Effects of Caffeic Acid and Chlorogenic Acid Addition on the Chemical Constituents of Lychee Wine Fermented with Saccharomyces cerevisiae DV10
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Methods
2.2.1. Preparation of Lychee Wine
2.2.2. Determination of Physical–Chemical Indexes
2.2.3. Determination of Aroma Compounds of Lychee Wine
2.2.4. Determination of Organic Acid Content
2.2.5. Determination of Polyphenol Content
2.2.6. Determination of Amino Acid
2.2.7. Sensory Analysis
2.2.8. Data Analysis
3. Results and Discussion
3.1. Physical-Chemical Characterization of Lychee Wine
3.2. Effect of Caffeic Acid and Chlorogenic Acid on Nonvolatile Acid and Mono-Phenols in Lychee Wine
3.3. Effect of Caffeic Acid and Chlorogenic Acid on the Aroma of Lychee Wine
3.4. Effect of Caffeic Acid and Chlorogenic Acid on Amino Acids in Lychee Wine
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Wang, K.; Wang, K.; Zhu, J.; Hu, Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2139–2163. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-A.; Lee, J.E.; Kyung, M.J.; Youn, J.H.; Bin Oh, J.; Whang, W.K. Anti-diabetic functional food with wasted litchi seed and standard of quality control. Appl. Biol. Chem. 2017, 60, 197–204. [Google Scholar] [CrossRef]
- Chen, D.; Chia, J.Y.; Liu, S.-Q. Impact of addition of aromatic amino acids on non-volatile and volatile compounds in lychee wine fermented with Saccharomyces cerevisiae MERIT. ferm. Int. J. Food Microbiol. 2014, 170, 12–20. [Google Scholar] [CrossRef]
- Berenguer, M.; Vegara, S.; Barrajón, E.; Saura, D.; Valero, M.; Martí, N. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains. Food Chem. 2016, 190, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Fan, W.; Xu, Y. Study on sensory characteristics of volatile organic acids in Cabernet Gernischt wine. Sci. Technol. Food Ind. 2009, 30, 142–144+148. [Google Scholar]
- Zeng, Y.; Zhong, Q.; Li, C.; Zhang, B.; Jiang, Z.; Fan, L.; Hao, W. Research progress in controlling the volatile acid of litchi fruit wine. China Brew. 2013, 32, 1–4. [Google Scholar]
- Wang, X.-J.; Li, Y.-K.; Song, H.-C.; Tao, Y.-S.; Russo, N. Phenolic matrix effect on aroma formation of terpenes during simulated wine fermentation—Part I: Phenolic acids. Food Chem. 2021, 341, 128288. [Google Scholar] [CrossRef]
- Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H.; Higashio, H.; Terao, J. Absorption of Chlorogenic Acid and Caffeic Acid in Rats after Oral Administration. J. Agric. Food Chem. 2000, 48, 5496–5500. [Google Scholar] [CrossRef]
- Aleixandre-Tudó, J.L.; Álvarez, I.; Lizama, V.; García, M.J.; Aleixandre, J.L.; Du Toit, W.J. Impact of Caffeic Acid Addition on Phenolic Composition of Tempranillo Wines from Different Winemaking Techniques. J. Agric. Food Chem. 2013, 61, 11900–11912. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, J.; Zhang, H. Effects of chlorogenic acid stress on the physiological characteristics of Saccharomyces cerevisiae during fermentation of Cider. J. Chin. Ins. Food Sci. Technol. 2022, 22, 116–124. [Google Scholar]
- Zhang, X.K.; He, F.; Zhang, B.; Reeves, M.J.; Liu, Y.; Zhao, X.; Duan, C.Q. The effect of preferment-ative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Res. Int. 2018, 106, 568–579. [Google Scholar] [CrossRef]
- Tang, Z.-S.; Zeng, X.-A.; Brennan, M.A.; Han, Z.; Niu, D.; Huo, Y. Characterization of aroma profile and characteristic aromas during lychee wine fermentation. J. Food Process. Preserv. 2019, 43, e14003. [Google Scholar] [CrossRef]
- Villière, A.; Symoneaux, R.; Roche, A.; Eslami, A.; Perrot, N.; Le Fur, Y.; Prost, C.; Courcoux, P.; Vigneau, E.; Thomas-Danguin, T.; et al. Comprehensive sensory and chemical data on the flavor of 16 red wines from two varieties: Sensory descriptive analysis, HS-SPME-GC-MS volatile compounds quantitative analysis, and odor-active compounds identification by HS-SPME-GC-MS-O. Data Brief 2019, 24, 103725. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.-N.; Tai, Y.-N.; Dong, M.; Shao, J.-H.; Yang, S.-Z.; Pan, S.-Y.; Fan, G. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem. 2015, 185, 25–32. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Zhao, P.; Ma, Z.; Zhang, J.; Ma, W.; Wang, X. Investigating the effect of three phenolic fractions on the volatility of floral, fruity, and aged aromas by HS-SPME-GC-MS and NMR in model wine. Food Chem. X 2022, 13, 100281. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhang, L.; He, B.; Yue, P.; Gao, X. Analysis of Organic Acids in Blueberry Juice and its Fermented Wine by High Performance Liquid Chromatography. Adv. J. Food Sci. Technol. 2015, 9, 127–134. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, Y.; Liu, D.; Li, Z.; Zhang, X.-X.; Li, J.-M.; Huang, J.-H.; Wang, J.; Pan, Q.-H. Evolution of phenolic compounds and sensory in bottled red wines and their co-development. Food Chem. 2015, 172, 565–574. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanassova, S.; Atanasov, V.; Grozeva, N. Content of Polyphenolic Compounds and Antioxidant Potential of Some Bulgarian Red Grape Varieties and Red Wines, Determined by HPLC, UV, and NIR Spectroscopy. Agriculture 2020, 10, 193. [Google Scholar] [CrossRef]
- Aznar, O.; Checa, A.; Oliver, R.; Hernández-Cassou, S.; Saurina, J. Determination of polyphenols in wines by liquid chromatography with UV spectrophotometric detection. J. Sep. Sci. 2011, 34, 527–535. [Google Scholar] [CrossRef]
- Yang, P.; Li, H.; Wang, H.; Han, F.; Jing, S.; Yuan, C.; Guo, A.; Zhang, Y.; Xu, Z. Dispersive Liquid-Liquid Microextraction Method for HPLC Determination of Phenolic Compounds in Wine. Food Anal. Methods 2017, 10, 2383–2397. [Google Scholar] [CrossRef]
- Bao, Y.; Boeren, S.; Ertbjerg, P. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding. Meat Sci. 2018, 135, 102–108. [Google Scholar] [CrossRef]
- Kovács, Z.; Simon-Sarkadi, L.; Sovány, C.; Kirsch, K.; Galiba, G.; Kocsy, G. Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci. 2011, 180, 61–68. [Google Scholar] [CrossRef]
- Glauser, G.; Grund, B.; Gassner, A.-L.; Menin, L.; Henry, H.; Bromirski, M.; Schütz, F.; McMullen, J.; Rochat, B. Validation of the Mass-Extraction-Window for Quantitative Methods Using Liquid Chromatography High Resolution Mass Spectrometry. Anal. Chem. 2016, 88, 3264–3271. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Z.; Weng, P. Effect of phenolic acids on the color and volatile flavor substances of bayberry fermented wine during storage. Food Sci. 2021, 42, 78–85. [Google Scholar]
- Alves, J.A.; de Oliveira Lima, L.C.; Nunes, C.A.; Dias, D.R.; Schwan, R. Chemical, Physical-Chemical, and Sensory Characteristics of Lychee (Litchi chinensis Sonn.) Wines. J. Food Sci. 2011, 76, S330–S336. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, S.-Q. Impact of simultaneous and sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on non-volatiles and volatiles of lychee wines. LWT—Food Sci. Technol. 2016, 65, 53–61. [Google Scholar] [CrossRef]
- Lelova, Z.; Ivanova-Petropulos, V.; Masár, M.; Lisjak, K.; Bodor, R. Optimization and Validation of a New Capillary Electrophoresis Method with Conductivity Detection for Determination of Small Anions in Red Wines. Food Anal. Methods 2017, 11, 1457–1466. [Google Scholar] [CrossRef]
- Cheynier, V.; Moutounet, M. Oxidative reactions of caffeic acid in model systems containing polyphenol oxidase. J. Agric. Food Chem. 1992, 40, 2038–2044. [Google Scholar] [CrossRef]
- Fernandez-Zurbano, P.; Ferreira, V.; Pena, C.; Escudero, A.; Serrano, F.; Cacho, J. Prediction of Oxidative Browning in White Wines as a Function of Their Chemical Composition. J. Agric. Food Chem. 1995, 43, 2813–2817. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.; Andújar-Ortiz, I.; Sánchez-Patán, F.; Moreno-Arribas, M.; Pozo-Bayón, M. Fate of the glutathione released from inactive dry yeast preparations during the alcoholic fermentation of white musts. Aust. J. Grape Wine Res. 2015, 22, 46–51. [Google Scholar] [CrossRef]
- Gonzalo-Diago, A.; Dizy, M.; Fernández-Zurbano, P. Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines. Food Chem. 2014, 154, 187–198. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: Metab-olites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef]
- Chen, D.; Yap, Z.Y.; Liu, S.-Q. Evaluation of the performance of Torulaspora delbrueckii, Williopsis saturnus, and Kluyveromyces lactis in lychee wine fermentation. Int. J. Food Microbiol. 2015, 206, 45–50. [Google Scholar] [CrossRef]
- Dufour, C.; Bayonove, C.L. Interactions between Wine Polyphenols and Aroma Substances. An Insight at the Molecular Level. J. Agric. Food Chem. 1999, 47, 678–684. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.Á.; Reineccius, G. Interactions Between Wine Matrix Macro-Components and Aroma Compounds. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Aronson, J.; Ebeler, S.E. Effect of Polyphenol Compounds on the Headspace Volatility of Flavors. Am. J. Enol. Vitic. 2004, 55, 13–21. [Google Scholar] [CrossRef]
- Escalona, H.; Homman-Ludiye, M.; Piggott, J.R.; Paterson, A. Effect of Potassium Bitartrate, (+)-Catechin and Wood Extracts on the Volatility of Ethyl Hexanaote and Octanal in Ethanol/Water Solutions. LWT—Food Sci. Technol. 2001, 34, 76–80. [Google Scholar] [CrossRef]
- Cheng, Y.; Huynh-Ba, T.; Blank, I.; Robert, F. Temporal Changes in Aroma Release of Longjing Tea Infusion: Interaction of Volatile and Nonvolatile Tea Components and Formation of 2-Butyl-2-octenal upon Aging. J. Agric. Food Chem. 2008, 56, 2160–2169. [Google Scholar] [CrossRef] [PubMed]
- Villamor, R.R.; Ross, C.F. Wine Matrix Compounds Affect Perception of Wine Aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef]
- Lorrain, B.; Tempere, S.; Iturmendi, N.; Moine, V.; de Revel, G.; Teissedre, P.-L. Influence of phenolic compounds on the sensorial perception and volatility of red wine esters in model solution: An insight at the molecular level. Food Chem. 2013, 140, 76–82. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, X.; Zhang, Y.; Wang, Q.; Zhou, P.P.; Li, Y.K.; Tao, Y.S. The implication of phenolic acid matrix effect on the volatility of ethyl acetate in alcohol-free wine model: Investigations with experimental and theoretical methods. Food Chem. 2022, 378, 132114. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.A.; de Oliveira Lima, L.C.; Dias, D.R.; Nunes, C.A.; Schwan, R.F. Effects of spontaneous and inoculated fermentation on the volatile profile of lychee (Litchi chinensis Sonn.) fermented beverages. Int. J. Food Sci. Technol. 2010, 45, 2358–2365. [Google Scholar] [CrossRef]
- Chen, K.; Escott, C.; Loira, I.; Del Fresno, J.M.; Morata, A.; Tesfaye, W.; Fernando, C.; Santiago, B.; Jose, S.-L. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine. Molecules 2016, 21, 1445. [Google Scholar] [CrossRef]
- Perez-Jiménez, M.; Chaya, C.; Pozo-Bayón, M.Á. Individual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting. Food Chem. 2019, 285, 147–155. [Google Scholar] [CrossRef]
- Li, N.; Zhang, B.; Niu, J.; Shi, X.; Ma, T.; Han, S. The influence of pre-fermentative addition of caffeic acid and rosmarinic acid on the color and aroma compounds of dry red wines. Food Ferment. Ind. 2020, 46, 132–140. [Google Scholar]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. Cri. Rev. Food Sci. Nut. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Delgado, R.M.; Zamora, R.; Hidalgo, F.J. Contribution of Phenolic Compounds to Food Flavors: Strecker-Type Degradation of Amines and Amino Acids Produced by o- and p-Diphenols. J. Agric. Food Chem. 2015, 63, 312–318. [Google Scholar] [CrossRef]
- Gong, J.; Wang, J.; Jin, Y.; Xiao, G.; You, Y.; Yuan, H.; Li, L.; Huang, J.; Liu, S.; Mao, J. Effect of γ-aminobutyric acid supplementation on the composition of Chinese rice wine. J. Inst. Brew. 2019, 125, 110–117. [Google Scholar] [CrossRef]
- Mitropoulou, A.; Hatzidimitriou, E.; Paraskevopoulou, A. Aroma release of a model wine solution as influenced by the presence of non-volatile components. Effect of commercial tannin extracts, polysaccharides and artificial saliva. Food Res. Int. 2011, 44, 1561–1570. [Google Scholar] [CrossRef]
- Goldner, M.; Lira, P.D.L.; van Baren, C.M.; Bandoni, A. Influence of Polyphenol Levels on the Perception of Aroma in Vitis vinifera cv. Malbec wine. S. Afr. J. Enol. Vitic. 2016, 32, 21–27. [Google Scholar] [CrossRef]
Control | With 200 mg/L of Caffeic Acid | With 300 mg/L of Chlorogenic Acid | |
---|---|---|---|
Alcohol (%vol) | 11.09 ± 0.89 a | 11.32 ± 0.05 a | 11.16 ± 0.09 a |
Total acidity (g/L) | 9.28 ± 0.1 a | 8.96 ± 0.1 b | 9.04 ± 0.1 b |
Volatile acid (g/L) | 0.56 ± 0.01 a | 0.43 ± 0.01 c | 0.52 ± 0.01 b |
Total SO2 (mg/L) | 166.83 ± 0.60 a | 155.73 ± 1.69 a | 147.2 ± 1.81 a |
Free SO2 (mg/L) | 43.22 ± 0.67 a | 32.91 ± 1.48 b | 29.14 ± 1.62 b |
Total sugar (g/L) | 5.33 ± 0.07 a | 4.51 ± 0.24 c | 5.00 ± 0.12 b |
Dry extract (g/L) | 22.45 ± 1.05 a | 24.25 ± 0.55 a | 24.4 ± 1.66 a |
Control | With 200 mg/L of Caffeic Acid | With 300 mg/L of Chlorogenic Acid | |
---|---|---|---|
Organic acids | |||
Tartaric acid | 0.84 ± 0.23 a | 1.03 ± 0.15 a | 0.72 ± 0.01 a |
Malic acid | 2.48 ± 0.05 b | 2.29 ± 0.084 b | 3.53 ± 0.64 a |
α-KG acid | 0.36 ± 0.005 a | 0.08 ± 0.004 c | 0.10 ± 0.02 b |
Pyruvic acid | 0.04 ± 0.003 c | 0.05 ± 0.001 b | 0.06 ± 0.002 a |
Citric acid | 0.07 ± 0.005 b | 0.07 ± 0.001 b | 0.60 ± 0.03 a |
Succinic acid | 0.33 ± 0.02 a | 0.20 ± 0.13 b | 0.23 ± 0.03 ab |
Mono-phenols | |||
Ferulic acid | 147.68 ± 10.43 a | 95.02 ± 3.33 b | 69.31 ± 7.31 c |
(+)—catechin | 132.71 ± 4.24 a | 91.78 ± 1.57 b | 76.79 ± 5.35 c |
Gallic acid | 93.51 ± 5.64 c | 129.82 ± 5.42 a | 113.75 ± 8.41 b |
Caffeic acid | 41.93 ± 1.72 b | 31.59 ± 0.99 c | 111.67 ± 4.51 a |
Chlorogenic acid | - | 104.35 ± 3.16 a | 89.61 ± 5.12 b |
(−)—epicatechin | - | 57.59 ± 5.86 a | 62.55 ± 0.75 a |
Total | 415.83 ± 22.03 b | 510.15 ± 20.33 a | 523.68 ± 31.45 a |
Compounds | CAS | Control | With 200 mg/L of Caffeic Acid | With 300 mg/L of Chlorogenic Acid |
---|---|---|---|---|
Esters | ||||
Isoamyl acetate | 123-92-2 | 103.85 ± 5.46 b | 139.07 ± 1.17 a | 110.32 ± 2.43 b |
Ethyl butyrate | 105-54-4 | 7.45 ± 0.83 b | 8.32 ± 1.04 a | 6.28 ± 0.31 b |
Isobutyl acetate | 110-19-0 | 7.33 ± 4.39 a | 1.99 ± 3.45 a | - |
Ethyl Hexanoate | 123-66-0 | 108.81 ± 2.66 b | 154.94 ± 11.5 a | 157.42 ± 34.46 a |
3-Cyclohexen-1-ol, acetate | 10437-78-2 | 19 ± 1.08 b | 26.14 ± 0.58 a | 19.39 ± 0.4 b |
Ethyl caprylate | 106-32-1 | 223.17 ± 23.65 b | 388.83 ± 6.69 a | 312.53 ± 78.55 ab |
Ethyl caprate | 110-38-3 | 96.66 ± 6.49 b | 183.13 ± 2.15 a | 103.12 ± 17.68 b |
Citronellyl acetate | 150-84-5 | 16.99 ± 1.72 b | 42.59 ± 1.73 a | 16.05 ± 3.53 b |
Ethyl benzoate | 93-89-0 | 4.29 ± 0.3 a | 4.26 ± 0.74 a | - |
Ethyl 9-decenoate | 67233-91-4 | 23.82 ± 1.99 b | 48.97 ± 3.42 a | 17.42 ± 4.12 b |
Acetic acid lavandulyl ester | 25905-14-0 | 5.97 ± 0.66 b | 10.1 ± 3.92 a | 3.08 ± 2.69 b |
Geranyl acetate | 105-87-3 | 14.93 ± 1.29 b | 35.79 ± 3.71 a | 11.35 ± 2.39 b |
Phenethyl acetate | 103-45-7 | 32.88 ± 1.18 b | 39.59 ± 0.89 a | 20.01 ± 3.2 c |
Ethyl undecanoate | 627-90-7 | 2.47 ± 2.16 b | 6.64 ± 1.11 a | - |
Pentanoic acid, 5-hydroxy-, 2,4-di-t-butylphenyl esters | 166273-38-7 | 1.11 ± 0.97 a | 1.73 ± 1.61 a | - |
Hexyl acetate | 142-92-7 | - | 0.47 ± 0.82 | - |
Butyl acetate | 123-86-4 | - | 3.39 ± 3.02 | - |
Total | 668.73 ± 54.81 b | 1095.95 ± 47.56 a | 776.89 ± 51.00 b | |
Alcohols | ||||
Ethanol | 64-17-5 | 8.54 ± 5.7 a | 7.49 ± 3.21 a | - |
1-Propanol | 71-23-8 | 6.7 ± 0.48 b | 7.79 ± 1.26 a | 4.95 ± 1.15 b |
2-Methyl-1-propanol | 78-83-1 | 98.66 ± 3.29 c | 125.63 ± 3.3 a | 111.29 ± 6.07 b |
3-Methyl-1-butanol | 123-51-3 | 851.79 ± 2.82 c | 949.62 ± 12.26 a | 928.13 ± 4.74 b |
3-Methylthiopropanol | 505-10-2 | 4.54 ± 0.36 a | 5.42 ± 1.23 a | 5.2 ± 0.97 a |
7-Methyl-3-methylene-6-octen-1-ol | 13066-51-8 | 2.72 ± 0.05 a | 1.6 ± 1.45 a | 1.68 ± 1.51 a |
Nerol | 106-25-2 | 13.3 ± 0.13 a | 13.31 ± 2.59 a | 12.31 ± 2.53 a |
Iso-Geraniol | 5944-20-7 | 11.54 ± 0.43 a | 11.38 ± 2.19 a | 8.92 ± 2.14 a |
Phenylethyl Alcohol | 1960/12/8 | 219.79 ± 9.53 c | 255.28 ± 13.24 b | 309.74 ± 18.11 c |
Cyclopropaneethanol, 2-methylene- | 120477-28-3 | 41.26 ± 2.15 a | 47.34 ± 5.21 a | 43.43 ± 7.01 a |
1-Octanol | 111-87-5 | - | 7.48 ± 1.17 a | 1.81 ± 3.14 b |
2-Nonanol | 628-99-9 | - | - | 1.46 ± 1.34 |
1-Heptanol | 111-70-6 | - | 5.34 ± 1.47 a | 5.15 ± 0.52 a |
2,3-Butanediol, [S-(R*,R*)]- | 19132-06-0 | 12.22 ± 2.02 a | 12.8 ± 3.25 a | 15.16 ± 3.73 a |
2-Decanol | 1120-06-5 | 2.27 ± 0.19 a | 3.15 ± 0.63 a | - |
1-Octen-3-ol | 3391-86-4 | 4.96 ± 0.5 a | 4.82 ± 0.8 a | 5.09 ± 1 a |
5-methyl-1-Hexanol | 627-98-5 | 1.24 ± 0.07 a | 0.78 ± 1.36 a | - |
Total | 1279.53 ± 27.73 b | 1459.23 ± 54.61 a | 1454.32 ± 53.95 a | |
Acids | ||||
Hexanoic acid | 142-62-1 | - | - | 10.4 ± 9.16 |
Oxalic acid | 144-62-7 | - | 4.83 ± 8.37 | - |
Acetic acid | 64-19-7 | 25.09 ± 0.52 a | 17.69 ± 1.91 b | 19.87 ± 1.37 b |
L-Lactic acid | 79-33-4 | 0.34 ± 0.58 a | 0.73 ± 0.64 a | - |
Propanoic acid, 2-methyl- | 79-31-2 | 2.51 ± 2.18 a | 4.68 ± 0.89 a | 4.76 ± 0.82 a |
Octanoic acid | 124-07-2 | 90.81 ± 4.28 b | 106.78 ± 2.03 a | 61.92 ± 3.29 c |
n-Decanoic acid | 334-48-5 | 26.75 ± 0.35 b | 32.63 ± 3.44 a | 14.48 ± 3.61 c |
Total | 145.5 ± 7.91 b | 167.34 ± 17.29 a | 111.43 ± 9.08 c | |
Terpenes | ||||
trans-Rose oxide | 876-18-6 | 53.83 ± 3.92 c | 74.55 ± 2.2 a | 66.81 ± 3.73 b |
6-Octen-1-ol, 3,7-dimethyl-, (R)- | 1117-61-9 | - | 143.18 ± 4.85 a | 137.13 ± 10.6 a |
Citronellol | 106-22-9 | 89.34 ± 7.38 | - | - |
L-à-Terpineol | 10482-56-1 | 6.17 ± 0.24 a | 6.28 ± 1.16 a | 5.75 ± 0.99 a |
1,6-Octadien-3-ol, 3,7-dimethyl- | 78-70-6 | 31.44 ± 1.62 b | 36.05 ± 0.77 a | 36.56 ± 2.22 a |
Geraniol | 106-24-1 | 39.04 ± 0.38 b | 48.07 ± 2.63 a | 30.21 ± 3.46 c |
Total | 219.82 ± 13.54 c | 308.13 ± 11.60 a | 276.46 ± 21.00 b | |
Aldehyde ketones | ||||
2-Nonanone | 821-55-6 | 5.38 ± 0.06 b | 8.74 ± 2.72 a | 4.67 ± 0.77 b |
Nonanal | 124-19-6 | 10.47 ± 3.32 a | 8.09 ± 0.78 a | 6.92 ± 0.78 a |
Decanal | 112-31-2 | 4.35 ± 3.77 a | 8.83 ± 5.43 a | - |
Total | 20.2 ± 7.15 a | 25.66 ± 8.93 a | 11.59 ± 1.55 b |
Compounds | Control | With 200 mg/L of Caffeic Acid | With 300 mg/L of Chlorogenic Acid | OT | TD |
---|---|---|---|---|---|
Isoamyl acetate | 3.462 ± 0.182 b | 4.636 ± 0.039 a | 3.677 ± 0.081 b | 0.03 | Fruity, banana flavors |
Ethyl Hexanoate | 0.015 ± 0 b | 0.021 ± 0.002 a | 0.021 ± 0.005 a | 7.5 | Pineapple, varnish, balsam |
Ethyl caprylate | 0.372 ± 0.039 b | 0.648 ± 0.011 a | 0.521 ± 0.131 ab | 0.6 | Pineapple, pear, flowers |
Ethyl caprate | 0.483 ± 0.032 b | 0.916 ± 0.011 a | 0.516 ± 0.088 b | 0.2 | Aromas of fruit and brandy |
Phenethyl acetate | 0.132 ± 0.005 b | 0.158 ± 0.004 a | 0.08 ± 0.013 c | 0.25 | Floral, fruity, cocoa and whisky notes |
Ethyl butyrate | 0.372 ± 0.041 ab | 0.416 ± 0.052 a | 0.209 ± 0.182 b | 0.02 | Banana, strawberry flavor |
1-Propanol, 2-methyl- | 0.002 ± 0 c | 0.003 ± 0 a | 0.003 ± 0 b | 40 | |
1-Butanol, 3-methyl- | 0.028 ± 0 c | 0.032 ± 0 a | 0.031 ± 0 b | 30 | Bitter almond taste, astringent taste |
Phenylethyl Alcohol | 0.2 ± 0.009 c | 0.232 ± 0.012 b | 0.282 ± 0.016 a | 1.1 | Rose, rose fragrance |
2-Nonanol | - | - | 0.002 ± 0.002 | 0.6 | Fruit, rose fragrance |
Octanoic acid | 0.091 ± 0.004 b | 0.107 ± 0.002 a | 0.062 ± 0.003 c | 1 | Cheese flavor, fruity |
Hexanoic acid | - | - | 0.003 ± 0.003 | 3 | Barbecue flavor, cheese |
trans-Rose oxide | 269.149 ± 19.614 c | 372.734 ± 10.986 a | 334.043 ± 18.658 b | 0.0002 | Intense aromas of roses |
1,6-Octadien-3-ol, 3,7-dimethyl- | 2.096 ± 0.108 b | 2.404 ± 0.051 a | 2.437 ± 0.148 a | 0.015 | Rose and citrus notes |
Citronellol | 2.234 ± 1.934 | - | - | 0.04 | Cloves, rose fragrance |
6-Octen-1-ol, 3,7-dimethyl-, (R)- | - | 3.58 ± 0.121 a | 3.428 ± 0.265 a | 0.04 | Cloves, rose fragrance |
Geraniol | 0.3 ± 0.003 b | 0.37 ± 0.02 a | 0.232 ± 0.027 c | 0.13 | Lemon flavor, peach |
CAS | Control | With 200 mg/L of Caffeic Acid | With 300 mg/L of Chlorogenic Acid | |
---|---|---|---|---|
γ-Aminobutyric acid | 1956-12-2 | 316.95 ± 9.49 c | 376.59 ± 5.33 b | 646.15 ± 20.11 a |
Pro | 147-85-3 | 240.13 ± 16.35 c | 282.91 ± 6.35 b | 374.12 ± 11.38 a |
Trp | 73-22-3 | 0.02 ± 0.01 b | 0.04 ± 0.01 b | 0.12 ± 0.01 a |
Gln | 56-85-9 | 16.46 ± 1.4 b | 18.68 ± 1.01 b | 22.55 ± 1.71 a |
Asn | 70-47-3 | 7.47 ± 0.45 c | 8.6 ± 0.17 b | 9.44 ± 0.18 a |
Ala | 56-41-7 | 13.88 ± 1 c | 18.73 ± 0.47 a | 17.01 ± 0.8 b |
Gly | 56-40-6 | 12.8 ± 0.75 a | 14.37 ± 1.14 a | 14.37 ± 0.6 a |
Thr | 72-19-5 | 1.38 ± 0.33 a | 1.74 ± 0.06 a | 1.78 ± 0.18 a |
Cys | 56-89-3 | - | - | - |
Ser | 56-45-1 | 2.53 ± 0.47 b | 3.25 ± 0.27 a | 3.41 ± 0.2 a |
Asp | 56-84-8 | 5.4 ± 0.76 b | 6.7 ± 0.41 ab | 7.48 ± 1.09 a |
Glu | 56-86-0 | 4.17 ± 0.55 b | 6.44 ± 0.52 a | 6.51 ± 0.28 a |
Arg | 74-79-3 | 3.2 ± 0.1 b | 3.74 ± 0.07 a | 3.18 ± 0.07 b |
His | 71-00-1 | 0.14 ± 0.01 b | 0.31 ± 0.01 a | 0.15 ± 0.01 b |
Lys | 56-87-1 | 1.06 ± 0.05 c | 1.93 ± 0.1 a | 1.73 ± 0.09 b |
Met | 63-68-3 | 0.61 ± 0.17 a | 0.76 ± 0.1 a | 0.67 ± 0.12 a |
Val | 72-18-4 | 1.15 ± 0.19 a | 1.49 ± 0.38 a | 1.25 ± 0.06 a |
Ile | 73-32-5 | 0.43 ± 0.12 b | 0.83 ± 0.09 a | 0.67 ± 0.07 a |
Leu | 61-90-5 | 2.02 ± 0.53 b | 3.63 ± 0.21 a | 3.42 ± 0.44 a |
Phe | 63-91-2 | 1.81 ± 0.18 ab | 2.17 ± 0.19 a | 1.67 ± 0.2 b |
Tyr | 60-18-4 | 1.26 ± 0.15 a | 1.44 ± 0.1 a | 1.23 ± 0.18 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhong, Q.; Zhang, Y. Effects of Caffeic Acid and Chlorogenic Acid Addition on the Chemical Constituents of Lychee Wine Fermented with Saccharomyces cerevisiae DV10. Fermentation 2023, 9, 451. https://doi.org/10.3390/fermentation9050451
Wu X, Zhong Q, Zhang Y. Effects of Caffeic Acid and Chlorogenic Acid Addition on the Chemical Constituents of Lychee Wine Fermented with Saccharomyces cerevisiae DV10. Fermentation. 2023; 9(5):451. https://doi.org/10.3390/fermentation9050451
Chicago/Turabian StyleWu, Xuexin, Qiuping Zhong, and Yunzhu Zhang. 2023. "Effects of Caffeic Acid and Chlorogenic Acid Addition on the Chemical Constituents of Lychee Wine Fermented with Saccharomyces cerevisiae DV10" Fermentation 9, no. 5: 451. https://doi.org/10.3390/fermentation9050451
APA StyleWu, X., Zhong, Q., & Zhang, Y. (2023). Effects of Caffeic Acid and Chlorogenic Acid Addition on the Chemical Constituents of Lychee Wine Fermented with Saccharomyces cerevisiae DV10. Fermentation, 9(5), 451. https://doi.org/10.3390/fermentation9050451