Horse Manure and Lignocellulosic Biomass Characterization as Methane Production Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates
2.2. Physicochemical Analytical Methods
2.3. Biochemical Methane Potential
3. Results and Discussion
3.1. Characterization of the Biomass
3.1.1. Proximate Analysis
3.1.2. Elemental Analysis
3.1.3. Biochemical Composition
3.2. Biochemical Methane Potential of the Biomass
3.2.1. BMP Test Results
3.2.2. Kinetic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ADEME. Déchets Chiffres-Clés L’essentiel 2021. Brochure réf. 011723; ADEME: Angers, France, 2021. [Google Scholar]
- Kumar, R.; Singh, S.; Singh, O.V. Bioconversion of Lignocellulosic Biomass: Biochemical and Molecular Perspectives. J. Ind. Microbiol. Biotechnol. 2008, 35, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Parsons, A.E. Sustainable Equine Waste Management Practices in the Ile-de-France Region. Int. J. Theor. Appl. Mech. 2021, 88, 28864091. [Google Scholar]
- Forster-Carneiro, T.; Riau, V.; Pérez, M. Mesophilic Anaerobic Digestion of Sewage Sludge to Obtain Class B Biosolids: Microbiological Methods Development. Biomass Bioenergy 2010, 34, 1805–1812. [Google Scholar] [CrossRef]
- Petric, I.; Helić, A.; Avdić, E.A. Evolution of Process Parameters and Determination of Kinetics for Co-Composting of Organic Fraction of Municipal Solid Waste with Poultry Manure. Bioresour. Technol. 2012, 117, 107–116. [Google Scholar] [CrossRef]
- Youssefian, S.; Jakes, J.E.; Rahbar, N. Variation of Nanostructures, Molecular Interactions, and Anisotropic Elastic Moduli of Lignocellulosic Cell Walls with Moisture. Sci. Rep. 2017, 7, 2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Park, S.Y.; Zhu, J. Solid-State Anaerobic Digestion for Methane Production from Organic Waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Abbassi-Guendouz, A.; Trably, E.; Hamelin, J.; Dumas, C.; Steyer, J.P.; Delgenès, J.-P.; Escudié, R. Microbial Community Signature of High-Solid Content Methanogenic Ecosystems. Bioresour. Technol. 2013, 133, 256–262. [Google Scholar] [CrossRef]
- Ghislain, C.D. Approche de Determination du Potentiel Energetique des Residus Agricoles par voie de Digestion Anaerobie: Cas du Pseudo-Tronc de Bananier Plantain de Dangbo. Ecole Doctorale des Sciences de L’ingenieur (ed-sdi). Cotonou Benin 2018. [Google Scholar]
- Hadin, Å.; Eriksson, O. Horse Manure as Feedstock for Anaerobic Digestion. Waste Manag. 2016, 56, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Ponsá, S.; Gea, T.; Sánchez, A. Anaerobic Co-Digestion of the Organic Fraction of Municipal Solid Waste with Several Pure Organic Co-Substrates. Biosyst. Eng. 2011, 108, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Odejobi, O.J.; Ajala, O.O.; Osuolale, F.N. Anaerobic Co-Digestion of Kitchen Waste and Animal Manure: A Review of Operating Parameters, Inhibiting Factors, and Pretreatment with Their Impact on Process Performance. Biomass Convers. Biorefinery 2023, 13, 5515–5531. [Google Scholar] [CrossRef]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP Tests of Source Selected OFMSW to Evaluate Anaerobic Codigestion with Sewage Sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; He, Y.; Yu, X.; Banks, S.W.; Yang, Y.; Zhang, X.; Yu, Y.; Liu, R.; Bridgwater, A.V. Review of Physicochemical Properties and Analytical Characterization of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2017, 76, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Kwietniewska, E.; Tys, J. Process Characteristics, Inhibition Factors and Methane Yields of Anaerobic Digestion Process, with Particular Focus on Microalgal Biomass Fermentation. Renew. Sustain. Energy Rev. 2014, 34, 491–500. [Google Scholar] [CrossRef]
- Singh, G.; Jain, V.K.; Singh, A. Effect of Temperature and Other Factors on Anaerobic Digestion Process, Responsible for Bio Gas Production. Int. J. Theor. Appl. Mechanics. 2017, 12, 637–657. [Google Scholar]
- Yadvika; Santosh; Sreekrishnan, T.R.; Kohli, S.; Rana, V. Enhancement of Biogas Production from Solid Substrates Using Different Techniques–A Review. Bioresour. Technol. 2004, 95, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, Y.-W.; Jahng, D. Anaerobic Co-Digestion of Food Waste and Piggery Wastewater: Focusing on the Role of Trace Elements. Bioresour. Technol. 2011, 102, 5048–5059. [Google Scholar] [CrossRef]
- Gray, K.A.; Zhao, L.; Emptage, M. Bioethanol. Curr. Opin. Chem. Biol. 2006, 10, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Monlau, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.-P.; Carrère, H. Lignocellulosic Materials Into Biohydrogen and Biomethane: Impact of Structural Features and Pretreatment. Crit. Rev. Environ. Sci. Technol. 2013, 43, 260–322. [Google Scholar] [CrossRef]
- Shrestha, S.; Fonoll, X.; Khanal, S.K.; Raskin, L. Biological Strategies for Enhanced Hydrolysis of Lignocellulosic Biomass during Anaerobic Digestion: Current Status and Future Perspectives. Bioresour. Technol. 2017, 245, 1245–1257. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Surendra, K.C.; Takara, D.; Oechsner, H.; Khanal, S.K. Anaerobic Digestion of Lignocellulosic Biomass: Challenges and Opportunities. Bioresour. Technol. 2015, 178, 178–186. [Google Scholar] [CrossRef]
- Al Seadi, T.; Drosg, B.; Fuchs, W.; Rutz, D.; Janssen, R. Biogas Digestate Quality and Utilization. In The Biogas Handbook; Elsevier: Amsterdam, The Netherlands, 2013; pp. 267–301. ISBN 978-0-85709-498-8. [Google Scholar]
- Tian, W.; Chen, Y.; Shen, Y.; Zhong, C.; Gao, M.; Shi, D.; He, Q.; Gu, L. Effects of Hydrothermal Pretreatment on the Mono- and Co-Digestion of Waste Activated Sludge and Wheat Straw. Sci. Total Environ. 2020, 732, 139312. [Google Scholar] [CrossRef]
- Böske, J.; Wirth, B.; Garlipp, F.; Mumme, J.; Van den Weghe, H. Anaerobic Digestion of Horse Dung Mixed with Different Bedding Materials in an Upflow Solid-State (UASS) Reactor at Mesophilic Conditions. Bioresour. Technol. 2014, 158, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Čater, M.; Zorec, M.; Marinšek Logar, R. Methods for Improving Anaerobic Lignocellulosic Substrates Degradation for Enhanced Biogas Production. Springer Sci. Rev. 2014, 2, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Wartell, B.A.; Krumins, V.; Alt, J.; Kang, K.; Schwab, B.J.; Fennell, D.E. Methane Production from Horse Manure and Stall Waste with Softwood Bedding. Bioresour. Technol. 2012, 112, 42–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Banks, C.J.; Heaven, S. Anaerobic Digestion of Two Biodegradable Municipal Waste Streams. J. Environ. Manag. 2012, 104, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Heaven, S.; Banks, C.J. Strategies for Stable Anaerobic Digestion of Vegetable Waste. Renew. Energy 2012, 44, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Riggio, S.; Torrijos, M.; Debord, R.; Esposito, G.; van Hullebusch, E.D.; Steyer, J.P.; Escudié, R. Mesophilic Anaerobic Digestion of Several Types of Spent Livestock Bedding in a Batch Leach-Bed Reactor: Substrate Characterization and Process Performance. Waste Manag. 2017, 59, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, O.P.; Visvanathan, C. Bio-Energy Recovery from High-Solid Organic Substrates by Dry Anaerobic Bio-Conversion Processes: A Review. Rev. Environ. Sci. Biotechnol. 2013, 12, 257–284. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Liu, D. Biomass Recalcitrance. Part I: The Chemical Compositions and Physical Structures Affecting the Enzymatic Hydrolysis of Lignocellulose. Biofuels Bioprod. Bioref. 2012, 6, 465–482. [Google Scholar] [CrossRef]
- Victorin, M.; Davidsson, Å.; Wallberg, O. Characterization of Mechanically Pretreated Wheat Straw for Biogas Production. Bioenerg. Res. 2020, 13, 833–844. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Standards Used |
---|---|---|
Density | kg·m−3 | mass/volume |
Moisture content | % | Weight loss after water evaporation at 105 °C |
TS | % | Heating 105 °C NFISO 11465 |
VS | %TS | Ignition 550 °C NTU44-160 |
TOC | %TS | NFEN15936 |
N | %TS | NFEN16168 |
P | %TS | NFENISO11885 |
K | %TS | NFENISO11885 |
Mg | %TS | NFENISO11885 |
Ca | %TS | NFENISO11885 |
Cellulose | g·gVS−1 | Van Soest method |
Hemicellulose | g·gVS−1 | Van Soest method |
Lignin | g·gVS−1 | Van Soest method |
Wheat Straw (WS) | Wood Chips (WC) | Horse Manure (HM) | |
---|---|---|---|
Density (kg·m−3) | 115.1 ± 25.4 | 195.2 ± 92.2 | 566.4 ± 138 |
(n = 21) | (n = 12) | (n = 21) | |
Humidity (%) | 50.3 ± 17.7 | 51.7 ± 12.1 | 66.1 ± 11.4 |
(n = 22) | (n = 13) | (n = 22) | |
TS (%) | 49.7 ± 17.7 | 48.3 ± 12.1 | 33.9 ± 11.4 |
(n = 22) | (n = 13) | (n = 22) | |
VS (%TS) | 89.2 ± 5 | 94.5 ± 2.3 | 72.3 ± 21.2 |
(n = 22) | (n = 13) | (n = 22) | |
TOC (%TS) | 38.1 ± 4.8 | 29.9 ± 3 | 30.2 ± 5.7 |
(n = 9) | (n = 4) | (n = 9) | |
TN (%TS) | 0.9 ± 0.1 | 1 ± 0.3 | 1 ± 0.5 |
(n = 9) | (n = 4) | (n = 9) | |
P (%TS) | 0.3 ± 0.1 | 0.5 ± 0.2 | 1.3 ± 0.6 |
(n = 9) | (n = 4) | (n = 9) | |
K (%TS) | 1.6 ± 0.3 | 1.4 ± 0.7 | 1.3 ± 0.6 |
(n = 9) | (n = 4) | (n = 9) | |
Mg (%TS) | 0.2 ± 0.01 | 0.4 ± 0.1 | 0.4 ± 0.2 |
(n = 9) | (n = 4) | (n = 9) | |
Ca (%TS) | 0.9 ± 0.3 | 1.4 ± 0.3 | 1.1 ± 0.7 |
(n = 9) | (n = 4) | (n = 9) | |
C/N | 46.4 ± 7.7 | 33.8 ± 11.3 | 32.3 ± 9.5 |
(n = 9) | (n = 4) | (n = 9) | |
Cellulose (%TS) | 43 | 49.27 | 39.97 |
(n = 3) | (n = 3) | (n = 3) | |
Hemicellulose (%TS) | 24.97 | 17.45 | 28 |
(n = 3) | (n = 3) | (n = 3) | |
Lignin (%TS) | 17.7 | 22.83 | 9.19 |
(n = 3) | (n = 3) | (n = 3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naji, A.; Rechdaoui, S.G.; Jabagi, E.; Lacroix, C.; Azimi, S.; Rocher, V. Horse Manure and Lignocellulosic Biomass Characterization as Methane Production Substrates. Fermentation 2023, 9, 580. https://doi.org/10.3390/fermentation9060580
Naji A, Rechdaoui SG, Jabagi E, Lacroix C, Azimi S, Rocher V. Horse Manure and Lignocellulosic Biomass Characterization as Methane Production Substrates. Fermentation. 2023; 9(6):580. https://doi.org/10.3390/fermentation9060580
Chicago/Turabian StyleNaji, Amar, Sabrina Guérin Rechdaoui, Elise Jabagi, Carlyne Lacroix, Sam Azimi, and Vincent Rocher. 2023. "Horse Manure and Lignocellulosic Biomass Characterization as Methane Production Substrates" Fermentation 9, no. 6: 580. https://doi.org/10.3390/fermentation9060580
APA StyleNaji, A., Rechdaoui, S. G., Jabagi, E., Lacroix, C., Azimi, S., & Rocher, V. (2023). Horse Manure and Lignocellulosic Biomass Characterization as Methane Production Substrates. Fermentation, 9(6), 580. https://doi.org/10.3390/fermentation9060580