Lipase from Yarrowia lipolytica: Prospects as an Industrial Biocatalyst for Biotechnological Applications
Abstract
:1. Introduction
2. Lipase Biosynthesis from Extreme Yeasts
3. Context of Y. lipolytica in a Bibliometric Review
4. Applications of the Lipases from Y. lipolytica
5. Preparation of Immobilized Biocatalysts of Lipases from Y. lipolytica
5.1. Lipases from Y. lipolytica Immobilization
5.1.1. Immobilization of Lipases from Y. lipolytica on Hydrophobic Supports
5.1.2. Use of Heterobifunctional Supports to Prevent Enzyme Release
5.1.3. Modulation of Lipases from Y. lipolytica Properties via Immobilization on Different Supports
5.2. Physical or Chemical Modification of Y. lipolytica Lipases to Modulate Enzymatic Properties
5.3. Co-Immobilization of Lipases from Y. lipolytica and Other Enzymes
6. Bioreactor Designs for Uses of Lipases from Y. lipolytica
7. Future Trends
8. Patents with Lipases from Y. lipolytica
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heux, S.; Meynial-Salles, I.; O’Donohue, M.J.; Dumon, C. White Biotechnology: State of the Art Strategies for the Development of Biocatalysts for Biorefining. Biotechnol. Adv. 2015, 33, 1653–1670. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Singhania, D.M.; Saini, D.N. Systems Approach to Environment, Social and Governance (ESG): Case of Reliance Industries. Sustain. Oper. Comput. 2022, 3, 103–117. [Google Scholar] [CrossRef]
- De Sousa, I.G.; Mota, G.F.; Cavalcante, A.L.G.; Rocha, T.G.; Da Silva Sousa, P.; Holanda Alexandre, J.Y.N.; Da Silva Souza, J.E.; Neto, F.S.; Cavalcante, F.T.T.; Lopes, A.A.S.; et al. Renewable Processes of Synthesis of Biolubricants Catalyzed by Lipases. J. Environ. Chem. Eng. 2023, 11, 109006. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; Cavalcante, A.L.G.; de Sousa, I.G.; Neto, F.S.; dos Santos, J.C.S. Current Status and Future Perspectives of Supports and Protocols for Enzyme Immobilization. Catalysts 2021, 11, 1222. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; de A. Falcão, I.R.; da S. Souza, J.E.; Rocha, T.G.; de Sousa, I.G.; Cavalcante, A.L.G.; de Oliveira, A.L.B.; de Sousa, M.C.M.; dos Santos, J.C.S. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem 2021, 2, 149–184. [Google Scholar] [CrossRef]
- Valério, R.B.R.; da Silva, N.A.; Junior, J.R.P.; Chaves, A.V.; de Oliveira, B.P.; Souza, N.F.; de Morais, S.M.; dos Santos, J.C.S.; Abreu, F.O.M.d.S. Chitosan-Based Nanoparticles for Cardanol-Sustained Delivery System. Polymers 2022, 14, 4695. [Google Scholar] [CrossRef]
- dos Santos, J.C.S.; Dhenadhayalan, N.; Li, Y.; Pinilla, J.L. Editorial: Chemical Reactions and Catalysis for a Sustainable Future. Front. Chem. 2023, 11, 100248. [Google Scholar] [CrossRef]
- Nogueira, R.C.; Neto, F.S.; Junior, P.G.d.S.; Valério, R.B.R.; Serpa, J.d.F.; Lima, A.M.d.S.; de Souza, M.C.M.; de Lima, R.K.C.; Lopes, A.A.S.; Guimarães, A.P.; et al. Research Trends and Perspectives on Hydrothermal Gasification in Producing Biofuels. Energy Nexus 2023, 10, 100199. [Google Scholar] [CrossRef]
- Haque, S.; Singh, R.; Harakeh, S.; Teklemariam, A.D.; Alharthy, S.A.; Tripathi, S.C.; Singh, R.P.; Aly Hassan, A.; Srivastava, N.; Gupta, V.K. Enzyme-Based Biocatalysis for the Treatment of Organic Pollutants and Bioenergy Production. Curr. Opin. Green Sustain. Chem. 2022, 38, 100709. [Google Scholar] [CrossRef]
- Domínguez de María, P. Biocatalysis, Sustainability, and Industrial Applications: Show Me the Metrics. Curr. Opin. Green Sustain. Chem. 2021, 31, 100514. [Google Scholar] [CrossRef]
- Brandão Júnior, J.; Andrade do Nascimento, J.G.; França Silva, M.P.; Lima Brandão, E.d.A.; de Castro Bizerra, V.; dos Santos, K.M.; Serpa, J.d.F.; dos Santos, J.C.S.; da Fonseca, A.M.; Vasconcelos de Oliveira, D.L.; et al. Performance of Eversa Transform 2.0 Lipase in Ester Production Using Babassu Oil (Orbignya sp.) and Tucuman Oil (Astrocaryum vulgar): A Comparative Study between Liquid and Immobilized Forms in Fe3O4 Nanoparticles. Catalysts 2023, 13, 571. [Google Scholar] [CrossRef]
- Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Ortiz, C.; Berenguer-Murcia, Á.; Barbosa, O.; Rodrigues, R.C.; Fernandez-Lafuente, R. Lecitase Ultra: A Phospholipase with Great Potential in Biocatalysis. Mol. Catal. 2019, 473, 110405. [Google Scholar] [CrossRef] [Green Version]
- Moreira, K.S.; Moura Júnior, L.S.; Monteiro, R.R.C.; de Oliveira, A.L.B.; Valle, C.P.; Freire, T.M.; Fechine, P.B.A.; de Souza, M.C.M.; Fernandez-Lorente, G.; Guisan, J.M.; et al. Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts 2020, 10, 414. [Google Scholar] [CrossRef] [Green Version]
- Fickers, P.; Marty, A.; Nicaud, J.M. The Lipases from Yarrowia lipolytica: Genetics, Production, Regulation, Biochemical Characterization and Biotechnological Applications. Technol. Biotechnol. Adv. 2011, 29, 632–644. [Google Scholar] [CrossRef]
- Akil, E.; Carvalho, T.; Bárea, B.; Finotelli, P.; Lecomte, J.; Torres, A.G.; Amaral, P.; Villeneuve, P. Accessing Regio-and Typo-Selectivity of Yarrowia lipolytica Lipase in Its Free Form and Immobilized onto Magnetic Nanoparticles. Biochem. Eng. J. 2016, 109, 101–111. [Google Scholar] [CrossRef]
- Barrera-Rivera, K.A.; Martínez-Richa, A. Yarrowia lipolytica Extracellular Lipase Lip2 as Biocatalyst for the Ring-Opening Polymerization of ε-Caprolactone. Molecules 2017, 22, 1917. [Google Scholar] [CrossRef] [Green Version]
- Bruder, S.; Moldenhauer, E.J.; Lemke, R.D.; Ledesma-Amaro, R.; Kabisch, J. Drop-in Biofuel Production Using Fatty Acid Photodecarboxylase from Chlorella Variabilis in the Oleaginous Yeast Yarrowia lipolytica. Technol. Biotechnol. Biofuels 2019, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Shimada, Y.; Watanabe, Y.; Sugihara, A.; Tominaga, Y. Enzymatic Alcoholysis for Biodiesel Fuel Production and Application of the Reaction to Oil Processing. J. Mol. Catal. B Enzym. 2002, 17, 133–142. [Google Scholar] [CrossRef]
- Mota, G.F.; de Sousa, I.G.; de Oliveira, A.L.B.; Cavalcante, A.L.G.; Moreira, K.d.S.; Cavalcante, F.T.T.; Souza, J.E.d.S.; Falcão, Í.R.d.A.; Rocha, T.G.; Valério, R.B.R.; et al. Biodiesel Production from Microalgae Using Lipase-Based Catalysts: Current Challenges and Prospects. Algal Res. 2022, 62, 102616. [Google Scholar] [CrossRef]
- Park, Y.K.; Ledesma-Amaro, R. What Makes Yarrowia lipolytica Well Suited for Industry? Trends Technol. Biotechnol. 2023, 41, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, J.; Xu, J.; Zhang, T.; Deng, Y.; He, J. Citric Acid Production in Yarrowia lipolytica SWJ-1b Yeast When Grown on Waste Cooking Oil. Appl. Biochem. Technol. Biotechnol. 2015, 175, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Kamzolova, S.V.; Finogenova, T.V.; Lunina, Y.N.; Perevoznikova, O.A.; Minachova, L.N.; Morgunov, I.G. Characteristics of the Growth on Rapeseed Oil and Synthesis of Citric and Isocitric Acids by Yarrowia lipolytica Yeasts. Microbiology 2007, 76, 20–24. [Google Scholar] [CrossRef]
- Walker, C.; Ryu, S.; Trinh, C.T. Exceptional Solvent Tolerance in Yarrowia lipolytica Is Enhanced by Sterols. Metab. Eng. 2019, 54, 83–95. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Omotehinwa, T.O. Examining the Developments in Scheduling Algorithms Research: A Bibliometric Approach. Heliyon 2022, 8, e09510. [Google Scholar] [CrossRef] [PubMed]
- Ramdass, A.C.; Rampersad, S.N. Detection and Diversity of the Mannosylerythritol Lipid (MEL) Gene Cluster and Lipase A and B Genes of Moesziomyces Antarcticus Isolated from Terrestrial Sites Chronically Contaminated with Crude Oil in Trinidad. BMC Microbiol. 2022, 22, 43. [Google Scholar] [CrossRef]
- Anantayanon, J.; Jeennor, S.; Panchanawaporn, S.; Chutrakul, C.; Laoteng, K. Significance of Two Intracellular Triacylglycerol Lipases of Aspergillus Oryzae in Lipid Mobilization: A Perspective in Industrial Implication for Microbial Lipid Production. Gene 2021, 793, 145745. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chu, Y.; Zhang, Q.; Zhou, R.; Yu, D.; Wang, S.; Lyu, L.; Xu, G.; Zhao, Z.K. Genetic Manipulation of the Interconversion between Diacylglycerols and Triacylglycerols in Rhodosporidium Toruloides. Front. Bioeng. Technol. Biotechnol. 2022, 10, 2026. [Google Scholar] [CrossRef]
- Zan, X.; Cui, F.; Sun, J.; Zhou, S.; Song, Y. Novel Dual-Functional Enzyme Lip10 Catalyzes Lipase and Acyltransferase Activities in the Oleaginous Fungus Mucor Circinelloides. J. Agric. Food Chem. 2019, 67, 13176–13184. [Google Scholar] [CrossRef]
- Wierzchowska, K.; Zieniuk, B.; Fabiszewska, A. Use of Non-Conventional Yeast Yarrowia lipolytica in Treatment or Upgradation of Hydrophobic Industry Wastes. Waste Biomass Valorization 2021, 13, 757–779. [Google Scholar] [CrossRef]
- Verdasco-Martín, C.M.; Villalba, M.; dos Santos, J.C.S.; Tobajas, M.; Fernandez-Lafuente, R.; Otero, C. Effect of Chemical Modification of Novozym 435 on Its Performance in the Alcoholysis of Camelina Oil. Biochem. Eng. J. 2016, 111, 75–86. [Google Scholar] [CrossRef]
- Sales, M.B.; Borges, P.T.; Ribeiro Filho, M.N.; Miranda da Silva, L.R.; Castro, A.P.; Sanders Lopes, A.A.; Chaves de Lima, R.K.; de Sousa Rios, M.A.; dos Santos, J.C.S. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioengineering 2022, 9, 539. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.Y.N.H.; Cavalcante, F.T.T.; Freitas, L.M.; Castro, A.P.; Borges, P.T.; de Sousa Junior, P.G.; Filho, M.N.R.; Lopes, A.A.S.; da Fonseca, A.M.; Lomonaco, D.; et al. A Theoretical and Experimental Study for Enzymatic Biodiesel Production from Babassu Oil (Orbignya sp.) Using Eversa Lipase. Catalysts 2022, 12, 1322. [Google Scholar] [CrossRef]
- Velasco-Lozano, S.; Rocha-Martin, J.; dos Santos, J.C.S. Editorial: Designing Carrier-Free Immobilized Enzymes for Biocatalysis. Front. Bioeng. Technol. Biotechnol. 2022, 10, 823. [Google Scholar] [CrossRef]
- Luthierre Gama Cavalcante, A.; Gama Cavalcante, C.; Paulo Colares, R.; Alves Ferreira, D.; Felipe Maia da Silva, F.; Yvay Almeida de Sousa, E.; Erick da Silva Souza, J.; Ramilton de Castro Monteiro, R.; Luiz Barros de Oliveira, A.; Cleiton Sousa dos Santos, J.; et al. Preparation, Characterization, and Enantioselectivity of Polyacrylate Microcapsules Entrapping Ananas Comosus Extract. Rev. Virtual Química 2021, 13, 1319–1329. [Google Scholar] [CrossRef]
- Carvalho, A.C.L.d.M.; de Oliveira, B.R.; Lima, G.V.; Negreiro, J.M.; Oliveira, M.C.F.; de Lemos, T.L.G.; da Silva, M.R.; Fonseca, T.d.S.; Bezerra, R.M.; dos Santos, J.C.S.; et al. Resolution of Racemic Aryloxy-Propan-2-Yl Acetates via Lipase-Catalyzed Hydrolysis: Preparation of Enantiomerically Pure/Enantioenriched Mexiletine Intermediates and Analogs. Catalysts 2022, 12, 1566. [Google Scholar] [CrossRef]
- Zinjanab, M.S.; Golmakani, M.T.; Eskandari, M.H.; Toh, M.; Liu, S.Q. Yeast-Lactobacillus Co-Cultures as in Situ Ethanol Producers for Flavor Ester Synthesis Using Lipase in Fermented Milks. Appl. Food Biotechnol. 2021, 8, 151–160. [Google Scholar] [CrossRef]
- Yang, K.; Qiao, Y.; Li, F.; Xu, Y.; Yan, Y.; Madzak, C.; Yan, J. Subcellular Engineering of Lipase Dependent Pathways Directed towards Lipid Related Organelles for Highly Effectively Compartmentalized Biosynthesis of Triacylglycerol Derived Products in Yarrowia lipolytica. Metab. Eng. 2019, 55, 231–238. [Google Scholar] [CrossRef]
- Snopek, P.; Nowak, D.; Zieniuk, B.; Fabiszewska, A. Aeration and Stirring in Yarrowia lipolytica Lipase Biosynthesis during Batch Cultures with Waste Fish Oil as a Carbon Source. Fermentation 2021, 7, 88. [Google Scholar] [CrossRef]
- Osuji, G.; Johnson, P. Structural Properties of the RNA Synthesized by Glutamate Dehydrogenase for the Degradation of Total RNA. Adv. Enzym. Res. 2018, 6, 29–52. [Google Scholar] [CrossRef] [Green Version]
- Nobusawa, T.; Yamakawa-Ayukawa, K.; Saito, F.; Nomura, S.; Takami, A.; Ohta, H. A Homolog of Arabidopsis SDP1 Lipase in Nannochloropsis Is Involved in Degradation of de Novo-Synthesized Triacylglycerols in the Endoplasmic Reticulum. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2019, 1864, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Wierzchowska, K.; Zieniuk, B.; Nowak, D.; Fabiszewska, A. Phosphorus and Nitrogen Limitation as a Part of the Strategy to Stimulate Microbial Lipid Biosynthesis. Appl. Sci. 2021, 11, 11819. [Google Scholar] [CrossRef]
- Marullo, P.; Trujillo, M.; Viannais, R.; Hercman, L.; Guillaumie, S.; Colonna-Ceccaldi, B.; Albertin, W.; Barbe, J.C. Metabolic, Organoleptic and Transcriptomic Impact of Saccharomyces cerevisiae Genes Involved in the Biosynthesis of Linear and Substituted Esters. Int. J. Mol. Sci. 2021, 22, 4026. [Google Scholar] [CrossRef]
- Nour, H.; Daoui, O.; Abchir, O.; ElKhattabi, S.; Belaidi, S.; Chtita, S. Combined Computational Approaches for Developing New Anti-Alzheimer Drug Candidates: 3D-QSAR, Molecular Docking and Molecular Dynamics Studies of Liquiritigenin Derivatives. Heliyon 2022, 8, e11991. [Google Scholar] [CrossRef] [PubMed]
- Soong, Y.H.V.; Liu, N.; Yoon, S.; Lawton, C.; Xie, D. Cellular and Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Bioconversion of Hydrophobic Substrates into High-Value Products. Eng. Life Sci. 2019, 19, 423–443. [Google Scholar] [CrossRef] [Green Version]
- Robert, J.M.; Betancur, M.O.; Machado, A.C.O.; Arruda, A.; Reis, V.C.B.; Almeida, R.V.; Torres, F.A.G.; Alegre, P.F.; Valero, F.; Freire, D.M.G. Increase of Candida Antarctica Lipase B Production under PGK Promoter in Pichia Pastoris: Effect of Multicopies. Braz. J. Microbiol. 2019, 50, 405–413. [Google Scholar] [CrossRef]
- Dervisi, I.; Valassakis, C.; Agalou, A.; Papandreou, N.; Podia, V.; Haralampidis, K.; Iconomidou, V.A.; Kouvelis, V.N.; Spaink, H.P.; Roussis, A. Investigation of the Interaction of DAD1-LIKE LIPASE 3 (DALL3) with Selenium Binding Protein 1 (SBP1) in Arabidopsis thaliana. Plant. Sci. 2020, 291, 110357. [Google Scholar] [CrossRef]
- Ali, S.S.; Al-Tohamy, R.; Koutra, E.; El-Naggar, A.H.; Kornaros, M.; Sun, J. Valorizing Lignin-like Dyes and Textile Dyeing Wastewater by a Newly Constructed Lipid-Producing and Lignin Modifying Oleaginous Yeast Consortium Valued for Biodiesel and Bioremediation. J. Hazard. Mater. 2021, 403, 123575. [Google Scholar] [CrossRef]
- Theron, C.W.; Vandermies, M.; Telek, S.; Steels, S.; Fickers, P. Comprehensive Comparison of Yarrowia lipolytica and Pichia Pastoris for Production of Candida Antarctica Lipase B. Sci. Rep. 2020, 10, 1741. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Corona, R.; Carlos González-Hernández, J.; Biomédicas, C. Hongos Y Levaduras: Fábricas De Lipasas. Interciencia 2019, 44, 378–385. [Google Scholar]
- Mohamed, S.S.; Ahmed, H.M.; El-Bendary, M.A.; Moharam, M.E.; Amin, H.A. Response Surface Methodology for Optimization of Rhizopus Stolonifer 1aNRC11 Mutant F Whole-Cell Lipase Production as a Biocatalyst for Methanolysis of Waste Frying Oil. Biocatal. Biotransformation 2021, 39, 232–240. [Google Scholar] [CrossRef]
- Brito e Cunha, D.A.; Bartkevihi, L.; Robert, J.M.; Cipolatti, E.P.; Ferreira, A.T.S.; Oliveira, D.M.P.; Gomes-Neto, F.; Almeida, R.V.; Fernandez-Lafuente, R.; Freire, D.M.G.; et al. Structural Differences of Commercial and Recombinant Lipase B from Candida Antarctica: An Important Implication on Enzymes Thermostability. Int. J. Biol. Macromol. 2019, 140, 761–770. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, J.; Benaiges, M.D.; Valero, F. Constitutive Expression in Komagataella Phaffii of Mature Rhizopus oryzae Lipase Jointly with Its Truncated Prosequence Improves Production and the Biocatalyst Operational Stability. Catalysts 2021, 11, 1192. [Google Scholar] [CrossRef]
- Xu, L.; Xiao, X.; Wang, F.; He, Y.; Yang, X.; Hu, J.; Feng, Z.; Yan, Y. Surface-Displayed Thermostable Candida Rugosa Lipase 1 for Docosahexaenoic Acid Enrichment. Appl. Biochem. Technol. Biotechnol. 2020, 190, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Janek, T.; Mirończuk, A.M.; Rymowicz, W.; Dobrowolski, A. High-Yield Expression of Extracellular Lipase from Yarrowia lipolytica and Its Interactions with Lipopeptide Biosurfactants: A Biophysical Approach. Arch. Biochem. Biophys. 2020, 689, 108475. [Google Scholar] [CrossRef]
- Colacicco, M.; Ciliberti, C.; Agrimi, G.; Biundo, A.; Pisano, I. Towards the Physiological Understanding of Yarrowia lipolytica Growth and Lipase Production Using Waste Cooking Oils. Energies 2022, 15, 5217. [Google Scholar] [CrossRef]
- Hao, Y.; Zheng, X.; Zhang, X.; Zhang, K.; Lin, Y.; Liang, S. Combined Strategies for Engineering a Novel Whole-Cell Biocatalyst of Candida Rugosa Lipase with Improved Characteristics. Biochem. Eng. J. 2019, 151, 107337. [Google Scholar] [CrossRef]
- Wachowska, U.; Pluskota, W.; Jastrzębski, J.P.; Głowacka, K.; Szablewska-Stuper, K.; Balcerzak, M. A Method for Reducing the Concentrations of Fusarium Graminearum Trichothecenes in Durum Wheat Grain with the Use of Debaryomyces Hansenii. Int. J. Food Microbiol. 2023, 397, 110211. [Google Scholar] [CrossRef]
- Matten, K.J.; Hashikawa, S.; Harada, K. Preclinical Safety Evaluation of Lipase OF from Candida Cylindracea. J. Appl. Toxicol. 2023, 43, 517–533. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Liang, L.; Godana, E.A.; Zhang, X.; Yang, X.; Wu, M.; Song, Y.; Zhang, H. Changes in Quality and Microbiome Composition of Strawberry Fruits Following Postharvest Application of Debaryomyces hansenii, a Yeast Biocontrol Agent. Postharvest. Biol. Technol. 2023, 202, 112379. [Google Scholar] [CrossRef]
- Zieniuk, B.; Mazurczak-Zieniuk, P.; Fabiszewska, A. Exploring the Impact of Lipid-Rich Food Industry Waste Carbon Sources on the Growth of Candida Cylindracea DSM 2031. Fermentation 2020, 6, 122. [Google Scholar] [CrossRef]
- Catumba, B.D.; Sales, M.B.; Borges, P.T.; Ribeiro Filho, M.N.; Lopes, A.A.S.; de Sousa Rios, M.A.; Desai, A.S.; Bilal, M.; dos Santos, J.C.S. Sustainability and Challenges in Hydrogen Production: An Advanced Bibliometric Analysis. Int. J. Hydrog. Energy 2022, 22, 7975–7992. [Google Scholar] [CrossRef]
- Chen, C.; Chitose, A.; Kusadokoro, M.; Nie, H.; Xu, W.; Yang, F.; Yang, S. Sustainability and challenges in biodiesel production from waste cooking oil: An advanced bibliometric analysis. Energy Rep. 2021, 7, 4022–4034. [Google Scholar] [CrossRef]
- Souza, J.E.d.S.; de Oliveira, G.P.; Alexandre, J.Y.N.H.; Neto, J.G.L.; Sales, M.B.; Junior, P.G.d.S.; de Oliveira, A.L.B.; de Souza, M.C.M.; dos Santos, J.C.S. A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. Electrochem 2022, 3, 89–113. [Google Scholar] [CrossRef]
- Rodrigues, A.F.S.; da Silva, A.F.; da Silva, F.L.B.; dos Santos, K.M.; de Oliveira, M.P.; Nobre, M.M.R.; Catumba, B.D.; Sales, M.B.; Silva, A.R.M.; Braz, A.K.S.; et al. A Scientometric Analysis of Research Progress and Trends in the Design of Laccase Biocatalysts for the Decolorization of Synthetic Dyes. Process. Biochem. 2023, 126, 272–291. [Google Scholar] [CrossRef]
- Sales, M.B.; Neto, J.G.L.; De Sousa Braz, A.K.; De Sousa Junior, P.G.; Melo, R.L.F.; Valério, R.B.R.; Serpa, J.d.F.; Da Silva Lima, A.M.; De Lima, R.K.C.; Guimarães, A.P.; et al. Trends and Opportunities in Enzyme Biosensors Coupled to Metal-Organic Frameworks (MOFs): An Advanced Bibliometric Analysis. Electrochem 2023, 4, 181–211. [Google Scholar] [CrossRef]
- Neto, F.S.; Fernandes de Melo Neta, M.M.; Sales, M.B.; Silva de Oliveira, F.A.; de Castro Bizerra, V.; Sanders Lopes, A.A.; de Sousa Rios, M.A.; dos Santos, J.C.S. Research Progress and Trends on Utilization of Lignocellulosic Residues as Supports for Enzyme Immobilization via Advanced Bibliometric Analysis. Polymers 2023, 15, 2057. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha, M.M.E.; Moni, S.S.; Alsayegh, A.A. Bibliometric Mapping of Solid Lipid Nanoparticles Research (2012–2022) Using VOSviewer. Med. Nov. Technol. Devices 2023, 17, 100217. [Google Scholar] [CrossRef]
- Almeida, F.L.C.; Castro, M.P.J.; Travália, B.M.; Forte, M.B.S. Trends in Lipase Immobilization: Bibliometric Review and Patent Analysis. Process. Biochem. 2021, 110, 37–51. [Google Scholar] [CrossRef]
- Fickers, P.; Benetti, P.H.; Waché, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.M. Hydrophobic Substrate Utilisation by the Yeast Yarrowia lipolytica, and Its Potential Applications. FEMS Yeast Res. 2005, 5, 527–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papanikolaou, S.; Muniglia, L.; Chevalot, I.; Aggelis, G.; Marc, I. Yarrowia lipolytica as a Potential Producer of Citric Acid from Raw Glycerol. J. Appl. Microbiol. 2002, 92, 737–744. [Google Scholar] [CrossRef]
- Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M.N. Magnetic Nanoparticles as Versatile Carriers for Enzymes Immobilization: A Review. Int. J. Biol. Macromol. 2018, 120, 2530–2544. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, M.C.; Freire, D.M.G. A Review on Hydrolytic Enzymes in the Treatment of Wastewater with High Oil and Grease Content. Bioresour. Technol. 2006, 97, 2195–2210. [Google Scholar] [CrossRef] [PubMed]
- Nicaud, J.M.; Madzak, C.; Van Den Broek, P.; Gysler, C.; Duboc, P.; Niederberger, P.; Gaillardin, C. Protein Expression and Secretion in the Yeast Yarrowia lipolytica. FEMS Yeast Res. 2002, 2, 371–379. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z. Engineering Strategies for Enhanced Production of Protein and Bio-Products in Pichia Pastoris: A Review. Technol. Biotechnol. Adv. 2018, 36, 182–195. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Baudet, M.; Cuiné, S.; Adriano, J.M.; Barthe, D.; Billon, E.; Bruley, C.; Beisson, F.; Peltier, G.; Ferro, M.; et al. Proteomic Profiling of Oil Bodies Isolated from the Unicellular Green Microalga Chlamydomonas Reinhardtii: With Focus on Proteins Involved in Lipid Metabolism. Proteomics 2011, 11, 4266–4273. [Google Scholar] [CrossRef]
- Bankar, A.V.; Kumar, A.R.; Zinjarde, S.S. Environmental and Industrial Applications of Yarrowia lipolytica. Appl. Microbiol. Technol. Biotechnol. 2009, 84, 847–865. [Google Scholar] [CrossRef]
- Dulermo, T.; Nicaud, J.M. Involvement of the G3P Shuttle and Β-Oxidation Pathway in the Control of TAG Synthesis and Lipid Accumulation in Yarrowia lipolytica. Metab. Eng. 2011, 13, 482–491. [Google Scholar] [CrossRef]
- Lee, G.-H.; Bae, J.-H.; Suh, M.-J.; Kim, I.-H.; T’ou, C.; Kim, H.-R. New Finding and Optimal Production of a Novel Extracellular Alkaline Lipase from Yarrowia lipolytica NRRL Y-2178. J. Microbiol. Biotechnol. 2007, 17, 1054–1057. [Google Scholar]
- Ping, L.; Yuan, X.; Zhang, M.; Chai, Y.; Shan, S. Improvement of Extracellular Lipase Production by a Newly Isolated Yarrowia lipolytica Mutant and Its Application in the Biosynthesis of L-Ascorbyl Palmitate. Int. J. Biol. Macromol. 2018, 106, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Heard, G.M.; Fleet, G.H. Yarrowia (Candida) Lipolytica. In Encyclopedia of Food Microbiology; Richard, K.R., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 360–365. [Google Scholar]
- Liu, H.H.; Ji, X.J.; Huang, H. Biotechnological Applications of Yarrowia lipolytica: Past, Present and Future. Technol. Biotechnol. Adv. 2015, 33, 1522–1546. [Google Scholar] [CrossRef] [PubMed]
- Madzak, C. Yarrowia Lipolytica: Recent Achievements in Heterologous Protein Expression and Pathway Engineering. Appl. Microbiol. Technol. Biotechnol. 2015, 99, 4559–4577. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, F.A.G.; Colen, G.; Takahashi, J.A. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry. Sci. World J. 2014, 2014, 476207. [Google Scholar] [CrossRef] [Green Version]
- Nagappan, A.; Park, K.I.; Park, H.S.; Kim, J.A.; Hong, G.E.; Kang, S.R.; Lee, D.H.; Kim, E.H.; Lee, W.S.; Won, C.K.; et al. Vitamin C Induces Apoptosis in AGS Cells by Down-Regulation of 14-3-3σ via a Mitochondrial Dependent Pathway. Food Chem. 2012, 135, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Zheng, X.B.; Zhang, S.P.; Zheng, Y.G. Cloning, Expression and Characterization of a Lipase Gene from the Candida Antarctica ZJB09193 and Its Application in Biosynthesis of Vitamin A Esters. Microbiol. Res. 2012, 167, 452–460. [Google Scholar] [CrossRef]
- Yu, C.; Zhixin, L.; Zuyao, Z.; Feng, Z.; Duo, L.; Xianghuai, L.; Jianzhong, T.; Weimin, Z.; Bo, H. High Yield Antibiotic Producing Mutants of Streptomyces Erythreus Induced by Low Energy Ion Implantation. Nucl. Instrum. Methods Phys. Res. B 1998, 140, 341–348. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Deng, C.; Zhong, H.; Gu, T.; Goh, K.L.; Han, Z.; Zheng, M.; Zhou, Y. Green and Efficient Synthesis of Highly Liposoluble and Antioxidant L-Ascorbyl Esters by Immobilized Lipases. J. Clean Prod. 2022, 379, 134772. [Google Scholar] [CrossRef]
- Beopoulos, A.; Cescut, J.; Haddouche, R.; Uribelarrea, J.L.; Molina-Jouve, C.; Nicaud, J.M. Yarrowia lipolytica as a Model for Bio-Oil Production. Prog. Lipid Res. 2009, 48, 375–387. [Google Scholar] [CrossRef]
- Casaregola, S.; Neuvéglise, C.; Lépingle, A.; Bon, E.; Feynerol, C.; Artiguenave, F.; Wincker, P.; Gaillardin, C. Genomic Exploration of the Hemiascomycetous Yeasts: 17. Yarrowia lipolytica. FEBS Lett. 2000, 487, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Alloue, W.A.M.; Destain, J.; Ongena, M.; Blecker, C.; Thonart, P. Effect of Monopropylene Glycol and Gamma Irradiation on Yarrowia lipolytica Lipase Stabilization. Prep. Biochem. Technol. Biotechnol. 2008, 38, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Al-Malah, K.; Azzam, M.O.J.; Abu-Lail, N.I. Olive Mills Effluent (OME) Wastewater Post-Treatment Using Activated Clay. Sep. Purif. Technol. 2000, 20, 225–234. [Google Scholar] [CrossRef]
- Scioli, C.; Vollaro, L. The use of Yarrowia lipolytica to reduce pollution in olive mill wastewaters. Water Res. 1997, 31, 2520–2524. [Google Scholar] [CrossRef]
- Song, H.; Zhou, L.; Zhang, L.; Gao, B.; Wei, D.; Shen, Y.; Wang, R.; Madzak, C.; Jiang, Z. Construction of a Whole-Cell Catalyst Displaying a Fungal Lipase for Effective Treatment of Oily Wastewaters. J. Mol. Catal. B Enzym. 2011, 71, 166–170. [Google Scholar] [CrossRef]
- Lanciotti, R.; Gianotti, A.; Baldi, D.; Angrisani, R.; Suzzi, G.; Mastrocola, D.; Guerzoni, M.E. Use of Yarrowia lipolytica Strains for the Treatment of Olive Mill Wastewater. Bioresour. Technol. 2005, 96, 317–322. [Google Scholar] [CrossRef]
- Oswal, N.; Sarma, P.M.; Zinjarde, S.S.; Pant, A. Palm Oil Mill Effluent Treatment by a Tropical Marine Yeast. Bioresour. Technol. 2002, 85, 35–37. [Google Scholar] [CrossRef]
- Gonçalves, C.; Lopes, M.; Ferreira, J.P.; Belo, I. Biological Treatment of Olive Mill Wastewater by Non-Conventional Yeasts. Bioresour. Technol. 2009, 100, 3759–3763. [Google Scholar] [CrossRef] [Green Version]
- Imandi, S.B.; Bandaru, V.V.R.; Somalanka, S.R.; Bandaru, S.R.; Garapati, H.R. Application of Statistical Experimental Designs for the Optimization of Medium Constituents for the Production of Citric Acid from Pineapple Waste. Bioresour. Technol. 2008, 99, 4445–4450. [Google Scholar] [CrossRef]
- Yano, Y.; Oikawa, H.; Satomi, M. Reduction of Lipids in Fish Meal Prepared from Fish Waste by a Yeast Yarrowia lipolytica. Int. J. Food Microbiol. 2008, 121, 302–307. [Google Scholar] [CrossRef]
- Li, N.; Zong, M.H. Lipases from the Genus Penicillium: Production, Purification, Characterization and Applications. J. Mol. Catal. B Enzym. 2010, 66, 43–54. [Google Scholar] [CrossRef]
- Matsuoka, H.; Miura, A.; Hori, K. Symbiotic Effects of a Lipase-Secreting Bacterium, Burkholderia Arboris SL1B1, and a Glycerol-Assimilating Yeast, Candida Cylindracea SL1B2, on Triacylglycerol Degradation. J. Biosci. Bioeng. 2009, 107, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Mafakher, L.; Mirbagheri, M.; Darvishi, F.; Nahvi, I.; Zarkesh-Esfahani, H.; Emtiazi, G. Isolation of Lipase and Citric Acid Producing Yeasts from Agro-Industrial Wastewater. New Biotechnol. 2010, 27, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Jach, M.E.; Malm, A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022, 27, 2300. [Google Scholar] [CrossRef]
- Roostita, R.; Fleet, G.H. The Occurrence and Growth of Yeasts in Camembert and Blue-Veined Cheeses. Int. J. Food Microbiol. 1996, 28, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Hassanshahian, M.; Tebyanian, H.; Cappello, S. Isolation and Characterization of Two Crude Oil-Degrading Yeast Strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar. Pollut Bull. 2012, 64, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ge, G.; Wan, J. Biodegradation of Oil Wastewater by Free and Immobilized Yarrowia lipolytica W29. J. Environ. Sci. 2009, 21, 237–242. [Google Scholar] [CrossRef]
- Martins, F.F.; Ferreira, T.F.; Azevedo, D.A.; Coelho, M.A.Z. Coelho Evaluation of Crude Oil Degradation by Yarrowia lipolytica. Chem. Eng. Trans. 2012, 27, 223–228. [Google Scholar] [CrossRef]
- da Silva, L.V.; Tavares, C.B.; Amaral, P.F.; Coelho, M.A.Z. Production of Citric Acid by Yarrowia lipolytica in Different Crude Glycerol Concentrations and in Different Nitrogen Sources. Chem. Eng. Trans. 2012, 27, 199–204. [Google Scholar] [CrossRef]
- Braun, A.; Geier, M.; Bühler, B.; Schmid, A.; Mauersberger, S.; Glieder, A. Steroid Biotransformations in Biphasic Systems with Yarrowia lipolytica Expressing Human Liver Cytochrome P450 Genes. Microb. Cell Fact. 2012, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Doruk Aracagök, Y.; cίhangίr, N. Decolorization of Reactive Black 5 by Yarrowia lipolytica NBRC 1658. Am. J. Microbiol. Res. 2013, 1, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Moradi, H.; Asadollahi, M.A.; Nahvi, I. Improved γ-Decalactone Production from Castor Oil by Fed-Batch Cultivation of Yarrowia lipolytica. Biocatal. Agric. Technol. Biotechnol. 2013, 2, 64–68. [Google Scholar] [CrossRef]
- Casas-Godoy, L.; Meunchan, M.; Cot, M.; Duquesne, S.; Bordes, F.; Marty, A. Yarrowia lipolytica Lipase Lip2: An Efficient Enzyme for the Production of Concentrates of Docosahexaenoic Acid Ethyl Ester. J. Technol. Biotechnol. 2014, 180, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, M.R.; López-Núñez, J.C.; Jones, M.A.; Cox, E.J.; Pinkelman, R.J.; Bang, S.S.; Moser, B.R.; Jackson, M.A.; Iten, L.B.; Kurtzman, C.P.; et al. Irradiation of Yarrowia lipolytica NRRL YB-567 Creating Novel Strains with Enhanced Ammonia and Oil Production on Protein and Carbohydrate Substrates. Appl. Microbiol. Technol. Biotechnol. 2015, 99, 9723–9743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louhasakul, Y.; Cheirsilp, B.; Prasertsan, P. Valorization of Palm Oil Mill Effluent into Lipid and Cell-Bound Lipase by Marine Yeast Yarrowia lipolytica and Their Application in Biodiesel Production. Waste Biomass Valorization 2016, 7, 417–426. [Google Scholar] [CrossRef]
- Cui, C.; Guan, N.; Xing, C.; Chen, B.; Tan, T. Immobilization of Yarrowia lipolytica Lipase Ylip2 for the Biocatalytic Synthesis of Phytosterol Ester in a Water Activity Controlled Reactor. Colloids Surf. B Biointerfaces 2016, 146, 490–497. [Google Scholar] [CrossRef]
- Horincar, G.; Horincar, V.B.; Gottardi, D.; Bahrim, G. Tailoring the Potential of Yarrowia lipolytica for Bioconversion of Raw Palm Fat for Antimicrobials Production. LWT 2017, 80, 335–340. [Google Scholar] [CrossRef]
- Cybulski, K.; Tomaszewska-Hetman, L.; Rymowicz, W.; Rakicka, M.; Rywińska, A. Yarrowia lipolytica Application as a Prospective Approach for Biosynthesis of Pyruvic Acid from Glycerol. Chem. Pap. 2018, 72, 3077–3083. [Google Scholar] [CrossRef] [Green Version]
- de Souza, C.E.C.; Ribeiro, B.D.; Coelho, M.A.Z. Characterization and Application of Yarrowia lipolytica Lipase Obtained by Solid-State Fermentation in the Synthesis of Different Esters Used in the Food Industry. Appl. Biochem. Technol. Biotechnol. 2019, 189, 933–959. [Google Scholar] [CrossRef]
- Dunoyer, A.T.; Cuello, R.E.G.; Salinas, R.P. Biodegradation of Dairy Wastes Using Crude Enzymatic Extract of Yarrowia lipolytica ATCC 9773. Ambiente. E Agua.—Interdiscip. J. Appl. Sci. 2020, 15, 1. [Google Scholar] [CrossRef]
- Hamimed, S.; Barkaoui, T.; Trabelsi, I.; Landoulsi, A.; Chatti, A. High-Performance Biological Treatment of Tuna Wash Processing Wastewater Using Yarrowia lipolytica. Environ. Sci. Pollut. Res. 2021, 28, 1545–1554. [Google Scholar] [CrossRef]
- Darvishi, F.; Fathi, Z.; Ariana, M.; Moradi, H. Yarrowia lipolytica as a Workhorse for Biofuel Production. Biochem. Eng. J. 2017, 127, 87–96. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a Raw Material for Biofuels Production. J. Ind. Microbiol. Technol. Biotechnol. 2009, 36, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Matsushika, A.; Inoue, H.; Kodaki, T.; Sawayama, S. Ethanol Production from Xylose in Engineered Saccharomyces cerevisiae Strains: Current State and Perspectives. Appl. Microbiol. BioTechnol. 2009, 84, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Valle-Rodríguez, J.O.; Khoomrung, S.; Siewers, V.; Nielsen, J. Functional Expression and Characterization of Five Wax Ester Synthases in Saccharomyces cerevisiae and Their Utility for Biodiesel Production. Technol. Biotechnol. Biofuels 2012, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Xie, D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front. Bioeng. Technol. Biotechnol. 2017, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Akil, E.; Pereira, A.d.S.; El-Bacha, T.; Amaral, P.F.F.; Torres, A.G. Efficient Production of Bioactive Structured Lipids by Fast Acidolysis Catalyzed by Yarrowia lipolytica Lipase, Free and Immobilized in Chitosan-Alginate Beads, in Solvent-Free Medium. Int. J. Biol. Macromol. 2020, 163, 910–918. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.P.; Liu, S.; Wang, Y.L.; Zhang, Z.F.; Liu, X.M.; Du, Y.M.; Yuan, X.L. Overexpression of Secreted Sucrose Isomerase in Yarrowia lipolytica and Its Application in Isomaltulose Production after Immobilization. Int. J. Biol. Macromol. 2019, 121, 97–103. [Google Scholar] [CrossRef]
- Matran, R.M.; Galaction, A.I.; Blaga, A.C.; Turnea, M.; Caşcaval, D. Distribution of Mixing Efficiency in a Split-Cylinder Gas-Lift Bioreactor with Immobilized Yarrowia lipolytica Cells Used for Olive Oil Mill Wastewater Treatment. Chem. Eng. Commun. 2016, 203, 666–675. [Google Scholar] [CrossRef]
- Feng, W.; Sun, X.; Ji, P. Activation Mechanism of Yarrowia lipolytica Lipase Immobilized on Carbon Nanotubes. Soft Matter 2012, 8, 7143–7150. [Google Scholar] [CrossRef]
- Mupa, M.; Kubara, R.; Gere, J. Extraction, Growth and Immobilization of Yarrowia lipolytica Yeast Cells for Dye Effluent Treatment. Arch. Environ. Prot. 2018, 44, 48–54. [Google Scholar] [CrossRef]
- Casas-Godoy, L.; Marty, A.; Sandoval, G.; Ferreira-Dias, S. Optimization of Medium Chain Length Fatty Acid Incorporation into Olive Oil Catalyzed by Immobilized Lip2 from Yarrowia lipolytica. Biochem. Eng. J. 2013, 77, 20–27. [Google Scholar] [CrossRef]
- Synthesis, Biological Activity, and In Silico Study of Bioesters Derived from Bixin by the CALB Enzyme. Biointerface Res. Appl. Chem. 2021, 12, 5901–5917. [CrossRef]
- Understanding the Biocatalytic Potential of Lipase from Rhizopus Chinensis. Biointerface Res. Appl. Chem. 2021, 12, 4230–4260. [CrossRef]
- de Carvalho Selvati Rezende, D.; das Graças Cardoso, M.; Souza, R.; Teixeira, M.; Brandão, R.; Ferreira, V.; Nogueira, J.; Magalhães, M.; Marcussi, S.; Nelson, D. Essential Oils from Mentha piperita, Cymbopogon citratus, Rosmarinus officinalis, Peumus boldus and Foeniculum vulgare: Inhibition of Phospholipase A2 and Cytotoxicity to Human Erythrocytes. Am. J. Plant Sci. 2017, 8, 2196–2207. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, L.B.; Cavalcante, T.T.; Moreira, S.; Monteiro, R.C.; Rocha, G.; Souza, E.S.; da Fonseca, M.; Lopes, A.S.; Guimarães, P.; de Lima, K.C.; et al. Lipases Immobilized onto Nanomaterials as Biocatalysts in Biodiesel Production: Scientific Context, Challenges, and Opportunities. Rev. Virtual Química. 2021, 13, 875–891. [Google Scholar] [CrossRef]
- Moreira, K.d.S.; de Oliveira, A.L.B.; Júnior, L.S.d.M.; Monteiro, R.R.C.; da Rocha, T.N.; Menezes, F.L.; Fechine, L.M.U.D.; Denardin, J.C.; Michea, S.; Freire, R.M.; et al. Lipase From Rhizomucor Miehei Immobilized on Magnetic Nanoparticles: Performance in Fatty Acid Ethyl Ester (FAEE) Optimized Production by the Taguchi Method. Front. Bioeng. Technol. Biotechnol. 2020, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, I.G.; Chaves, A.V.; de Oliveira, A.L.B.; Moreira, K.d.S.; de Sousa Junior, P.G.; Simão Neto, F.; de Carvalho, S.C.F.; Valério, R.B.R.; Lima, G.V.; Lopes, A.A.S.; et al. A Novel Hybrid Biocatalyst from Immobilized Eversa ® Transform 2.0 Lipase and Its Application in Biolubricant Synthesis. Biocatal. Biotransformation 2022, 41, 1–22. [Google Scholar] [CrossRef]
- Califano, V.; Costantini, A. Immobilization of Cellulolytic Enzymes in Mesostructured Silica Materials. Catalysts 2020, 10, 706. [Google Scholar] [CrossRef]
- Sun, T.; Dong, Z.; Wang, J.; Huang, F.-H.H.; Zheng, M.-M.M.; Sun, T.; Dong, Z.; Wang, J.; Huang, F.-H.H. Ultrasound-Assisted Interfacial Immobilization of Lipase on Hollow Mesoporous Silica Spheres in a Pickering Emulsion System: A Hyperactive and Sustainable Biocatalyst. ACS Sustain. Chem. Eng. 2020, 8, 17280–17290. [Google Scholar] [CrossRef]
- Zhao, L.; Li, S.; Liang, C.; Qiao, L.; Du, K. High-strength and low-crystallinity cellulose/agarose composite microspheres: Fabrication, characterization and protein adsorption. Biochem. Eng. J. 2021, 166, 107826. [Google Scholar] [CrossRef]
- Ying, W.; Shi, Z.; Yang, H.; Xu, G.; Zheng, Z.; Yang, J. Effect of Alkaline Lignin Modification on Cellulase–Lignin Interactions and Enzymatic Saccharification Yield. Technol. Biotechnol. Biofuels 2018, 11, 214. [Google Scholar] [CrossRef] [PubMed]
- Rueda, N.; dos Santos, J.C.S.; Ortiz, C.; Barbosa, O.; Fernandez-Lafuente, R.; Torres, R. Chemical Amination of Lipases Improves Their Immobilization on Octyl-Glyoxyl Agarose Beads. Catal. Today 2016, 259, 107–118. [Google Scholar] [CrossRef]
- Cabrera, M.P.; da Fonseca, T.F.; de Souza, R.V.B.; de Assis, C.R.D.; Quispe Marcatoma, J.; Maciel, J.d.C.; Neri, D.F.M.; Soria, F.; de Carvalho, L.B. Polyaniline-Coated Magnetic Diatomite Nanoparticles as a Matrix for Immobilizing Enzymes. Appl. Surf. Sci. 2018, 457, 21–29. [Google Scholar] [CrossRef]
- dos Santos, J.C.S.; Garcia-Galan, C.; Rodrigues, R.C.; de Sant’Ana, H.B.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Stabilizing Hyperactivated Lecitase Structures through Physical Treatment with Ionic Polymers. Process. Biochem. 2014, 49, 1511–1515. [Google Scholar] [CrossRef]
- dos Santos, J.C.S.; Garcia-Galan, C.; Rodrigues, R.C.; de Sant’ Ana, H.B.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Improving the Catalytic Properties of Immobilized Lecitase via Physical Coating with Ionic Polymers. Enzym. Microb. Technol. 2014, 60, 1–8. [Google Scholar] [CrossRef]
- Bonazza, H.L.; Manzo, R.M.; dos Santos, J.C.S.; Mammarella, E.J. Operational and Thermal Stability Analysis of Thermomyces Lanuginosus Lipase Covalently Immobilized onto Modified Chitosan Supports. Appl. Biochem. Technol. Biotechnol. 2018, 184, 182–196. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Barbosa, O.; Hernandez, K.; Santos, J.; Rodrigues, R.; Fernandez-Lafuente, R. Evaluation of Styrene-Divinylbenzene Beads as a Support to Immobilize Lipases. Molecules 2014, 19, 7629–7645. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.C.; Hernandez, K.; Barbosa, O.; Rueda, N.; Garcia-Galan, C.; C. S. dos Santos, J.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Immobilization of Proteins in Poly-Styrene-Divinylbenzene Matrices: Functional Properties and Applications. Curr. Org. Chem. 2015, 19, 1707–1718. [Google Scholar] [CrossRef] [Green Version]
- Ferrarezi, A.; Pivetta, D.; Bonilla-Rodriguez, G.; Silva, R.; Guisan, J.; Gomes, E.; Pessela, B. Partial purification, immobilization and preliminary biochemical characterization of lipases from Rhizomucor pusillus. Adv. Enzym. Res. 2013, 1, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.; Silva, F.; dos Santos, J.; Fernández-Lafuente, R.; Lemos, T.; Dias Filho, F. Synthesis of Benzyl Acetate Catalyzed by Lipase Immobilized in Nontoxic Chitosan-Polyphosphate Beads. Molecules 2017, 22, 2165. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, J.C.S.; Rueda, N.; Barbosa, O.; Fernández-Sánchez, J.F.; Medina-Castillo, A.L.; Ramón-Márquez, T.; Arias-Martos, M.C.; Millán-Linares, M.C.; Pedroche, J.; Yust, M.d.M.; et al. Characterization of Supports Activated with Divinyl Sulfone as a Tool to Immobilize and Stabilize Enzymes via Multipoint Covalent Attachment. Application to Chymotrypsin. RSC Adv. 2015, 5, 20639–20649. [Google Scholar] [CrossRef] [Green Version]
- Kharrat, N.; Ali, Y.B.; Marzouk, S.; Gargouri, Y.T.; Karra-Châabouni, M. Immobilization of Rhizopus oryzae Lipase on Silica Aerogels by Adsorption: Comparison with the Free Enzyme. Process. Biochem. 2011, 46, 1083–1089. [Google Scholar] [CrossRef]
- Gao, Z.; Chu, J.; Jiang, T.; Xu, T.; Wu, B.; He, B. Lipase Immobilization on Functionalized Mesoporous TiO2: Specific Adsorption, Hyperactivation and Application in Cinnamyl Acetate Synthesis. Process. Biochem. 2018, 64, 152–159. [Google Scholar] [CrossRef]
- Pacheco, S.; Júnior, A.; Morgado, A.; Júnior, A.; Amadi, O.; Guisán, J.; e Pessela, B. Isolamento e Triagem de Fungos Filamentosos Produtores de Lipase Extracelular com Potencial em Biodiesel Produção. Adv. Enzym. Res. 2015, 3, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Kashefi, S.; Borghei, S.M.; Mahmoodi, N.M. Covalently Immobilized Laccase onto Graphene Oxide Nanosheets: Preparation, Characterization, and Biodegradation of Azo Dyes in Colored Wastewater. J. Mol. Liq. 2019, 276, 153–162. [Google Scholar] [CrossRef]
- Chi, M.C.; Huang, Y.F.; Lu, B.Y.; Lin, M.G.; Wang, T.F.; Lin, L.L. Magnetic Cross-Linked Enzyme Aggregates of a Transpeptidase-Specialized Variant (N450d) of Bacillus Licheniformis γ-Glutamyl Transpeptidase: An Efficient and Stable Biocatalyst for l-Theanine Synthesis. Catalysts 2021, 11, 243. [Google Scholar] [CrossRef]
- da Fonseca, A.M.; Cleiton Sousa dos Santos, J.; de Souza, M.C.M.; de Oliveira, M.M.; Colares, R.P.; de Lemos, T.L.G.; Braz-Filho, R. The Use of New Hydrogel Microcapsules in Coconut Juice as Biocatalyst System for the Reaction of Quinine. Ind. Crop. Prod. 2020, 145, 111890. [Google Scholar] [CrossRef]
- Rueda, N.; dos Santos, J.C.S.; Torres, R.; Ortiz, C.; Barbosa, O.; Fernandez-Lafuente, R. Immobilization of Lipases on Heterofunctional Octyl–Glyoxyl Agarose Supports. Methods Enzymol. 2016, 571, 73–85. [Google Scholar]
- Monteiro, R.R.C.; dos Santos, J.C.S.; Alcántara, A.R.; Fernandez-Lafuente, R. Enzyme-Coated Micro-Crystals: An Almost Forgotten but Very Simple and Elegant Immobilization Strategy. Catalysts 2020, 10, 891. [Google Scholar] [CrossRef]
- Rueda, N.; dos Santos, J.C.S.; Torres, R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Reactivation of Lipases by the Unfolding and Refolding of Covalently Immobilized Biocatalysts. RSC Adv. 2015, 5, 55588–55594. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, R.R.C.; Neto, D.M.A.; Fechine, P.B.A.; Lopes, A.A.S.; Gonçalves, L.R.B.; dos Santos, J.C.S.; de Souza, M.C.M.; Fernandez-Lafuente, R. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida Antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts’ Performance under Ultrasonic Irradiation. Int. J. Mol. Sci. 2019, 20, 5807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da S. Moreira, K.; Barros de Oliveira, A.L.; Saraiva de Moura Júnior, L.; Germano de Sousa, I.; Luthierre Gama Cavalcante, A.; Simão Neto, F.; Bussons Rodrigues Valério, R.; Valério Chaves, A.; de Sousa Fonseca, T.; Morais Vieira Cruz, D.; et al. Taguchi Design-Assisted Co-Immobilization of Lipase A and B from Candida Antarctica onto Chitosan: Characterization, Kinetic Resolution Application, and Docking Studies. Chem. Eng. Res. Des. 2022, 177, 223–244. [Google Scholar] [CrossRef]
- de Oliveira, U.M.F.; Lima de Matos, L.J.B.; de Souza, M.C.M.; Pinheiro, B.B.; dos Santos, J.C.S.; Gonçalves, L.R.B. Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts’ Properties of Rhizomucor Miehei Lipase onto Chitosan. Appl. Biochem. Technol. Biotechnol. 2018, 184, 1263–1285. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galan, C.; dos Santos, J.C.S.; Barbosa, O.; Torres, R.; Pereira, E.B.; Corberan, V.C.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Tuning of Lecitase Features via Solid-Phase Chemical Modification: Effect of the Immobilization Protocol. Process. Biochem. 2014, 49, 604–616. [Google Scholar] [CrossRef]
- Pinheiro, M.P.; Monteiro, R.R.C.; Silva, F.F.M.; Lemos, T.L.G.; Fernandez-Lafuente, R.; Gonçalves, L.R.B.; dos Santos, J.C.S. Modulation of Lecitase Properties via Immobilization on Differently Activated Immobead-350: Stabilization and Inversion of Enantiospecificity. Process. Biochem. 2019, 87, 128–137. [Google Scholar] [CrossRef]
- Secundo, F. Conformational Changes of Enzymes upon Immobilisation. Chem. Soc. Rev. 2013, 42, 6250. [Google Scholar] [CrossRef] [PubMed]
- Morato, N.M.; Holden, D.T.; Cooks, R.G. High-Throughput Label-Free Enzymatic Assays Using Desorption Electrospray-Ionization Mass Spectrometry. Angew. Chem. Int. Ed. 2020, 59, 20459–20464. [Google Scholar] [CrossRef]
- Guo, J.; Gan, C.; Cheng, B.; Cui, B.; Yi, F. Exploration of Binding Mechanism of Apigenin to Pepsin: Spectroscopic Analysis, Molecular Docking, Enzyme Activity and Antioxidant Assays. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 290, 122281. [Google Scholar] [CrossRef]
- Villalba, M.; Verdasco-Martín, C.M.; dos Santos, J.C.S.; Fernandez-Lafuente, R.; Otero, C. Operational Stabilities of Different Chemical Derivatives of Novozym 435 in an Alcoholysis Reaction. Enzym. Microb. Technol. 2016, 90, 35–44. [Google Scholar] [CrossRef]
- Cavalcante, A.L.G.; Chaves, A.V.; Fechine, P.B.A.; Holanda Alexandre, J.Y.N.; Freire, T.M.; Davi, D.M.B.; Neto, F.S.; de Sousa, I.G.; da Silva Moreira, K.; de Oliveira, A.L.B.; et al. Chemical Modification of Clay Nanocomposites for the Improvement of the Catalytic Properties of Lipase A from Candida Antarctica. Process. Biochem. 2022, 120, 1–14. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; de Oliveira, A.L.B.; de Menezes, F.L.; de Souza, M.C.M.; Fechine, P.B.A.; dos Santos, J.C.S. Improvement of Enzymatic Activity and Stability of Lipase A from Candida Antartica onto Halloysite Nanotubes with Taguchi Method for Optimized Immobilization. Appl. Clay Sci. 2022, 228, 106634. [Google Scholar] [CrossRef]
- Silva, A.; Alexandre, J.; Souza, J.; Neto, J.; de Sousa Júnior, P.; Rocha, M.; dos Santos, J. The Chemistry and Applications of Metal–Organic Frameworks (MOFs) as Industrial Enzyme Immobilization Systems. Molecules 2022, 27, 4529. [Google Scholar] [CrossRef] [PubMed]
- Bedő, Z.; Bélafi-Bakó, K.; Nemestóthy, N.; Gubicza, L. Production of A Biolubricant by Enzymatic Esterification: Possible Synergism Between Ionic Liquid and Enzyme. Hung. J. Ind. Chem. 2018, 46, 27–31. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Z.; Shi, J.; Tang, H.; Xiang, X.; Huang, F.; Zheng, M. Carbon Nanoparticle-Stabilized Pickering Emulsion as a Sustainable and High-Performance Interfacial Catalysis Platform for Enzymatic Esterification/Transesterification. ACS Sustain. Chem. Eng. 2019, 7, 7619–7629. [Google Scholar] [CrossRef]
- Chowdhury, A.; Mitra, D.; Biswas, D. Biolubricant Synthesis from Waste Cooking Oil via Enzymatic Hydrolysis Followed by Chemical Esterification. J. Chem. Technol. Biotechnol. 2013, 88, 139–144. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Virgen-Ortiz, J.J.; Berenguer-Murcia, Á.; da Rocha, T.N.; dos Santos, J.C.S.; Alcántara, A.R.; Fernandez-Lafuente, R. Biotechnological Relevance of the Lipase A from Candida Antarctica. Catal. Today 2021, 362, 141–154. [Google Scholar] [CrossRef]
- Lima, P.J.M.; da Silva, R.M.; Neto, C.A.C.G.; Gomes e Silva, N.C.; Souza, J.E.d.S.; Nunes, Y.L.; Sousa dos Santos, J.C. An Overview on the Conversion of Glycerol to Value-added Industrial Products via Chemical and Biochemical Routes. Technol. Biotechnol. Appl. Biochem. 2022, 69, 2794–2818. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; da Fonseca, A.M.; Holanda Alexandre, J.Y.N.; dos Santos, J.C.S. A Stepwise Docking and Molecular Dynamics Approach for Enzymatic Biolubricant Production Using Lipase Eversa® Transform as a Biocatalyst. Ind. Crop. Prod. 2022, 187, 115450. [Google Scholar] [CrossRef]
- Rocha, T.G.; de L. Gomes, P.H.; de Souza, M.C.M.; Monteiro, R.R.C.; dos Santos, J.C.S. Lipase Cocktail for Optimized Biodiesel Production of Free Fatty Acids from Residual Chicken Oil. Catal. Lett. 2021, 151, 1155–1166. [Google Scholar] [CrossRef]
- Souza, J.E.S.; Monteiro, R.R.C.; Rocha, T.G.; Moreira, K.S.; Cavalcante, F.T.T.; de Sousa Braz, A.K.; de Souza, M.C.M.; dos Santos, J.C.S. Sonohydrolysis Using an Enzymatic Cocktail in the Preparation of Free Fatty Acid. 3 Biotech 2020, 10, 254. [Google Scholar] [CrossRef]
- Vandermies, M.; Kar, T.; Carly, F.; Nicaud, J.M.; Delvigne, F.; Fickers, P. Yarrowia lipolytica Morphological Mutant Enables Lasting in Situ Immobilization in Bioreactor. Appl. Microbiol. Technol. Biotechnol. 2018, 102, 5473–5482. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, Q.; Feng, W.; Pan, K. Immobilization of Yarrowia lipolytica Lipase on Bamboo Charcoal to Resolve (R,S)-Phenylethanol in Organic Medium. Chem. Eng. Technol. 2013, 36, 1249–1254. [Google Scholar] [CrossRef]
- Botelho, A.; Penha, A.; Fraga, J.; Barros-Timmons, A.; Coelho, M.A.; Lehocky, M.; Štepánková, K.; Amaral, P. Yarrowia lipolytica Adhesion and Immobilization onto Residual Plastics. Polymers 2020, 12, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Chen, Y.; Sheng, J.; Sun, M. Immobilization of Yarrowia lipolytica Lipase on Macroporous Resin Using Different Methods: Characterization of the Biocatalysts in Hydrolysis Reaction. Biomed. Res. Int. 2015, 2015, 139179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, Y.L.; de Menezes, F.L.; de Sousa, I.G.; Cavalcante, A.L.G.; Cavalcante, F.T.T.; da Silva Moreira, K.; de Oliveira, A.L.B.; Mota, G.F.; da Silva Souza, J.E.; de Aguiar Falcão, I.R.; et al. Chemical and Physical Chitosan Modification for Designing Enzymatic Industrial Biocatalysts: How to Choose the Best Strategy? Int. J. Biol. Macromol. 2021, 181, 1124–1170. [Google Scholar] [CrossRef] [PubMed]
- Adlercreutz, P. Immobilisation and Application of Lipases in Organic Media. Chem. Soc. Rev. 2013, 42, 6406. [Google Scholar] [CrossRef] [Green Version]
- Farhan, L.O.; Mehdi, W.A.; Taha, E.M.; Farhan, A.M.; Mehde, A.A.; Özacar, M. Various Type Immobilizations of Isocitrate Dehydrogenases Enzyme on Hyaluronic Acid Modified Magnetic Nanoparticles as Stable Biocatalysts. Int. J. Biol. Macromol. 2021, 182, 217–227. [Google Scholar] [CrossRef]
- Jambulingam, R.; Shalma, M.; Shankar, V. Biodiesel Production Using Lipase Immobilised Functionalized Magnetic Nanocatalyst from Oleaginous Fungal Lipid. J. Clean Prod. 2019, 215, 245–258. [Google Scholar] [CrossRef]
- Alamsyah, G.; Albels, V.A.; Sahlan, M.; Hermansyah, H. Effect of Chitosan’s Amino Group in Adsorption-Crosslinking Immobilization of Lipase Enzyme on Resin to Catalyze Biodiesel Synthesis. Energy Procedia 2017, 136, 47–52. [Google Scholar] [CrossRef]
- Mokhtar, N.F.; Raja Noor Zaliha, R.N.Z.R.; Muhd Noor, N.D.; Mohd Shariff, F.; Ali, M.S.M.; Abd. Rahman, R.N.Z.R.; Muhd Noor, N.D.; Mohd Shariff, F.; Mohamad Ali, M.S. The Immobilization of Lipases on Porous Support by Adsorption and Hydrophobic Interaction Method. Catalysts 2020, 10, 744. [Google Scholar] [CrossRef]
- Nagy, F.; Gyujto, I.; Tasnádi, G.; Barna, B.; Balogh-Weiser, D.; Faber, K.; Poppe, L.; Hall, M. Design and application of a bi-functional redox biocatalyst through covalent co-immobilization of ene-reductase and glucose dehydrogenase. J. Biotechnol. 2020, 323, 246–253. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.L.; da Silva, M.F.; da Silva, S.P.; de Araújo, A.C.V.; Cavalcanti, J.V.F.L.; Converti, A.; Porto, T.S. Fructo-Oligosaccharides Production by an Aspergillus aculeatus Commercial Enzyme Preparation with Fructosyltransferase Activity Covalently Immobilized on Fe3O4–Chitosan-Magnetic Nanoparticles. Int. J. Biol. Macromol. 2020, 150, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.d.S.; Fraga, J.L.; Diniz, M.M.; Fontes-Sant’ana, G.C.; Amaral, P.F.F. High Catalytic Activity of Lipase from Yarrowia lipolytica Immobilized by Microencapsulation. Int. J. Mol. Sci. 2018, 19, 3393. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xu, Y.; Jiang, C. Efficient Biosynthesis of γ-Decalactone in Ionic Liquids by Immobilized Whole Cells of Yarrowia lipolytica G3-3.21 on Attapulgite. Bioprocess. Biosyst. Eng. 2015, 38, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Fraga, J.L.; Penha, A.C.B.; Pereira, A.d.S.; Silva, K.A.; Akil, E.; Torres, A.G.; Amaral, P.F.F. Use of Yarrowia lipolytica Lipase Immobilized in Cell Debris for the Production of Lipolyzed Milk Fat (Lmf). Int. J. Mol. Sci. 2018, 19, 3413. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guo, C.; Liu, C.Z. Efficient Kinetic Resolution of (R,S)-2-Octanol Catalyzed by Magnetite-Immobilized Yarrowia lipolytica Lipase in Mixed Ionic Liquids. Catal. Lett. 2014, 144, 1552–1556. [Google Scholar] [CrossRef]
- Fopase, R.; Paramasivam, S.; Kale, P.; Paramasivan, B. Strategies, Challenges and Opportunities of Enzyme Immobilization on Porous Silicon for Biosensing Applications. J. Environ. Chem. Eng. 2020, 8, 104266. [Google Scholar] [CrossRef]
- Gülay, S.; Şanlı-Mohamed, G. Immobilization of Thermoalkalophilic Recombinant Esterase Enzyme by Entrapment in Silicate Coated Ca-Alginate Beads and Its Hydrolytic Properties. Int. J. Biol. Macromol. 2012, 50, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Fideles, T.; Santos, J.; Tomás, H.; Furtado, G.; Lima, D.; Borges, S.; Fook, M. Characterization of Chitosan Membranes Crosslinked by Sulfuric Acid. Open Access Libr. J. 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Monteiro, R.R.C.; Lima, P.J.M.; Pinheiro, B.B.; Freire, T.M.; Dutra, L.M.U.; Fechine, P.B.A.; Gonçalves, L.R.B.; de Souza, M.C.M.; dos Santos, J.C.S.; Fernandez-Lafuente, R. Immobilization of Lipase A from Candida Antarctica onto Chitosan-Coated Magnetic Nanoparticles. Int. J. Mol. Sci. 2019, 20, 4018. [Google Scholar] [CrossRef] [Green Version]
- Stolarzewicz, I.A.; Zaborniak, P.; Fabiszewska, A.U.; Biaecka-Florjañczyk, E. Study on the Properties of Immobilized Biocatalysts with Lipase Activity Produced by Yarrowia lipolytica in Batch Culture. Chem. Biochem. Eng. Q 2017, 31, 251–259. [Google Scholar] [CrossRef]
- Molina-Fernández, C.; Péters, A.; Debecker, D.P.; Luis, P. Immobilization of Carbonic Anhydrase in a Hydrophobic Poly(Ionic Liquid): A New Functional Solid for CO2 Capture. Biochem. Eng. J. 2022, 187, 108639. [Google Scholar] [CrossRef]
- Yang, X.G.; Zhang, J.R.; Tian, X.K.; Qin, J.H.; Zhang, X.Y.; Ma, L.F. Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIF-8 Modified by Ni2+ Ions. Angew. Chem.—Int. Ed. 2022, 62, e202216699. [Google Scholar] [CrossRef]
- Vishwakarma, N.K.; Kumar Mahto, S. An Universal Approach of Catalyst Immobilization inside Hydrophobic PFA Tubing under Well Dispersed Manner for Continuous-Flow Applications. Chem. Eng. J. 2023, 452, 139347. [Google Scholar] [CrossRef]
- Silva, J.M.F.; dos Santos, K.P.; dos Santos, E.S.; Rios, N.S.; Gonçalves, L.R.B. Immobilization of Thermomyces Lanuginosus Lipase on a New Hydrophobic Support (Streamline PhenylTM): Strategies to Improve Stability and Reusability. Enzym. Microb. Technol. 2023, 163, 110166. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.J.; Silva, M.R.L.; Ferreira, E.E.A.; Carvalho, A.K.F.; Basso, R.C.; Pereira, E.B.; de Castro, H.F.; Mendes, A.A.; Hirata, D.B. Enzymatic biodiesel production by hydroesterification using waste cooking oil as feedstock. Chem. Eng. Process. -Process Intensif. 2020, 157, 108131. [Google Scholar] [CrossRef]
- Qiu, Z.; Han, H.; Wang, T.; Dai, R.; Wang, Z. Nanofoaming by surfactant tunes morphology and performance of polyamide nanofiltration membrane. Desalination 2020, 552, 116457. [Google Scholar] [CrossRef]
- Chong, S.L.; Cardoso, V.; Brás, J.L.A.; Gomes, M.Z.d.V.; Fontes, C.M.G.A.; Olsson, L. Immobilization of Bacterial Feruloyl Esterase on Mesoporous Silica Particles and Enhancement of Synthetic Activity by Hydrophobic-Modified Surface. Bioresour. Technol. 2019, 293, 122009. [Google Scholar] [CrossRef]
- Urata, C.; Tamura, Y.; Yamauchi, Y.; Kuroda, K. Preparation of Mesostructured Silica-Micelle Hybrids and Their Conversion to Mesoporous Silica Modified Controllably with Immobilized Hydrophobic Blocks by Using Triethoxysilyl-Terminated PEO-PPO-PEO Triblock Copolymer. J. Mater. Chem. 2011, 21, 3711–3717. [Google Scholar] [CrossRef]
- Pettinari, C.; Marchetti, F.; Pettinari, R.; Belousov, Y.A.; Taydakov, I.V.; Krasnobrov, V.D.; Petukhov, D.I.; Drozdov, A.A. Synthesis of Novel Lanthanide Acylpyrazolonato Ligands with Long Aliphatic Chains and Immobilization of the Tb Complex on the Surface of Silica Pre-Modified via Hydrophobic Interactions. Dalton Trans. 2015, 44, 14887–14895. [Google Scholar] [CrossRef]
- Gao, Y.; Truong, Y.B.; Cacioli, P.; Butler, P.; Kyratzis, I.L. Bioremediation of Pesticide Contaminated Water Using an Organophosphate Degrading Enzyme Immobilized on Nonwoven Polyester Textiles. Enzym. Microb. Technol. 2014, 54, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Nemeshwaree, B.; Brigitte, M.; Anne, P.; Kalim, B.; Pascal, D.; Anne-Sophie, M.; Rénato, F. Activity of Enzymes Immobilized on Plasma Treated Polyester. J. Mol. Catal. B Enzym. 2016, 134, 261–272. [Google Scholar] [CrossRef]
- Morshed, M.N.; Behary, N.; Bouazizi, N.; Guan, J.; Chen, G.; Nierstrasz, V. Surface Modification of Polyester Fabric Using Plasma-Dendrimer for Robust Immobilization of Glucose Oxidase Enzyme. Sci. Rep. 2019, 9, 15730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, E.J.; Lee, S.H.; Song, W.S.; Kim, H.R. Development of an Enzyme-Immobilized Support Using a Polyester Woven Fabric. Text. Res. J. 2017, 87, 3–14. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Rios, N.S.; Carballares, D.; Mendez-Sanchez, C.; Lokha, Y.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From Pseudomonas Fluorescens Immobilized on Octyl-Agarose Beads. Front. Bioeng. Technol. Biotechnol. 2020, 28, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokha, Y.; Arana-Peña, S.; Rios, N.S.; Mendez-Sanchez, C.; Gonçalves, L.R.B.; Lopez-Gallego, F.; Fernandez-Lafuente, R. Modulating the Properties of the Lipase from Thermomyces Lanuginosus Immobilized on Octyl Agarose Beads by Altering the Immobilization Conditions. Enzym. Microb. Technol. 2020, 133, 109461. [Google Scholar] [CrossRef] [PubMed]
- Arana-Peña, S.; Rios, N.S.; Mendez-Sanchez, C.; Lokha, Y.; Gonçalves, L.R.B.; Fernández-Lafuente, R. Use of Polyethylenimine to Produce Immobilized Lipase Multilayers Biocatalysts with Very High Volumetric Activity Using Octyl-Agarose Beads: Avoiding Enzyme Release during Multilayer Production. Enzym. Microb. Technol. 2020, 137, 109535. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, X.; Chen, D. Enhanced Catalysis of Yarrowia lipolytica Lipase LIP2 Immobilized on Macroporous Resin and Its Application in Enrichment of Polyunsaturated Fatty Acids. Bioresour. Technol. 2013, 131, 179–187. [Google Scholar] [CrossRef]
- Chen, Y.F.; Wang, C.H.; Chang, W.R.; Li, J.W.; Hsu, M.F.; Sun, Y.S.; Liu, T.Y.; Chiu, C.W. Hydrophilic-Hydrophobic Nanohybrids of AuNP-Immobilized Two-Dimensional Nanomica Platelets as Flexible Substrates for High-Efficiency and High-Selectivity Surface-Enhanced Raman Scattering Microbe Detection. ACS Appl. Bio. Mater. 2022, 5, 1073–1083. [Google Scholar] [CrossRef]
- Liu, X.; Lv, J.; Zhang, T.; Deng, Y. Direct Conversion of Pretreated Straw Cellulose into Citric Acid by Co-Cultures of Yarrowia lipolytica SWJ-1b and Immobilized Trichoderma Reesei Mycelium. Appl. Biochem. Technol. Biotechnol. 2014, 173, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Gokhale, D.; Chen, I.; Doyle, P.S. Coarse-Grained Molecular Dynamics Simulations of Immobilized Micelle Systems and Their Interactions with Hydrophobic Molecules. Soft Matter 2022, 18, 4625–4637. [Google Scholar] [CrossRef] [PubMed]
- Rostamabadi, H.; Falsafi, S.R.; Rostamabadi, M.M.; Assadpour, E.; Jafari, S.M. Electrospraying as a Novel Process for the Synthesis of Particles/Nanoparticles Loaded with Poorly Water-Soluble Bioactive Molecules. Adv. Colloid Interface Sci. 2021, 290, 102384. [Google Scholar] [CrossRef] [PubMed]
- Veeralingam, S.; Badhulika, S. Enzyme Immobilized Multi-Walled Carbon Nanotubes on Paper-Based Biosensor Fabricated via Mask-Less Hydrophilic and Hydrophobic Microchannels for Cholesterol Detection. J. Ind. Eng. Chem. 2022, 113, 401–410. [Google Scholar] [CrossRef]
- Ogata, M.; Sakamoto, M.; Yamauchi, N.; Nakazawa, M.; Koizumi, A.; Anazawa, R.; Kurumada, K.; Hidari, K.I.P.J.; Kono, H. Optimization of the Conditions for the Immobilization of Glycopolypeptides on Hydrophobic Silica Particulates and Simple Purification of Lectin Using Glycopolypeptide-Immobilized Particulates. Carbohydr Res. 2022, 519, 108624. [Google Scholar] [CrossRef]
- Pauli, O.; Ecker, A.; Cruz-Izquierdo, A.; Basso, A.; Serban, S. Visualizing Hydrophobic and Hydrophilic Enzyme Interactions during Immobilization by Means of Infrared Microscopy. Catalysts 2022, 12, 989. [Google Scholar] [CrossRef]
- Kaur, P.; Jana, A.K. Amino Functionalization of Magnetic Multiwalled Carbon Nanotubes with Flexible Hydrophobic Spacer for Immobilization of Candida Rugosa Lipase and Application in Biocatalytic Production of Fruit Flavour Esters Ethyl Butyrate and Butyl Butyrate. Appl. Nanosci. 2023, 13, 4291–4311. [Google Scholar] [CrossRef]
- de Menezes, L.H.S.; do Espírito Santo, E.L.; dos Santos, M.M.O.; de Carvalho Tavares, I.M.; Mendes, A.A.; Franco, M.; de Oliveira, J.R. Candida Rugosa Lipase Immobilized on Hydrophobic Support Accurel MP 1000 in the Synthesis of Emollient Esters. Technol. Biotechnol. Lett. 2022, 44, 89–99. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, C.; Sun, X.T.; Liu, C.Z. Improved Performance of Yarrowia lipolytica Lipase-Catalyzed Kinetic Resolution of (R,S)-2-Octanol by an Integrated Strategy of Interfacial Activation, Bioimprinting and Immobilization. Bioresour. Technol. 2013, 142, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Mól, P.C.G.; Veríssimo, L.A.A.; Minim, L.A.; da Silva, R. Adsorption and Immobilization of β-Glucosidase from Thermoascus Aurantiacus on Macroporous Cryogel by Hydrophobic Interaction. Prep. Biochem. Technol. Biotechnol. 2023, 53, 297–307. [Google Scholar] [CrossRef]
- Braga, A.; Belo, I. Immobilization of Yarrowia lipolytica for Aroma Production from Castor Oil. Appl. Biochem. Technol. Biotechnol. 2013, 169, 2202–2211. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.H.; Chen, B.Q.; Yang, N.; Wang, G.L.; Li, Y.; Tan, T.W. Oleic Acid Esterification in Solvent-Free Medium by Yarrowia lipolytica Lipase Immobilized on Fabric Membranes. J. Biobased Mater. Bioenergy 2010, 4, 73–78. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, B.; Lv, K.; Kumissay, L.; Wu, B.; Chu, J.; He, B. Specific Immobilization of Lipase on Functionalized 3D Printing Scaffolds via Enhanced Hydrophobic Interaction for Efficient Resolution of Racemic 1-Indanol. Biochem. Biophys. Res. Commun. 2021, 546, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, B.B.; Rios, N.S.; Rodríguez Aguado, E.; Fernandez-Lafuente, R.; Freire, T.M.; Fechine, P.B.A.; dos Santos, J.C.S.; Gonçalves, L.R.B. Chitosan Activated with Divinyl Sulfone: A New Heterofunctional Support for Enzyme Immobilization. Application in the Immobilization of Lipase B from Candida Antarctica. Int. J. Biol. Macromol. 2019, 130, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, R.M.; Monteiro, R.R.C.; Neto, D.M.A.; da Silva, F.F.M.; de Paula, R.C.M.; de Lemos, T.L.G.; Fechine, P.B.A.; Correa, M.A.; Bohn, F.; Gonçalves, L.R.B.; et al. A New Heterofunctional Support for Enzyme Immobilization: PEI Functionalized Fe3O4 MNPs Activated with Divinyl Sulfone. Application in the Immobilization of Lipase from Thermomyces Lanuginosus. Enzym. Microb. Technol. 2020, 138, 109560. [Google Scholar] [CrossRef]
- Okura, N.S.; Sabi, G.J.; Crivellenti, M.C.; Gomes, R.A.B.; Fernandez-Lafuente, R.; Mendes, A.A. Improved Immobilization of Lipase from Thermomyces Lanuginosus on a New Chitosan-Based Heterofunctional Support: Mixed Ion Exchange plus Hydrophobic Interactions. Int. J. Biol. Macromol. 2020, 163, 550–561. [Google Scholar] [CrossRef]
- Khozeymeh Nezhad, M.; Aghaei, H. Tosylated Cloisite as a New Heterofunctional Carrier for Covalent Immobilization of Lipase and Its Utilization for Production of Biodiesel from Waste Frying Oil. Renew. Energy 2021, 164, 876–888. [Google Scholar] [CrossRef]
- Yang, J.; Sun, L.; Guo, R.; Yang, H.; Feng, X.; Zhang, X. A Facile Route for Oriented Covalent Immobilization of Recombinant Protein A on Epoxy Agarose Gels: In Situ Generation of Heterofunctional Amino-Epoxy Supports. ChemistrySelect 2018, 3, 10320–10324. [Google Scholar] [CrossRef]
- Aghaei, H.; Yasinian, A.; Taghizadeh, A. Covalent Immobilization of Lipase from Candida Rugosa on Epoxy-Activated Cloisite 30B as a New Heterofunctional Carrier and Its Application in the Synthesis of Banana Flavor and Production of Biodiesel. Int. J. Biol. Macromol. 2021, 178, 569–579. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhong, T.; Feng, X. Optimal Spacer Arm Microenvironment for the Immobilization of Recombinant Protein A on Heterofunctional Amino-Epoxy Agarose Supports. Process. Biochem. 2020, 91, 90–98. [Google Scholar] [CrossRef]
- Veljković, M.; Simović, M.; Banjanac, K.; Ćorović, M.; Milivojević, A.; Milivojević, M.; Bezbradica, D. Heterofunctional Epoxy Support Development for Immobilization of Fructosyltransferase from Pectinex® Ultra SP-L: Batch and Continuous Production of Fructo-Oligosaccharides. React. Chem. Eng. 2022, 7, 2518–2526. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, Y.; Han, N.; Wu, Y. Increase in IgG-Binding Capacity of Recombinant Protein a Immobilized on Heterofunctional Amino and Epoxy Agarose. IOP Conf Ser. Mater. Sci. Eng. 2018, 381, 012042. [Google Scholar] [CrossRef]
- da Rocha, T.N.; Morellon-Sterling, R.; Gonçalves, L.R.B.; Bolivar, J.M.; Alcántara, A.R.; Rocha-Martin, J.; Fernández-Lafuente, R. Synergy of Ion Exchange and Covalent Reaction: Immobilization of Penicillin G Acylase on Heterofunctional Amino-Vinyl Sulfone Agarose. Catalysts 2023, 13, 151. [Google Scholar] [CrossRef]
- Żywicka, A.; Junka, A.; Ciecholewska-Juśko, D.; Migdał, P.; Czajkowska, J.; Fijałkowski, K. Significant Enhancement of Citric Acid Production by Yarrowia lipolytica Immobilized in Bacterial Cellulose-Based Carrier. J. Technol. Biotechnol. 2020, 321, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, N.F.; Cunha, A.P.; Ricardo, N.M.P.S.; Freire, R.S.; Vieira, L.d.A.P.; Brígida, A.I.S.; Borges, M.d.F.; Rosa, M.d.F.; Vieira, R.S.; Andrade, F.K. Papain Immobilization on Heterofunctional Membrane Bacterial Cellulose as a Potential Strategy for the Debridement of Skin Wounds. Int. J. Biol. Macromol. 2020, 165, 3065–3077. [Google Scholar] [CrossRef]
- Żywicka, A.; Wenelska, K.; Junka, A.; Czajkowska, J.; Fijałkowski, K. An Efficient Method of Yarrowia lipolytica Immobilization Using Oil- and Emulsion-Modified Bacterial Cellulose Carriers. Electron. J. Biotechnol. 2019, 41, 30–36. [Google Scholar] [CrossRef]
- Lim, C.Y.; Owens, N.A.; Wampler, R.D.; Ying, Y.; Granger, J.H.; Porter, M.D.; Takahashi, M.; Shimazu, K. Succinimidyl Ester Surface Chemistry: Implications of the Competition between Aminolysis and Hydrolysis on Covalent Protein Immobilization. Langmuir 2014, 30, 12868–12878. [Google Scholar] [CrossRef] [PubMed]
- Bernal, C.; Illanes, A.; Wilson, L. Heterofunctional Hydrophilic-Hydrophobic Porous Silica as Support for Multipoint Covalent Immobilization of Lipases: Application to Lactulose Palmitate Synthesis. Langmuir 2014, 30, 3557–3566. [Google Scholar] [CrossRef]
- Xing, X.; Han, Y.; Jiang, Q.; Sun, Y.; Wang, X.; Qu, G.; Sun, G.; Li, Y. Immobilization of Laccases onto Cellulose Nanocrystals Derived from Waste Newspaper: Relationship between Immobilized Laccase Activity and Dialdehyde Content. Cellulose 2021, 28, 4793–4805. [Google Scholar] [CrossRef]
- de Melo Brites, M.; Cerón, A.A.; Costa, S.M.S.A.; Oliveira, R.C.; Ferraz, H.G.; Catalani, L.H.; Costa, S.M.S.A. Bromelain Immobilization in Cellulose Triacetate Nanofiber Membranes from Sugarcane Bagasse by Electrospinning Technique. Enzym. Microb. Technol. 2020, 132, 109384. [Google Scholar] [CrossRef]
- Suo, H.; Xu, L.; Xue, Y.; Qiu, X.; Huang, H.; Hu, Y. Ionic Liquids-Modified Cellulose Coated Magnetic Nanoparticles for Enzyme Immobilization: Improvement of Catalytic Performance. Carbohydr. Polym. 2020, 234, 115914. [Google Scholar] [CrossRef]
- Carballares, D.; Rocha-Martin, J.; Fernandez-Lafuente, R. Chemical Amination of Immobilized Enzymes for Enzyme Coimmobilization: Reuse of the Most Stable Immobilized and Modified Enzyme. Int. J. Biol. Macromol. 2022, 208, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Rios, N.S.; Honorato, T.L.; Cecilia, J.A.; Rodríguez-Castellón, E.; Coelho, M.A.Z.; da Silva Júnior, I.J.; Gonçalves, L.R.B. Applicability of Mesoporous Silica Type SBA-15 as Feasible Support for the Immobilization of Yarrowia lipolytica Lipase and Candida Antarctica Lipase B. Braz. J. Chem. Eng. 2022, 39, 1013–1021. [Google Scholar] [CrossRef]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and Use of Immobilized Lipases in/on Nanomaterials: A Review from the Waste to Biodiesel Production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef]
- Ismail, A.R.; Baek, K. Lipase Immobilization with Support Materials, Preparation Techniques, and Applications: Present and Future Aspects. Int. J. Biol. Macromol. 2020, 163, 1624–1639. [Google Scholar] [CrossRef] [PubMed]
- Remonatto, D.; Miotti, R.H., Jr.; Monti, R.; Bassan, J.C.; De Paula, A.V. Applications of Immobilized Lipases in Enzymatic Reactors: A Review. Process. Biochem. 2022, 114, 1–20. [Google Scholar] [CrossRef]
- Pereira, E.; Andrade, E.; Fernandez-lafuente, R.; Maria, D.; Freire, G. Support Engineering: Relation between Development of New Supports for Immobilization of Lipases and Their Applications. Biotechnol. Res. Innov. 2017, 1, 26–34. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, F.; Yuan, C.; Du, W.; Liu, D. Lipase-Catalyzed Process for Biodiesel Production: Enzyme Immobilization, Process Simulation and Optimization. Renew. Sustain. Energy Rev. 2015, 44, 182–197. [Google Scholar] [CrossRef]
- Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F. Biodiesel Production with Immobilized Lipase: A Review. Technol. Biotechnol. Adv. 2010, 28, 628–634. [Google Scholar] [CrossRef]
- Kolhe, N.; Damle, E.; Pradhan, A.; Zinjarde, S. A Comprehensive Assessment of Yarrowia lipolytica and Its Interactions with Metals: Current Updates and Future Prospective. Technol. Biotechnol. Adv. 2022, 59, 107967. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Zhong, S.; Xia, J.; He, J.; Deng, Y.; Xu, J. Industrial Crops & Products One-Step Solid-State Fermentation for Efficient Erythritol Production from the Simultaneous Saccharified Crop Wastes by Incorporating Immobilized Cellulase. Ind. Crop. Prod. 2022, 176, 114351. [Google Scholar] [CrossRef]
- Carvalho, T.; Pereira, S.; Bonomo, R.C.F.; Franco, M.; Finotelli, P.V.; Amaral, P.F.F. Simple Physical Adsorption Technique to Immobilize Yarrowia lipolytica Lipase Puri Fi Ed by Different Methods on Magnetic Nanoparticles: Adsorption Isotherms and Thermodynamic Approach. Int. J. Biol. Macromol. 2020, 160, 889–902. [Google Scholar] [CrossRef]
- Rao, A.; Bankar, A.; Ravi, A.; Gosavi, S.; Zinjarde, S. Removal of Hexavalent Chromium Ions by Yarrowia lipolytica Cells Modi Fi Ed with Phyto-Inspired Fe0/Fe3O4 Nanoparticles. J. Contam Hydrol 2013, 146, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Fathi, Z.; Doustkhah, E.; Ebrahimipour, G.; Darvishi, F. Noncovalent Immobilization of Yarrowia lipolytica Lipase on Dendritic-Like Amino Acid-Functionalized Silica Nanoparticles. Biomolecules 2019, 9, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, Z.; Liu, G.; Cheng, X.; Chi, Z.; Madzak, C.; Liu, C.; Chi, Z. Genetical Surface Display of Silicatein on Yarrowia lipolytica Confers Living and Renewable Biosilica—Yeast Hybrid Materials. ACS Omega 2020, 5, 7555–7566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Qin, X.; Dai, Y.; Liu, X.; Wang, W.; Zhong, J. Improved Catalytic Properties of Candida Antarctica Lipase B Immobilized on Cetyl Chloroformate-Modified Cellulose Nanocrystals. Int. J. Biol. Macromol. 2022, 220, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, N.; Najafpour-darzi, G. Preparation of Immobilized Lipase on Co 2 + -Chelated Carboxymethyl Cellulose Based MnFe 2 O 4 Magnetic Nanocomposite Particles. Mol. Catal. 2022, 519, 112118. [Google Scholar] [CrossRef]
- Han, Z.; Park, A.; Su, W.W. Valorization of Papaya Fruit Waste through Low-Cost Fractionation and Microbial Conversion of Both Juice and Seed Lipids. RSC Adv. 2018, 8, 27963–27972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anna, Ż.; Banach, A.; Junka, A.F.; Fija, K. Bacterial Cellulose as a Support for Yeast Immobilization—Correlation between Carrier Properties and Process e Ffi Ciency. J. Biotechnol. 2019, 291, 1–6. [Google Scholar] [CrossRef]
- Production, L.; Zhang, S.; He, H.; Guan, S.; Cai, B.; Li, Q.; Rong, S. Bacterial Cellulose-Alginate Composite Beads as Yarrowia lipolytica Cell Carriers For lactone production. Molecules 2020, 25, 928. [Google Scholar]
- Xie, M.; Hu, B.; Wang, Y.; Zeng, X. Grafting of Gallic Acid onto Chitosan Enhances Antioxidant Activities. J. Agric. Food Chem. 2014, 62, 9128–9136. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, W.; Zhao, L.; Gao, S.; Liu, T.; Yu, D. Immobilization of Lipase in Chitosan-Mesoporous Silica Material and Pore Size Adjustment. Int. J. Biol. Macromol. 2023, 235, 123789. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Men, X.; Yue, T.; Madzak, C.; Xiang, X.; Xiang, H.; Zhang, H. Enzyme and Microbial Technology Construction of Arming Yarrowia lipolytica Surface-Displaying Soybean Seed Coat Peroxidase for Use as Whole-Cell Biocatalyst. Enzym. Microb. Technol. 2020, 135, 109498. [Google Scholar] [CrossRef] [PubMed]
- Lapponi, M.J.; Méndez, M.B.; Trelles, J.A.; Rivero, C.W. ScienceDirect Cell Immobilization Strategies for Biotransformations. Curr. Opin. Green Sustain. Chem. 2022, 33, 100565. [Google Scholar] [CrossRef]
- Pereira, S.; Diniz, M.M.; De Jong, G.; Gama, H.S.; Marcelino, J.; Finotelli, P.V.; Ana, G.C.F.; Amaral, P.F.F. Chitosan-Alginate Beads as Encapsulating Agents for Yarrowia lipolytica Lipase: Morphological, Physico-Chemical and Kinetic Characteristics. Int. J. Biol. Macromol. 2019, 139, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, A.; Smith, F.; Dias, B.; Alice, M.; Coelho, Z. Extractive Fermentation for the Production and Partitioning of Lipase and Citric Acid by Yarrowia lipolytica. Process. Biochem. 2022, 122, 374–385. [Google Scholar] [CrossRef]
- He, Y.; Li, K.; Bo, G.; Wang, J.; Xu, L.; Yan, J.; Yang, M.; Yan, Y. Enhancing Biodiesel Production via Liquid Yarrowia lipolytica Lipase 2 in Deep Eutectic Solvents. Fuel 2022, 316, 123342. [Google Scholar] [CrossRef]
- Bilal, M.; Dourado, C.; Mehmood, T.; Nadeem, F.; Tabassam, Q.; Fernando, L.; Ferreira, R. Immobilized Lipases-Based Nano-Biocatalytic Systems—A Versatile Platform with Incredible Biotechnological Potential. Int. J. Biol. Macromol. 2021, 175, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Savina, A.A.; Zaitsev, I.S. Biochemical Aspects of Lipase Immobilization at Polysaccharides for Biotechnology. Adv. Colloid Interface Sci. 2019, 272, 102016. [Google Scholar] [CrossRef]
- Paiva, A.L.; Balca, V.M.; Malcata, F.X. Kinetics and Mechanisms of Reactions Catalyzed by Immobilized Lipases. Enzym. Microb. Technol. 2000, 27, 187–204. [Google Scholar] [CrossRef]
- Song, M.; Chang, J. Thermally Stable and Reusable Ceramic Encapsulated and Cross-Linked CalB Enzyme Particles for Rapid Hydrolysis and Esterification. Int. J. Mol. Sci. 2022, 23, 2459. [Google Scholar] [CrossRef]
- Saraiva, N.; Gomes, E.; Galvão, S.; Andrade, D.M.; Cleiton, J.; Bohn, F.; Correa, M.A.; Basílio, P.; Fechine, A.; Fernandez-lafuente, R.; et al. Further Stabilization of Lipase from Pseudomonas Fl Uorescens Immobilized on Octyl Coated Nanoparticles via Chemical Modi Fi Cation with Bifunctional Agents. Int. J. Biol. Macromol. 2019, 141, 313–324. [Google Scholar] [CrossRef]
- Awad, A.; Adel, W.; Özacar, M.; Ziyade, Z. Evaluation of Different Saccharides and Chitin as Eco-Friendly Additive to Improve the Magnetic Cross-Linked Enzyme Aggregates (CLEAs) Activities. Int. J. Biol. Macromol. 2018, 118, 2040–2050. [Google Scholar] [CrossRef]
- Villeneuve, P.; Muderhwa, J.M.; Graille, J.; Haas, M.J. Customizing Lipases for Biocatalysis: A Survey of Chemical, Physical and Molecular Biological Approaches. J. Mol. Catal. B Enzym. 2000, 9, 113–148. [Google Scholar] [CrossRef]
- Cui, C.; Tao, Y.; Li, L.; Chen, B.; Tan, T. Improving the Activity and Stability of Yarrowia lipolytica Lipase Lip2 by Immobilization on Polyethyleneimine-Coated Polyurethane Foam. J. Mol. Catal. B Enzym. 2013, 91, 59–66. [Google Scholar] [CrossRef]
- Hwang, E.T.; Lee, S. Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. Acs Catal. 2019, 9, 4402–4425. [Google Scholar] [CrossRef]
- Carballares, D.; Rocha-martin, J.; Fernandez-lafuente, R. Coimmobilization of Lipases Exhibiting Three Very Different Stability Ranges. Reuse of the Active Enzymes and Selective Discarding of the Inactivated Ones. Int. J. Biol. Macromol. 2022, 206, 580–590. [Google Scholar] [CrossRef]
- Sri, D.; Venkataraman, S.; Kumar, P.S.; Rangasamy, G.; Bhattacharya, T.; Vo, D.N.; Kumar, V. Coimmobilized Enzymes as Versatile Biocatalytic Tools for Biomass Valorization and Remediation of Environmental Contaminants—A Review. Environ. Res. 2022, 214, 114012. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, K.; Kuthiala, T.; Singh, G.; Kumar, S. Employment of Polysaccharides in Enzyme Immobilization. React. Funct Polym. 2021, 167, 105005. [Google Scholar] [CrossRef]
- Ferna, R.; Guisa, J.M. The coimmobilization of D-amino acid oxidase and catalase enables the quantitative transformation of D-amino acids (D-phenylalanine) into α-keto acids (phenylpyruvic acid). Enzym. Microb. Technol. 1998, 23, 28–33. [Google Scholar]
- Kornecki, J.F.; Carballares, D.; Tardioli, P.W.; Rodrigues, R.C.; Berenguer-murcia, Á.; Alcántara, A.R.; Fernandez-lafuente, R. Enzyme Production of D -Gluconic Acid and Glucose Oxidase: Successful Tales of Cascade Reactions. Catal. Sci. Technol. 2020, 10, 5740–5771. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Carballares, D.; Morellon-sterlling, R.; Berenguer-Murcia, Á.; Alcántara, A.R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Enzyme co-immobilization: Always the biocatalyst designers’ choice…or not? Biotechnol. Adv. 2021, 51, 107584. [Google Scholar] [CrossRef]
- Mansfeld, J.; Fiirster, M.; Hoffmann, T.; Dautzenberg, H. Coimmobilization of Yarrowia Zipolytica Cells and Invertase in Polyelectrolyte Complex Microcapsules. Enzym. Microb. Technol. 1995, 0229, 11–17. [Google Scholar] [CrossRef]
- da Silva, J.R.; de Souza, C.E.C.; Valoni, E.; de Castro, A.M.; Coelho, M.A.Z.; Ribeiro, B.D.; Henriques, C.A.; Langone, M.A.P. Biocatalytic Esterification of Fatty Acids Using a Low-Cost Fermented Solid from Solid-State Fermentation with Yarrowia lipolytica. 3 Biotech 2019, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Louhasakul, Y.; Cheirsilp, B. Potential Use of Industrial By-Products as Promising Feedstock for Microbial Lipid and Lipase Production and Direct Transesterification of Wet Yeast into Biodiesel by Lipase and Acid Catalysts. Bioresour. Technol. 2022, 348, 126742. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.; Braga, A.; Teixeira, J.A.; Belo, I. Impact of Lipase-Mediated Hydrolysis of Castor Oil on γ-Decalactone Production by Yarrowia lipolytica. J. Am. Oil Chem. Soc. 2013, 90, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Braga, A.; Gomes, N.; Belo, I. Lipase Induction in Yarrowia lipolytica for Castor Oil Hydrolysis and Its Effect on γ-Decalactone Production. J. Am. Oil Chem. Soc. 2012, 89, 1041–1047. [Google Scholar] [CrossRef] [Green Version]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.-H. State of the Art and Prospective of Lipase-Catalyzed Transesterification Reaction for Biodiesel Production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Cavalcante, F.T.T.; Neto, F.S.; Rafael de Aguiar Falcão, I.; Erick da Silva Souza, J.; de Moura Junior, L.S.; da Silva Sousa, P.; Rocha, T.G.; de Sousa, I.G.; de Lima Gomes, P.H.; de Souza, M.C.M.; et al. Opportunities for Improving Biodiesel Production via Lipase Catalysis. Fuel 2021, 288, 119577. [Google Scholar] [CrossRef]
- Destain, J.; Roblain, D.; Thonart, P. Improvement of Lipase Production from Yarrowia lipolytica. Technol. Biotechnol. Lett. 1997, 19, 105–108. [Google Scholar] [CrossRef]
- Corzo, G.; Revah, S. Production and Characteristics of the Lipase from Yarrowia lipolytica. Bioresour. Technol. 1999, 70, 173–180. [Google Scholar] [CrossRef]
- Vandermies, M.; Fickers, P. Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Aloulou, A.; Puccinelli, D.; De Caro, A.; Leblond, Y.; Carrière, F. A Comparative Study on Two Fungal Lipases from Thermomyces Lanuginosus and Yarrowia lipolytica Shows the Combined Effects of Detergents and PH on Lipase Adsorption and Activity. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2007, 1771, 1446–1456. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, D.; Feihrmann, A.C.; Dariva, C.; Cunha, A.G.; Bevilaqua, J.V.; Destain, J.; Oliveira, J.V.; Freire, D.M.G. Influence of Compressed Fluids Treatment on the Activity of Yarrowia lipolytica Lipase. J. Mol. Catal. B Enzym. 2006, 39, 117–123. [Google Scholar] [CrossRef]
- Pignède, G.; Wang, H.; Fudalej, F.; Gaillardin, C.; Seman, M.; Nicaud, J.-M. Characterization of an Extracellular Lipase Encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol. 2000, 182, 2802–2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, E.E.; Belin, J.-M.; Waché, Y. Use of a Doehlert Factorial Design to Investigate the Effects of PH and Aeration on the Accumulation of Lactones by Yarrowia lipolytica. J. Appl. Microbiol. 2007, 103, 1508–1515. [Google Scholar] [CrossRef]
- Pyo, S.; Hayes, D.G. Designs of Bioreactor Systems for Solvent-Free Lipase-Catalyzed Synthesis of Fructose–Oleic Acid Esters. J. Am. Oil Chem. Soc. 2009, 86, 521–529. [Google Scholar] [CrossRef]
- Deive, F.J.; Sanromán, M.A.; Longo, M.A. A Comprehensive Study of Lipase Production by Yarrowia lipolytica CECT 1240 (ATCC 18942): From Shake Flask to Continuous Bioreactor. J. Chem. Technol. Biotechnol. 2010, 85, 258–266. [Google Scholar] [CrossRef]
- Mou, J.-H.; Tahar, I.B.; Wang, Z.-Y.; Ong, K.L.; Li, C.; Qin, Z.-H.; Wang, X.; Lin, C.S.K.; Fickers, P. Enhancing the Recombinant Protein Productivity of Yarrowia lipolytica Using Insitu Fibrous Bed Bioreactor. Bioresour. Technol. 2021, 340, 125672. [Google Scholar] [CrossRef]
- Fickers, P.; Destain, J.; Thonart, P. Improvement of Yarrowia lipolytica Lipase Production by Fed-Batch Fermentation. J. Basic Microbiol. 2009, 49, 212–215. [Google Scholar] [CrossRef]
- Rywińska, A.; Rymowicz, W. High-Yield Production of Citric Acid by Yarrowia lipolytica on Glycerol in Repeated-Batch Bioreactors. J. Ind. Microbiol. Technol. Biotechnol. 2010, 37, 431–435. [Google Scholar] [CrossRef]
- Braga, A.; Mesquita, D.P.; Amaral, A.L.; Ferreira, E.C.; Belo, I. Aroma Production by Yarrowia lipolytica in Airlift and Stirred Tank Bioreactors: Differences in Yeast Metabolism and Morphology. Biochem. Eng. J. 2015, 93, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Gao, S.; Yang, X.; Lin, C.S.K. Green and Sustainable Succinic Acid Production from Crude Glycerol by Engineered Yarrowia lipolytica via Agricultural Residue Based in Situ Fibrous Bed Bioreactor. Bioresour. Technol. 2018, 249, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Yang, J.-L.; Zhao, X.-R.; Liu, S.-C.; Liu, Z.-J.; Wei, L.-J.; Hua, Q. Yarrowia lipolytica as a Metabolic Engineering Platform for the Production of Very-Long-Chain Wax Esters. J. Agric. Food Chem. 2020, 68, 10730–10740. [Google Scholar] [CrossRef] [PubMed]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Aseptic Production of Citric and Isocitric Acid from Crude Glycerol by Genetically Modified Yarrowia lipolytica. Bioresour. Technol. 2019, 271, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, G.; Yang, N.; Zhou, Z.; Li, Y.; Liang, X.; Chen, J.; Li, Y.; Li, J. Two-Step Synthesis of Fatty Acid Ethyl Ester from Soybean Oil Catalyzed by Yarrowia lipolytica Lipase. Technol. Biotechnol. Biofuels 2011, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, F.; Rezaee, M. Different Strategies for the Lipase Immobilization on the Chitosan Based Supports and Their Applications. Int. J. Biol. Macromol. 2021, 179, 170–195. [Google Scholar] [CrossRef]
- Soong, Y.-H.V.; Coleman, S.M.; Liu, N.; Qin, J.; Lawton, C.; Alper, H.S.; Xie, D. Using Oils and Fats to Replace Sugars as Feedstocks for Biomanufacturing: Challenges and Opportunities for the Yeast Yarrowia lipolytica. Technol. Biotechnol. Adv. 2023, 65, 108128. [Google Scholar] [CrossRef]
- Arnesen, J.A.; Borodina, I. Engineering of Yarrowia lipolytica for Terpenoid Production. Metab. Eng. Commun. 2022, 15, e00213. [Google Scholar] [CrossRef] [PubMed]
- Caporusso, A.; De Bari, I.; Liuzzi, F.; Albergo, R.; Valerio, V.; Viola, E.; Pietrafesa, R.; Siesto, G.; Capece, A. Optimized Conversion of Wheat Straw into Single Cell Oils by Yarrowia lipolytica and Lipomyces Tetrasporus and Synthesis of Advanced Biofuels. Renew. Energy 2023, 202, 184–195. [Google Scholar] [CrossRef]
- Jach, M.E.; Sajnaga, E.; Janeczko, M.; Juda, M.; Kochanowicz, E.; Baj, T.; Malm, A. Production of Enriched in B Vitamins Biomass of Yarrowia lipolytica Grown in Biofuel Waste. Saudi J. Biol. Sci. 2021, 28, 2925–2932. [Google Scholar] [CrossRef]
- Lu, R.; Cao, L.; Wang, K.; Ledesma-Amaro, R.; Ji, X.J. Engineering Yarrowia lipolytica to Produce Advanced Biofuels: Current Status and Perspectives. Bioresour. Technol. 2021, 341, 125877. [Google Scholar] [CrossRef]
- Vakhlu, J.; Kour, A. Yeast Lipases: Enzyme Purification, Biochemical Properties and Gene Cloning. Electron. J. Biotechnol. 2006, 9, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Kumari, A.; Syal, P.; Singh, Y. Molecular and Functional Diversity of Yeast and Fungal Lipases: Their Role in Biotechnology and Cellular Physiology. Prog. Lipid Res. 2015, 57, 40–54. [Google Scholar] [CrossRef]
- Bordes, F.; Barbe, S.; Escalier, P.; Mourey, L.; André, I.; Marty, A.; Tranier, S. Exploring the Conformational States and Rearrangements of Yarrowia lipolytica Lipase. Biophys. J. 2010, 99, 2225–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, Z.Y.; Jiang, H.; Lin, R.F.; Jiang, Y.M.; Lin, L.; Huang, J.Z. Technical Methods to Improve Yield, Activity and Stability in the Development of Microbial Lipases. J. Mol. Catal. B Enzym. 2010, 62, 1–8. [Google Scholar] [CrossRef]
- Bordes, F.; Cambon, E.; Dossat-Létisse, V.; An Dré, I.; Croux, C.; Nicaud, J.M.; Marty, A. Improvement of Yarrowia lipolytica Lipase Enantioselectivity by Using Mutagenesis Targeted to the Substrate Binding Site. ChemBioChem 2009, 10, 1705–1713. [Google Scholar] [CrossRef]
- Guieysse, D.; Sandoval, G.; Faure, L.; Nicaud, J.M.; Monsan, P.; Marty, A. New Efficient Lipase from Yarrowia lipolytica for the Resolution of 2-Bromo-Arylacetic Acid Esters. Tetrahedron Asymmetry 2004, 15, 3539–3543. [Google Scholar] [CrossRef]
- Wipo—Search International and National Patent Collections. Available online: http://www.wipo.int/patentscope/search/en/search.jsf (accessed on 16 April 2023).
- European Patent Office: Espacenet—Advanced Search. Available online: http://worldwide.espacenet.com/advancedSearch?locale=en_EP (accessed on 16 April 2023).
Paper | Total Citations | TC per Year | Normalized TC | Reference |
---|---|---|---|---|
FICKERS P, 2005, FEMS YEAST RES | 436 | 22.95 | 5.62 | [71] |
PAPANIKOLAOU S, 2002, J Appl. MICROBIOL | 256 | 11.64 | 1.06 | [72] |
BILAL M, 2018, Int. J Biol. MACROMOL | 237 | 39.50 | 8.26 | [73] |
CAMMAROTA MC, 2006, Bioresour. TECHNOL | 226 | 12.56 | 3.52 | [74] |
NICAUD JM, 2002, FEMS YEAST RES | 225 | 10.23 | 0.94 | [75] |
YANG Z, 2018, BIOTECHNOL. ADV | 172 | 28.67 | 5.99 | [76] |
NGUYEN HM, 2011, PROTEOMICS | 169 | 13.00 | 3.92 | [77] |
FICKERS P, 2011, BIOTECHNOL. ADV | 166 | 12.77 | 3.85 | [15] |
BANKAR AV, 2009, Appl. MICROBIOL BIOTECHNOL | 165 | 11.00 | 3.58 | [78] |
DULERMO T, 2011, METAB ENG | 165 | 12.69 | 3.82 | [79] |
Y. lipolytica | Applications | Results | References |
---|---|---|---|
Y. lipolytica ATCC20255 | Waste water from oil mills (OMW) | 80% reduction in COD in 24 h | [94,107] |
Y. lipolytica strain W29 | Biodegradation of oily effluents | Degradation of oil and DOC by immobilized cells in 82% | [107] |
Y. lipolytica—strains M1 e M2 | Agroindustrial effluents | High activity of lipases in medium containing olive oil and production of citric acids in the fermentation medium | [103] |
Y. lipolytica IMUFRJ 50862 | Crude oil | Biodegradation of organic compounds | [108] |
Y. lipolytica IMUFRJ 50862 | Production of Citric Acid in Different Crude Glycerol Concentrations and in Different Nitrogen Sources | The production of citric and isocitric acids was equal to 12.94 g/L and 6.66 g/L, respectively, in 160 h of fermentation for the test that contained 45 g/L of glycerol | [109] |
Y. lipolytica (YlCPR) | Biotransformation of steroids | Biotransformations of hydrophobic substrates in biphasic two-liquid systems | [110] |
Y. lipolytica NBRC 1658 | Contaminating dyes | Discoloration of Reactive Black 5 dye by 97% at 50 mg/L in 24 h | [111] |
Y. lipolytica (DSM 3286) | γ-decalactone production | 60% increase in γ-decalactone production | [112] |
Y. lipolytica lipase Lip2 | production of concentrates of docosahexaenoic acid ethyl ester | In the highest concentrations of DHA ethyl ester (77%) and ω-3 esters (81%) with a recovery of 94% and 77%, respectively | [113] |
Y. lipolytica NRRL YB-567 | creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates | The strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production | [114] |
Y. lipolytica TISTR 5151 | Palm oil effluents (POME) | High cell-bound lipase activity for possible biodiesel production through direct transesterification | [115] |
Y. lipolytica lipase Ylip2 | Immobilization for the biocatalytic synthesis of phytosterol ester in a water activity-controlled reactor | Celite retained 90% esterification activity for the synthesis of phytosterol oleate after being reused for 8 cycles; time yield increased from 1.65 g/L/h with free lipase to 2.53 g/L/h with immobilized lipase | [116] |
Y. lipolytica MIUG D14 | bioconversion of raw palm fat for antimicrobials production | The best results were obtained at 25 degrees C, a(w) 0.98, after 7 days of solid-state cultivation | [117] |
Y. lipolytica Wratislavia 1.31 | Application as a prospective approach for the biosynthesis of pyruvic acid from glycerol | Under optimal conditions, Y. lipolytica Wratislavia 1.31 was able to produce 85.2 g L−1 of PA with volumetric productivity of 0.90 g L−1 h (−1). The yield of PA biosynthesis reached a high level of 1.03 gg (−1) | [118] |
lipase of Y. lipolytica produced by SSF | Synthesis of Different Esters Used in the Food Industry | This work showed the high potential of Y. lipolytica lipase to be used in the synthesis of different esters. It can be considered an attractive and economical process alternative to obtain high-added-value products | [119] |
Y. lipolytica ATCC 9773 | Dairy waste | Biodegradation of fats and total solids and reduction of BOD and COD | [120] |
Y. lipolytica (CLIB 40) | Tuna Wash Processing Wastewater Treatment (TWPW) | Reduction of TWPW pollution levels within 7 days of incubation and reduction of BOD, COD, and TOC | [121] |
Bioreactor Designs | Reaction | References |
---|---|---|
Repeated-batch bioreactors | Production of citric acid with high reaction yields | [311] |
Airlift and stirred tank bioreactors | Production of aromas from vegetable oils | [312] |
Fibrous bed bioreactor | Green and sustainable succinic acid production from crude glycerol | [313] |
Shaker flask with attached bioreactor | Production of very-long-chain wax esters | [314] |
Aeration and inspiring bioreactor | Aseptic production of citric and isocitric acid from crude glycerol | [315] |
Cluster | Centrality | Density | Rank Centrality | Rank Density | Cluster Frequency |
---|---|---|---|---|---|
#yarrowia-lipolytica | 0.5773 | 5.2696 | 5 | 2 | 662 |
#expression | 0.3742 | 4.5752 | 4 | 1 | 281 |
#oil | 0.3535 | 6.0190 | 3 | 3 | 269 |
#lipase production | 0.1917 | 6.3956 | 2 | 4 | 198 |
#candida-rugosa lipase | 0.0548 | 7.9113 | 1 | 5 | 104 |
Title | Source | Year | TC | #Oil | #Yarrowia-lipolytica | #Candida-rugosa lipase | #Expression | #Lipase Production | Reference |
---|---|---|---|---|---|---|---|---|---|
Engineering Strategies For Enhanced Production Of Protein And Bio-Products In Pichia Pastoris: A Review | Biotechnology Advances | 2018 | 172 | 0 | 0.167 | 0.833 | 0 | 0 | [76] |
Yeast Lipases: Enzyme Purification, Biochemical Properties And Gene Cloning | Electronic Journal Of Biotechnology | 2006 | 157 | 0 | 0.495 | 0.505 | 0 | 0 | [323] |
Molecular And Functional Diversity Of Yeast And Fungal Lipases: Their Role In Biotechnology And Cellular Physiology | Progress In Lipid Research | 2015 | 92 | 0 | 0 | 0.722 | 0 | 0.278 | [324] |
Exploring The Conformational States And Rearrangements Of Yarrowia lipolytica Lipase | Biophysical Journal | 2010 | 86 | 0 | 0.234 | 0.603 | 0.164 | 0 | [325] |
Technical Methods To Improve Yield, Activity And Stability In The Development Of Microbial Lipases | Journal Of Molecular Catalysis B-Enzymatic | 2010 | 56 | 0 | 0.427 | 0.573 | 0 | 0 | [326] |
Two-Step Synthesis Of Fatty Acid Ethyl Ester From Soybean Oil Catalyzed By Yarrowia lipolytica Lipase | Biotechnology For Biofuels | 2011 | 50 | 0.392 | 0 | 0.608 | 0 | 0 | [316] |
Different Strategies For The Lipase Immobilization On The Chitosan Based Supports And Their Applications | International Journal Of Biological Macromolecules | 2021 | 48 | 0.193 | 0.075 | 0.732 | 0 | 0 | [317] |
Improvement Of Yarrowia lipolytica Lipase Enantioselectivity By Using Mutagenesis Targeted To The Substrate Binding Site | Chembiochem | 2009 | 47 | 0 | 0 | 1 | 0 | 0 | [327] |
New Efficient Lipase From Yarrowia lipolytica For The Resolution Of 2-Bromo-Arylacetic Acid Esters | Tetrahedron-Asymmetry | 2004 | 45 | 0 | 0.111 | 0.889 | 0 | 0 | [328] |
Improving The Activity And Stability Of Yarrowia lipolytica Lipase Lip2 By Immobilization On Polyethyleneimine-Coated Polyurethane Foam | Journal Of Molecular Catalysis B-Enzymatic | 2013 | 43 | 0 | 0 | 1 | 0 | 0 | [285] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, J.L.; Sales, M.B.; de Castro Bizerra, V.; Nobre, M.M.R.; de Sousa Braz, A.K.; da Silva Sousa, P.; Cavalcante, A.L.G.; Melo, R.L.F.; Gonçalves De Sousa Junior, P.; Neto, F.S.; et al. Lipase from Yarrowia lipolytica: Prospects as an Industrial Biocatalyst for Biotechnological Applications. Fermentation 2023, 9, 581. https://doi.org/10.3390/fermentation9070581
da Silva JL, Sales MB, de Castro Bizerra V, Nobre MMR, de Sousa Braz AK, da Silva Sousa P, Cavalcante ALG, Melo RLF, Gonçalves De Sousa Junior P, Neto FS, et al. Lipase from Yarrowia lipolytica: Prospects as an Industrial Biocatalyst for Biotechnological Applications. Fermentation. 2023; 9(7):581. https://doi.org/10.3390/fermentation9070581
Chicago/Turabian Styleda Silva, Jessica Lopes, Misael Bessa Sales, Viviane de Castro Bizerra, Millena Mara Rabelo Nobre, Ana Kátia de Sousa Braz, Patrick da Silva Sousa, Antônio L. G. Cavalcante, Rafael L. F. Melo, Paulo Gonçalves De Sousa Junior, Francisco S. Neto, and et al. 2023. "Lipase from Yarrowia lipolytica: Prospects as an Industrial Biocatalyst for Biotechnological Applications" Fermentation 9, no. 7: 581. https://doi.org/10.3390/fermentation9070581
APA Styleda Silva, J. L., Sales, M. B., de Castro Bizerra, V., Nobre, M. M. R., de Sousa Braz, A. K., da Silva Sousa, P., Cavalcante, A. L. G., Melo, R. L. F., Gonçalves De Sousa Junior, P., Neto, F. S., da Fonseca, A. M., & Santos, J. C. S. d. (2023). Lipase from Yarrowia lipolytica: Prospects as an Industrial Biocatalyst for Biotechnological Applications. Fermentation, 9(7), 581. https://doi.org/10.3390/fermentation9070581