water-Hyacinth (Eichhornia crassipes) Hemicellulose Acid Hydrolysate to Motor Fuel Ethanol by Xylose-Fermenting Yeast. J. Biotechnol. 2002, 97, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Cheng, G.; Sathitsuksanoh, N.; Wu, D.; Varanasi, P.; George, A.; Balan, V.; Gao, X.; Kumar, R.; Dale, B.E.; et al. Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure. Front. Energy Res. 2015, 2, 62. [Google Scholar] [CrossRef] [Green Version]
- Rezania, S.; Din, M.F.M.; Mohamad, S.E.; Sohaili, J.; Taib, S.M.; Yusof, M.B.M.; Kamyab, H.; Darajeh, N.; Ahsan, A. Review on Pretreatment Methods and Ethanol Production from Cellulosic Water Hyacinth. BioResources 2017, 12, 2108–2124. [Google Scholar] [CrossRef]
- Chandel, A.K.; Chandrasekhar, G.; Silva, M.B.; Silvério Da Silva, S. The Realm of Cellulases in Biorefinery Development. Crit. Rev. Biotechnol. 2012, 32, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Guo, X.; Zhang, S.; Han, S.-f.; Yang, G.; Jönsson, L.J. Bacterial Cellulose Production from Cotton-Based Waste Textiles: Enzymatic Saccharification Enhanced by Ionic Liquid Pretreatment. Bioresour. Technol. 2012, 104, 503–508. [Google Scholar] [CrossRef]
- Menon, V.; Rao, M. Trends in Bioconversion of Lignocellulose: Biofuels, Platform Chemicals & Biorefinery Concept. Prog. Energy Combust. Sci. 2012, 38, 522–550. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Esteghlalian, A.; Hashimoto, A.G.; Fenske, J.J.; Penner, M.H. Modeling and Optimization of the Dilute-Sulfuric-Acid Pretreatment of Corn Stover, Poplar and Switchgrass. Bioresour. Technol. 1997, 59, 129–136. [Google Scholar] [CrossRef]
- Mussatto, S.; Teixeira, J. Lignocellulose as Raw Material in Fermentation Processes. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 897–907. [Google Scholar]
- Das, A.; Ghosh, P.; Paul, T.; Ghosh, U. Production of Bioethanol as Useful Biofuel through the Bioconversion of Water Hyacinth (Eichhornia crassipes). 3 Biotech 2016, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Isarankura-Na-Ayudhya, C.; Tantimongcolwat, T.; Kongpanpee, T.; Prabkate, P.; Prachayasittikul, V. Appropriate Technology for the Bioconversion of Water Hyacinth (Eichhornia crassipes) to Liquid Ethanol: Future Prospects for Community Strengthening and Sustainable Development. EXCLI J. 2007, 6, 167–176. [Google Scholar]
- Satyanagalakshmi, K.; Sindhu, R.; Binod, P.; Janu, K.U.; Sukumaran, R.K.; Pandey, A. Bioethanol Production from Acid Pretreated Water Hyacinth by Separate Hydrolysis and Fermentation. J. Sci. Ind. Res. 2011, 70, 156–161. [Google Scholar]
- Romero-Borbón, E.; Oropeza-González, A.E.; González-García, Y.; Córdova, J. Thermochemical and Enzymatic Saccharification of Water Hyacinth Biomass into Fermentable Sugars. Processes 2022, 10, 210. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Verma, P. A Detailed Overview of Xylanases: An Emerging Biomolecule for Current and Future Prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Sajith, S.; Priji, P.; Sreedevi, S.; Benjamin, S. An Overview on Fungal Cellulases with an Industrial Perspective. J. Nutr. Food Sci. 2016, 6, 461. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Rangarajan, V.; Singh, J.; Nayak, J.; Dilip, K.J. Current Perspective on Improved Fermentative Production and Purification of Fungal Cellulases for Successful Biorefinery Applications: A Brief Review. Biomass Convers. Biorefinery 2022, 12, 967–995. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Agrawal, K.; Verma, P. Current Perspective on Production and Applications of Microbial Cellulases: A Review. Bioresour. Bioprocess. 2021, 8, 95. [Google Scholar] [CrossRef]
- Siqueira, J.G.W.; Rodrigues, C.; Vandenberghe, L.P.d.S.; Woiciechowski, A.L.; Soccol, C.R. Current Advances in On-Site Cellulase Production and Application on Lignocellulosic Biomass Conversion to Biofuels: A Review. Biomass Bioenergy 2020, 132, 105419. [Google Scholar] [CrossRef]
- Polizeli, M.L.T.M.; Rizzatti, A.C.S.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from Fungi: Properties and Industrial Applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J. Microbial Xylanases and Their Industrial Application in Pulp and Paper Biobleaching: A Review. 3 Biotech 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, L.; Parameswaran, B.; Pandey, A. Hydrolysis of Pretreated Rice Straw by an Enzyme Cocktail Comprising Acidic Xylanase from Aspergillus Sp. for Bioethanol Production. Renew. Energy 2016, 98, 9–15. [Google Scholar] [CrossRef]
- Hansen, G.H.; Lübeck, M.; Frisvad, J.C.; Lübeck, P.S.; Andersen, B. Production of Cellulolytic Enzymes from Ascomycetes: Comparison of Solid State and Submerged Fermentation. Process Biochem. 2015, 50, 1327–1341. [Google Scholar] [CrossRef]
- Marques, G.L.; dos Santos Reis, N.; Silva, T.P.; Ferreira, M.L.O.; Aguiar-Oliveira, E.; de Oliveira, J.R.; Franco, M. Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium Roqueforti ATCC 10110 Through the Solid-State Fermentation of Rice Husk Residue. Waste Biomass Valorization 2018, 9, 2061–2069. [Google Scholar] [CrossRef]
- Valle-Pérez, A.U.; Flores-Cosío, G.; Amaya-Delgado, L. Bioconversion of Agave Bagasse to Produce Cellulases and Xylanases by Penicillium Citrinum and Aspergillus Fumigatus in Solid-State Fermentation. Waste Biomass Valorization 2021, 12, 5885–5897. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Zhao, S.; Lin, X.; Zhang, T.; Li, C.X.; Luo, X.M.; Feng, J.X. Improvement of Cellulase and Xylanase Production in Penicillium Oxalicum under Solid-State Fermentation by Flippase Recombination Enzyme/Recognition Target-Mediated Genetic Engineering of Transcription Repressors. Bioresour. Technol. 2021, 337, 125366. [Google Scholar] [CrossRef]
- Scholl, A.L.; Menegol, D.; Pitarelo, A.P.; Fontana, R.C.; Filho, A.Z.; Ramos, L.P.; Dillon, A.J.P.; Camassola, M. Elephant Grass Pretreated by Steam Explosion for Inducing Secretion of Cellulases and Xylanases by Penicillium Echinulatum S1M29 Solid-State Cultivation. Ind. Crops Prod. 2015, 77, 97–107. [Google Scholar] [CrossRef]
- Maeda, R.N.; Barcelos, C.A.; Anna, L.M.M.S.; Pereira, N. Cellulase Production by Penicillium Funiculosum and Its Application in the Hydrolysis of Sugar Cane Bagasse for Second Generation Ethanol Production by Fed Batch Operation. J. Biotechnol. 2013, 163, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Qin, X.; Luo, X.-M.; Nong, Q.; Yang, Q.; Zhang, Z.; Gao, Y.; Lv, F.; Chen, Y.; Yu, Z.; et al. Efficient Enzymatic Hydrolysis and Simultaneous Saccharification and Fermentation of Sugarcane Bagasse Pulp for Ethanol Production by Cellulase from Penicillium oxalicum EU2106 and Thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioenergy 2015, 77, 53–63. [Google Scholar] [CrossRef]
- Silva, N.F.D.S.; Simões, M.R.; Knob, A.; De Moraes, S.S.; Henn, C.; Da ConceiçãO Silva, J.L.; Simão, R.D.C.G.; Maller, A.; Kadowaki, M.K. Improvement in the Bleaching of Kraft Pulp with Xylanase from Penicillium Crustosum FP 11 Isolated from the Atlantic Forest. Biocatal. Biotransform. 2016, 34, 119–127. [Google Scholar] [CrossRef]
- Aksenov, A.S.; Tyshkunova, I.V.; Poshina, D.N.; Guryanova, A.A.; Chukhchin, D.G.; Sinelnikov, I.G.; Terentyev, K.Y.; Skorik, Y.A.; Novozhilov, E.V.; Synitsyn, A.P. Biocatalysis of Industrial Kraft Pulps: Similarities and Differences between Hardwood and Softwood Pulps in Hydrolysis by Enzyme Complex of Penicillium Verruculosum. Catalysts 2020, 10, 536. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Dhakar, K.; Sharma, A.; Pandey, A. Cold, PH and Salt Tolerant Penicillium Spp. Inhabit the High Altitude Soils in Himalaya, India. World J. Microbiol. Biotechnol. 2014, 30, 1315–1324. [Google Scholar] [CrossRef]
- Dias, L.M.; dos Santos, B.V.; Albuquerque, C.J.B.; Baeta, B.E.L.; Pasquini, D.; Baffi, M.A. Biomass Sorghum as a Novel Substrate in Solid-State Fermentation for the Production of Hemicellulases and Cellulases by Aspergillus niger and A. Fumigatus. J. Appl. Microbiol. 2018, 124, 708–718. [Google Scholar] [CrossRef]
- Ezeilo, U.R.; Wahab, R.A.; Mahat, N.A. Optimization Studies on Cellulase and Xylanase Production by Rhizopus oryzae UC2 Using Raw Oil Palm Frond Leaves as Substrate under Solid State Fermentation. Renew. Energy 2020, 156, 1301–1312. [Google Scholar] [CrossRef]
- Ezeilo, U.R.; Wahab, R.A.; Tin, L.C.; Zakaria, I.I.; Huyop, F.; Mahat, N.A. Fungal-Assisted Valorization of Raw Oil Palm Leaves for Production of Cellulase and Xylanase in Solid State Fermentation Media. Waste Biomass Valorization 2020, 11, 3133–3149. [Google Scholar] [CrossRef]
- Tian, M.; Wai, A.; Guha, T.K.; Hausner, G.; Yuan, Q. Production of Endoglucanase and Xylanase Using Food Waste by Solid-State Fermentation. Waste Biomass Valorization 2018, 9, 2391–2398. [Google Scholar] [CrossRef]
- Camassola, M.; Dillon, A.J.P. Cellulases and Xylanases Production by Penicillium Echinulatum Grown on Sugar Cane Bagasse in Solid-State Fermentation. Appl. Biochem. Biotechnol. 2010, 162, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Sen, B.; Chou, Y.-P.; Wu, S.-Y.; Liu, C.-M. Pretreatment Conditions of Rice Straw for Simultaneous Hydrogen and Ethanol Fermentation by Mixed Culture. Int. J. Hydrogen Energy 2016, 41, 4421–4428. [Google Scholar] [CrossRef]
- Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S.K.; Kumar, P. Current Status of Xylanase for Biofuel Production: A Review on Classification and Characterization. Biomass Convers. Biorefinery 2021, 13, 8773–8791. [Google Scholar] [CrossRef]
- Sunkar, B.; Kannoju, B.; Bhukya, B. Optimized Production of Xylanase by Penicillium Purpurogenum and Ultrasound Impact on Enzyme Kinetics for the Production of Monomeric Sugars From Pretreated Corn Cobs. Front. Microbiol. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Camassola, M.; Dillon, A.J.P. Production of Cellulases and Hemicellulases by Penicillium Echinulatum Grown on Pretreated Sugar Cane Bagasse and Wheat Bran in Solid-State Fermentation. J. Appl. Microbiol. 2007, 103, 2196–2204. [Google Scholar] [CrossRef]
- Lodha, A.; Pawar, S.; Rathod, V. Optimised Cellulase Production from Fungal Co-Culture of Trichoderma Reesei NCIM 1186 and Penicillium Citrinum NCIM 768 under Solid State Fermentation. J. Environ. Chem. Eng. 2020, 8, 103958. [Google Scholar] [CrossRef]
- Rastegari, A.A. Molecular Mechanism of Cellulase Production Systems in Penicillium; Elsevier B.V.: Amsterdam, The Netherlands, 2017; ISBN 9780444635013. [Google Scholar]
- Najjarzadeh, N.; Matsakas, L.; Rova, U.; Christakopoulos, P. Effect of Oligosaccharide Degree of Polymerization on the Induction of Xylan-Degrading Enzymes by Fusarium oxysporum f. Sp. Lycopersici. Molecules 2020, 25, 5849. [Google Scholar] [CrossRef]
- Krishna, C. Solid-State Fermentation Systems-An Overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef]
- Gillot, G.; Decourcelle, N.; Dauer, G.; Barbier, G.; Coton, E.; Delmail, D.; Mounier, J. 1-Octanol, a Self-Inhibitor of Spore Germination in Penicillium camemberti. Food Microbiol. 2016, 57, 8. [Google Scholar] [CrossRef]
H2SO4 Concentration | |||
---|---|---|---|
Sugars | 0.2 M | 0.6 M | 1 M |
Oligosaccharides | 92.87 ± 1.84 | 97.22 ± 3.09 | 88.24 ± 0.28 |
Glucose | ND | 0.13 ± 0.01 | 0.18 ± 0.01 |
Xylose | 0.17 ± 0.15 | 0.29 ± 0.08 | 2.12 ± 0.02 |
Galactose | 0.95 ± 0.15 | 0.57 ± 0.04 | 1.62 ± 0.03 |
Arabinose | 6.01 ± 2.15 | 7.90 ± 3.05 | 7.84 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Abundis, C.; Soltero-Sánchez, C.; Romero-Borbón, E.; Córdova, J. Cellulase and Xylanase Production by a Newly Isolated Penicillium crustosum Strain under Solid-State Fermentation, Using Water Hyacinth Biomass as Support, Substrate, and Inducer. Fermentation 2023, 9, 660. https://doi.org/10.3390/fermentation9070660
Espinoza-Abundis C, Soltero-Sánchez C, Romero-Borbón E, Córdova J. Cellulase and Xylanase Production by a Newly Isolated Penicillium crustosum Strain under Solid-State Fermentation, Using Water Hyacinth Biomass as Support, Substrate, and Inducer. Fermentation. 2023; 9(7):660. https://doi.org/10.3390/fermentation9070660
Chicago/Turabian StyleEspinoza-Abundis, César, Carlos Soltero-Sánchez, Evelyn Romero-Borbón, and Jesús Córdova. 2023. "Cellulase and Xylanase Production by a Newly Isolated Penicillium crustosum Strain under Solid-State Fermentation, Using Water Hyacinth Biomass as Support, Substrate, and Inducer" Fermentation 9, no. 7: 660. https://doi.org/10.3390/fermentation9070660
APA StyleEspinoza-Abundis, C., Soltero-Sánchez, C., Romero-Borbón, E., & Córdova, J. (2023). Cellulase and Xylanase Production by a Newly Isolated Penicillium crustosum Strain under Solid-State Fermentation, Using Water Hyacinth Biomass as Support, Substrate, and Inducer. Fermentation, 9(7), 660. https://doi.org/10.3390/fermentation9070660