In Vitro Rumen Fermentation of Coconut, Sugar Palm, and Durian Peel Silages, Prepared with Selected Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ensiling Process and Experimental Design
2.2. Fermentation Analysis
2.3. Chemical Analysis
2.4. Microorganism Analysis
2.5. In Vitro Ruminal Digestibility and Fermentation Products
2.6. Statistical Analysis
3. Results
3.1. Tropical Fruit Peel Materials
3.2. Fermentation Quality of Tropical Fruit Peel Silages
3.3. Chemical Composition of Tropical Fruit Peel Silages
3.4. Microbial Populations of Tropical Fruit Peel Silages
3.5. In Vitro Digestibility and Fermentation Product of Tropical Fruit Peel Silages
4. Discussion
4.1. Tropical Fruit Peel Materials
4.2. Fermentation Characteristics of Tropical Fruit Peel after Ensiling
4.3. Chemical Composition and Microbial Populations of Tropical Fruit Peel after Ensiling
4.4. In Vitro Rumen Fermentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kheawpumpuang, P.; Bunjongsiri, S.; Pongsomboon, W. Studies on Botanical Characteristics and Quality Components among Three Fragrant Coconut Clones Growing in Phichit Province Area. In Proceedings of the 2nd STOU Graduate Research Conference, Nonthaburi, Thailand, 4–5 September 2012; pp. 1–11. [Google Scholar]
- Panyawoot, N.; So, S.; Cherdthong, A.; Chanjula, P. Effect of Feeding Discarded Durian Peel Ensiled with Lactobacillus casei TH14 and Additives in Total Mixed Rations on Digestibility, Ruminal Fermentation, Methane Mitigation, and Nitrogen Balance of Thai Native–Anglo-Nubian Goats. Fermentation 2022, 8, 43. [Google Scholar] [CrossRef]
- Saenphoom, P.; Chimtong, S.; Chaokaur, A.; Kutdaeng, D.; Chanprecha, T.; Seesawhea, Y. Nutritive Value, Digestibility and Gas Production of Fermented Sugar Palm Peel with Pineapple Peel. Silpakorn Univ. Sci. Technol. J. 2015, 10, 32–37. [Google Scholar]
- Balehegn, M.; Ayantunde, A.; Amole, T.; Njarui, D.; Nkosi, B.D.; Müller, F.L.; Meeske, R.; Tjelele, T.J.; Malebana, I.M.; Madibela, O.R.; et al. Forage Conservation in Sub-Saharan Africa: Review of Experiences, Challenges, and Opportunities. Agron. J. 2022, 114, 75–99. [Google Scholar] [CrossRef]
- Yang, J.; Tan, H.; Cai, Y. Characteristics of Lactic Acid Bacteria Isolates and Their Effect on Silage Fermentation of Fruit Residues. J. Dairy Sci. 2016, 99, 5325–5334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Fermentation Quality and In Vitro Methane Production of Sorghum Silage Prepared with Cellulase and Lactic Acid Bacteria. Asian-Australas. J. Anim. Sci. 2017, 30, 1568–1574. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Natural Lactic Acid Bacteria Population of Tropical Grasses and Their Fermentation Factor Analysis of Silage Prepared with Cellulase and Inoculant. J. Dairy Sci. 2016, 99, 9768–9781. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Xie, F.; Guo, Y.; Liang, X.; Peng, L.; Li, M.; Tang, Z.; Peng, K.; Yang, C. Fermentation Quality, Nutritive Value and In Vitro Ruminal Digestion of Napier Grass, Sugarcane Top and Their Mixed Silages Prepared Using Lactic Acid Bacteria and Formic Acid. Grassl. Sci. 2022, 69, 23–32. [Google Scholar] [CrossRef]
- Tahir, M.; Li, J.; Xin, Y.; Wang, T.; Chen, C.; Zhong, Y.; Zhang, L.; Liu, H.; He, Y.; Wen, X.; et al. Response of Fermentation Quality and Microbial Community of Oat Silage to Homofermentative Lactic Acid Bacteria Inoculation. Front. Microbiol. 2023, 13, 1091394. [Google Scholar] [CrossRef]
- Dong, Z.; Li, X.; Fang, D.; Wang, S.; Li, J.; Dong, D.; Wang, Y.; Shao, T. Effects of Additives on the Fermentation Quality and Bacterial Community of Silage Prepared from Fresh-Cut Whole-Plant Quinoa (Chenopodium quinoa Willd.). Ital. J. Anim. Sci. 2022, 21, 1558–1568. [Google Scholar] [CrossRef]
- Wang, W.; Hao, Y.; Luo, C.; Wang, Q.; Wang, Z.; Li, D.; Yuan, J.; Cao, Z.; Yang, H.; Li, S. Effects of Different Additives on the Chemical Composition, Fermentation Profile, In Vitro and In Situ Digestibility of Paper Mulberry Silage. Fermentation. 2022, 8, 435. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Usman, S.; Li, F.; Bai, J.; Zhang, J.; Guo, X. Lignocellulose Conversion of Ensiled Caragana korshinskii Kom. Facilitated by Pediococcus acidilactici and Cellulases. Microb. Biotechnol. 2023, 16, 432–447. [Google Scholar] [CrossRef]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Kimprasit, T.; Sarnklong, C.; Cherdthong, A. Characterization of Green Manure Sunn Hemp Crop Silage Prepared with Additives: Aerobic Instability, Nitrogen Value, and In Vitro Rumen Methane Production. Fermentation. 2022, 8, 104. [Google Scholar] [CrossRef]
- Gül, S. The Impact of Wheat Bran and Molasses Addition to Caramba Mix Silage on Feed Value and In Vitro Organic Matter Digestibility. J. King Saud Univ. Sci. 2023, 35, 102400. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, Z.; Li, J.; Chen, L.; Bai, Y.; Jia, Y.; Shao, T. Effects of Lactic Acid Bacteria and Molasses on Fermentation Dynamics, Structural and Nonstructural Carbohydrate Composition and In Vitro Ruminal Fermentation of Rice Straw Silage. Asian-Australas. J. Anim. Sci. 2019, 32, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Kaewpila, C.; Thip-Uten, S.; Cherdthong, A.; Khota, W. Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage. Agriculture 2021, 11, 66. [Google Scholar] [CrossRef]
- Pholsen, S.; Khota, W.; Pang, H.; Higgs, D.; Cai, Y. Characterization and Application of Lactic Acid Bacteria for Tropical Silage Preparation. Anim. Sci. J. 2016, 87, 1202–1211. [Google Scholar] [CrossRef]
- Cai, Y. Analysis Method for Silage. In Field and Laboratory Methods for Grassland Science; Japanese Society of Grassland Science, Ed.; Tosho Printing Co. Ltd.: Tokyo, Japan, 2004; pp. 279–282. [Google Scholar]
- Fawcett, J.K.; Scott, J.E. A Rapid and Precise Method for the Determination of Urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Faichney, G.; White, G. Methods for the Analysis of Feeds Eaten by Ruminants; Division of Animal Production, Ian Clunies Ross Animal Research Laboratory, Commonwealth Scientific and Industrial Research Organization: Melbourne, Australia, 1983. [Google Scholar]
- Kozaki, M.; Uchimura, T.; Okada, S. Experimental Manual for Lactic Acid Bacteria; Asakurasyoten: Tokyo, Japan, 1992. [Google Scholar]
- Makkar, H.P.; Blümmel, M.; Becker, K. Formation of Complexes between Polyvinyl Pyrrolidones or Polyethylene Glycols and Tannins, and Their Implication in Gas Production and True Digestibility in In Vitro Techniques. Br. J. Nutr. 1995, 73, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Muizelaar, W.; Bani, P.; Kuhla, B.; Larsen, M.; Tapio, I.; Yáñez-Ruiz, D. Rumen Fluid Sampling Via Oral Stomach Tubing Method. In Methods in Cattle Physiology and Behaviour Research—Recommendations from the SmartCow Consortium; Mesgaran, S.D., Baumont, R., Munksgaard, L., Humphries, D., Kennedy, E., Dijkstra, J., Dewhurst, R., Ferguson, H., Terré, M., Kuhla, B., Eds.; PUBLISSO: Cologne, Germany, 2020; p. 6. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw–Hill Book Co. Inc.: New York, NY, USA, 1980. [Google Scholar]
- McDonald, P.; Henderson, A.; Heron, S. The Biochemistry of Silage; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Cao, Y.; Cai, Y.; Takahashi, T.; Yoshida, N.; Tohno, M.; Uegaki, R.; Nonaka, K.; Terada, F. Effect of Lactic Acid Bacteria Inoculant and Beet Pulp Addition on Fermentation Characteristics and In Vitro Ruminal Digestion of Vegetable Residue Silage. J. Dairy Sci. 2011, 94, 3902–3912. [Google Scholar] [CrossRef] [Green Version]
- Elferink, S.J.W.H.O.; Driehuis, F.; Gottschal, J.C.; Spoelstra, S.F. Silage Fermentation Processes and Their Manipulation; FAO Plant Production and Protection Paper; FAO: Rome, Italy, 2000; pp. 17–30. [Google Scholar]
- Wilkinson, M. Silage UK; Cambrian Printers: Blackwood, UK, 1990. [Google Scholar]
- Xue, Z.; Mu, L.; Cai, M.; Zhang, Y.; Wanapat, M.; Huang, B. Effect of Using Banana By-Products and Other Agricultural Residues for Beef Cattle in Southern China. Trop. Anim. Health Prod. 2020, 52, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Sigolo, S.; Fancello, F.; Ghilardelli, F.; Mosconi, M.; Prandini, A.; Masoero, F.; Yuan, X.; Gallo, A. Survey on the Occurrence of Silage Volatile Organic Compounds in the Po Valley—Italy. Anim. Feed Sci. Technol. 2023, 297, 115593. [Google Scholar] [CrossRef]
- Muck, R.E. Silage Microbiology and Its Control through Additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Johnson, T.A.; Tyagi, N.; Malhotra, R.; Behare, P.V.; Kumar, S.; Tyagi, A.K. Synergistic Effect of LAB Strains (Lb. fermentum and Pediococcus acidilactisci) with Exogenous Fibrolytic Enzymes on Quality and Fermentation Characteristics of Sugarcane Tops Silage. Sugar Tech. 2023, 25, 141–153. [Google Scholar] [CrossRef]
- Si, Q.; Wang, Z.; Liu, W.; Liu, M.; Ge, G.; Jia, Y.; Du, S. Influence of Cellulase or Lactiplantibacillus plantarum on the Ensiling Performance and Bacterial Community in Mixed Silage of Alfalfa and Leymus chinensis. Microorganisms 2023, 11, 426. [Google Scholar] [CrossRef]
- Guan, H.; Ran, Q.; Li, H.; Zhang, X. Succession of Microbial Communities of Corn Silage Inoculated with Heterofermentative Lactic Acid Bacteria from Ensiling to Aerobic Exposure. Fermentation 2021, 7, 258. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R. Interpretation and Use of Silage Fermentation Analysis Reports. Focus Forage 2001, 3, 1–5. [Google Scholar]
- Santos, A.O.; Ávila, C.L.S.; Pinto, J.C.; Carvalho, B.F.; Dias, D.R.; Schwan, R.F. Fermentative Profile and Bacterial Diversity of Corn Silages Inoculated with New Tropical Lactic Acid Bacteria. J. Appl. Microbiol. 2015, 120, 266–279. [Google Scholar] [CrossRef]
- Cai, Y.; Benno, Y.; Ogawa, M.; Kumai, S. Effect of Applying Lactic Acid Bacteria Isolated from Forage Crops on Fermentation Characteristics and Aerobic Deterioration of Silage. J. Dairy Sci. 1999, 82, 520–526. [Google Scholar] [CrossRef]
- Garc, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Fermentation Kinetics of Agro-Industrial by-Products. Animals 2019, 9, 861. [Google Scholar]
- Hartati, E.; Lestari, G.A.Y.; Kleden, M.M.; Jelantik, I.G.N.; Telupere, F.M.S. Chemical Quality of Rumen Fermentation and In Vitro Digestability of Complete Feed Based on Sorgum-Clitoria Ternatea Silage with Additional Concentrate Contains ZnSO4 And Zn-Cu Isoleucinate. Int. J. Sci. Adv. 2022, 3, 161–166. [Google Scholar] [CrossRef]
- Yildiz, S.; Deniz, S.; Özkan, F.; Kale, Ç. Forage Turnip (Brassica rapa) Harvested in Different Phases of Vegetative Stage and ensiled with the Additives of Molasses and Barley and the Effects of Additives on Silage Quality, In Vitro Digestibility, and Energy Content. Turkish J. Vet. Anim. Sci. 2022, 46, 475–482. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, S.; Zhao, J.; Li, J.; Shao, T. Effects of Additives on the Fermentation Quality, In Vitro Digestibility and Aerobic Stability of Mulberry (Morus alba L.) Leaves Silage. Asian-Australas. J. Anim. Sci. 2020, 33, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
Item | CCP | SPP | DRP |
---|---|---|---|
LAB, cfu/g FM | 2.2 × 105 | 1.5 × 105 | 7.3 × 104 |
Coliform bacteria, cfu/g FM | 3.9 × 107 | 1.4 × 109 | 4.2 × 107 |
Aerobic bacteria, cfu/g FM | 9.3 × 108 | 1.4 × 109 | 5.5 × 107 |
Yeasts, cfu/g FM | 1.4 × 109 | 1.4 ×108 | 1.4 × 108 |
Molds, cfu/g FM | 4.6 × 107 | 1.5 × 109 | 3.0 × 106 |
DM, % | 19.25 | 17.37 | 22.29 |
OM, % on DM | 95.12 | 95.35 | 94.00 |
CP, % on DM | 2.74 | 5.40 | 5.02 |
EE, % on DM | 0.60 | 0.97 | 0.77 |
NDF, % on DM | 65.94 | 55.35 | 68.49 |
ADF, % on DM | 55.23 | 43.47 | 47.13 |
ADL, % on DM | 21.83 | 9.13 | 9.34 |
WSC, % on DM | 4.20 | 4.23 | 4.61 |
Item | DM | pH | Lactic Acid | Acetic Acid | Propionic Acid | Butyric Acid | Ammonia-N | Total Alcohol |
---|---|---|---|---|---|---|---|---|
% | g/kg DM | |||||||
Fruit peels means | ||||||||
CCP | 17.37 c | 4.19 a | 50.54 c | 9.60 c | 0.07 a | 0.458 | 0.087 b | 61.30 a |
SPP | 18.36 b | 3.46 c | 76.16 b | 14.84 a | 0.01 b | 0.615 | 0.091 ab | 51.42 b |
DRP | 20.72 a | 3.77 b | 97.36 a | 11.83 b | 0.01 b | 0.365 | 0.097 a | 30.20 c |
Additive means | ||||||||
Control | 18.87 | 3.89 b | 47.16 d | 9.44 c | 0.103 a | 0.741 | 0.102 | 44.71 bcd |
TH14 | 18.41 | 3.83 c | 69.18 b | 8.59 c | 0.060 ab | 0.311 | 0.088 | 40.51 cd |
AC | 18.41 | 3.80 dc | 86.03 b | 16.30 a | 0.011 bc | 0.210 | 0.092 | 54.98 a |
TH14+AC | 18.46 | 3.72 e | 85.71 b | 13.75 b | 0.009 bc | 0.326 | 0.091 | 56.03 a |
Molasses | 19.47 | 3.96 a | 49.95 c | 10.86 c | 0.013 bc | 0.187 | 0.093 | 38.15 d |
Molasses+TH14 | 19.00 | 3.79 cd | 77.63 b | 10.75 c | 0.002 c | 0.266 | 0.090 | 45.77 bcd |
Molasses+AC | 19.04 | 3.74 de | 75.53 b | 16.20 a | 0.007 bc | 0.212 | 0.089 | 49.09 abc |
Molasses+TH14+AC | 18.87 | 3.72 e | 106.28 a | 10.82 c | 0.006 c | 1.581 | 0.088 | 51.86 ab |
SEM | 0.497 | 0.035 | 9.521 | 1.297 | 0.029 | 0.790 | 0.007 | 4.929 |
Significance of main effect and interaction | ||||||||
Fruit peels (A) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.815 | 0.026 | <0.001 |
Additives (B) | 0.135 | <0.001 | <0.001 | <0.001 | 0.001 | 0.376 | 0.322 | 0.001 |
A × B | 0.049 | 0.001 | <0.001 | <0.001 | <0.001 | 0.446 | 0.648 | 0.002 |
Item | OM | CP | EE | NDF | ADF | ADL |
---|---|---|---|---|---|---|
% on DM | ||||||
Fruit peels means | ||||||
CCP | 94.14 b | 3.13 c | 0.83 a | 76.91 a | 66.94 a | 27.81 a |
SPP | 92.26 c | 6.54 a | 0.59 b | 64.94 b | 47.18 b | 8.91 b |
DRP | 94.54 a | 5.72 b | 0.81 a | 63.96 b | 44.20 c | 8.92 b |
Additive means | ||||||
Control | 93.94 ab | 4.55 c | 0.77 bc | 71.69 a | 55.46 a | 15.87 abc |
TH14 | 94.01 a | 4.71 c | 0.58 bcd | 71.70 a | 55.31 a | 15.16 bcd |
AC | 93.75 bcd | 4.81 c | 0.83 b | 69.98 ab | 53.82 a | 16.28 a |
TH14+AC | 93.79 abc | 5.39 ab | 1.18 a | 69.94 ab | 54.71 a | 16.12 ab |
Molasses | 93.60 cd | 5.15 b | 0.81 b | 69.31 b | 51.89 b | 14.98 cd |
Molasses+TH14 | 93.53 de | 5.30 ab | 0.51 d | 68.45 b | 51.22 b | 13.71 e |
Molasses+AC | 93.32 ef | 5.54 a | 0.72 bcd | 64.49 c | 50.31 bc | 14.98 cd |
Molasses+TH14+AC | 93.23 f | 5.59 a | 0.52 cd | 63.28 c | 49.46 c | 14.61 de |
SEM | 0.137 | 0.204 | 0.142 | 1.129 | 0.983 | 0.595 |
Significance of main effect and interaction | ||||||
Fruit peels (A) | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 |
Additives (B) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
A × B | 0.048 | 0.015 | <0.001 | <0.001 | <0.001 | 0.004 |
Item | Microorganism (log10 cfu/g FM) | |
---|---|---|
Lactic Acid Bacteria | Aerobic Bacteria | |
Fruit peels means | ||
CCP | 7.17 a | 6.49 a |
SPP | 6.55 b | 4.05 c |
DRP | 6.78 ab | 4.88 b |
Additive means | ||
Control | 7.18 | 6.02 a |
TH14 | 6.84 | 5.60 b |
AC | 7.16 | 3.49 e |
TH14+AC | 6.99 | 4.86 d |
Molasses | 6.01 | 5.50 bc |
Molasses+TH14 | 6.89 | 5.45 bc |
Molasses+AC | 6.72 | 4.94 d |
Molasses+TH14+AC | 6.88 | 5.26 c |
SEM | 0.469 | 0.178 |
Significance of main effect and interaction | ||
Fruit peels (A) | 0.033 | <0.001 |
Additives (B) | 0.095 | <0.001 |
A × B | 0.268 | <0.001 |
Item | IVDMD | IVOMD | pH | Total VFAs | Ammonia-N |
---|---|---|---|---|---|
(%) | (%) | (mmol/L) | (mg/L) | ||
Fruit peels means | |||||
CCP | 12.52 b | 12.78 b | 7.27 a | 35.01 b | 175.35 a |
SPP | 53.75 a | 55.76 a | 7.12 b | 71.95 a | 125.54 b |
DRP | 54.32 a | 56.48 a | 7.09 b | 69.52 a | 129.57 b |
Additive means | |||||
Control | 42.49 ab | 42.87 bc | 7.06 | 56.78 bc | 150.80 |
TH14 | 41.64 b | 42.11 c | 7.20 | 59.06 bc | 117.31 |
AC | 35.59 d | 37.19 d | 7.20 | 57.57 bc | 135.94 |
TH14+AC | 35.65 d | 37.60 d | 7.14 | 55.71 bc | 174.55 |
Molasses | 44.74 a | 45.63 a | 7.15 | 68.42 a | 139.58 |
Molasses+TH14 | 43.19 ab | 44.73 ab | 7.17 | 62.20 ab | 137.13 |
Molasses+AC | 39.02 c | 41.59 c | 7.18 | 57.81 bc | 164.30 |
Molasses+TH14+AC | 39.26 c | 41.67 c | 7.15 | 53.02 c | 128.26 |
SEM | 1.324 | 1.196 | 0.077 | 4.346 | 24.695 |
Significance of main effect and interaction | |||||
Fruit peels (A) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Additives (B) | <0.001 | <0.001 | 0.445 | 0.004 | 0.121 |
A x B | <0.001 | <0.001 | 0.241 | <0.001 | 0.137 |
Item | IVDMD | IVOMD | pH | Total VFAs | Ammonia-N |
---|---|---|---|---|---|
(%) | (%) | (mmol/L) | (mg/L) | ||
Fruit peels means | |||||
CCP | 14.99 b | 16.90 b | 7.26 a | 37.72 b | 150.55 a |
SPP | 62.53 a | 66.40 a | 7.07 b | 83.29 a | 88.16 b |
DRP | 63.19 a | 67.45 a | 7.16 ab | 83.16 a | 82.43 b |
Additive means | |||||
Control | 48.24 abc | 49.36 bcd | 7.14 | 69.18 ab | 93.38 |
TH14 | 48.30 abc | 50.75 abc | 7.16 | 68.91 ab | 105.22 |
AC | 43.85 d | 47.32 d | 7.16 | 74.75 a | 107.48 |
TH14+AC | 43.77 d | 47.85 cd | 7.13 | 71.08 ab | 132.76 |
Molasses | 50.73 a | 53.61 a | 7.15 | 73.55 a | 78.44 |
Molasses+TH14 | 49.07 ab | 52.36 ab | 7.17 | 65.60 ab | 104.29 |
Molasses+AC | 45.27 cd | 49.82 bcd | 7.11 | 61.16 b | 117.10 |
Molasses+TH14+AC | 46.01 bcd | 50.96 abc | 7.31 | 60.23 b | 117.72 |
SEM | 1.772 | 1.822 | 0.096 | 6.500 | 28.822 |
Significance of main effect and interaction | |||||
Fruit peels (A) | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 |
Additives (B) | <0.001 | 0.001 | 0.299 | 0.069 | 0.459 |
A × B | 0.017 | 0.096 | 0.193 | 0.019 | 0.693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khota, W.; Panyakaew, P.; Kesorn, P.; Gunun, P.; Suwannasing, R.; Kimprasit, T.; Puangploy, P.; Kittipongpittaya, K.; Cherdthong, A.; Thip-uten, S.; et al. In Vitro Rumen Fermentation of Coconut, Sugar Palm, and Durian Peel Silages, Prepared with Selected Additives. Fermentation 2023, 9, 567. https://doi.org/10.3390/fermentation9060567
Khota W, Panyakaew P, Kesorn P, Gunun P, Suwannasing R, Kimprasit T, Puangploy P, Kittipongpittaya K, Cherdthong A, Thip-uten S, et al. In Vitro Rumen Fermentation of Coconut, Sugar Palm, and Durian Peel Silages, Prepared with Selected Additives. Fermentation. 2023; 9(6):567. https://doi.org/10.3390/fermentation9060567
Chicago/Turabian StyleKhota, Waroon, Paiwan Panyakaew, Piyawit Kesorn, Pongsatorn Gunun, Rattikan Suwannasing, Thachawech Kimprasit, Premsak Puangploy, Ketinun Kittipongpittaya, Anusorn Cherdthong, Suwit Thip-uten, and et al. 2023. "In Vitro Rumen Fermentation of Coconut, Sugar Palm, and Durian Peel Silages, Prepared with Selected Additives" Fermentation 9, no. 6: 567. https://doi.org/10.3390/fermentation9060567
APA StyleKhota, W., Panyakaew, P., Kesorn, P., Gunun, P., Suwannasing, R., Kimprasit, T., Puangploy, P., Kittipongpittaya, K., Cherdthong, A., Thip-uten, S., Sawnongbua, P., & Kaewpila, C. (2023). In Vitro Rumen Fermentation of Coconut, Sugar Palm, and Durian Peel Silages, Prepared with Selected Additives. Fermentation, 9(6), 567. https://doi.org/10.3390/fermentation9060567