Methane and Hydrogen Sulfide Production from the Anaerobic Digestion of Fish Sludge from Recirculating Aquaculture Systems: Effect of Varying Initial Solid Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Experimental Design and Setup
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Methane Production
Treatment | CH4 (%) * | mL CH4/ g VS | mL CH4/g COD | mL CH4/ g wet sludge | mL CH4/ g feed # | mL H2S/ g VS |
---|---|---|---|---|---|---|
1.5% FS | 59.4 ± 0.3 | 422 ± 11 | 240 ± 6 | 5.5 ± 0.1 | 92 ± 2.4 | 0.90 ± 0.04 |
2.5% FS | 58.8 ± 0.2 | 483 ± 6 | 274 ± 3 | 10.5 ± 0.1 | 105 ± 1.3 | 0.99 ± 0.00 |
3.5% FS | 58.9 ± 0.3 | 519 ± 5 | 295 ± 3 | 15.9 ± 0.1 | 113 ± 1.1 | 1.10 ± 0.03 |
3.2. Hydrogen Sulfide Production
3.3. Volatile Fatty Acids
3.4. Solids and Organic Matter Reduction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Badiola, M.; Basurko, O.C.; Piedrahita, R.; Hundley, P.; Mendiola, D. Energy Use in Recirculating Aquaculture Systems (RAS): A Review. Aquac. Eng. 2018, 81, 57–70. [Google Scholar] [CrossRef]
- Choudhury, A.; Lepine, C.; Witarsa, F.; Good, C. Anaerobic Digestion Challenges and Resource Recovery Opportunities from Land-Based Aquaculture Waste and Seafood Processing Byproducts: A Review. Bioresour. Technol. 2022, 354, 127144. [Google Scholar] [CrossRef]
- Sharrer, M.; Rishel, K.; Taylor, A.; Vinci, B.J.; Summerfelt, S.T. The Cost and Effectiveness of Solids Thickening Technologies for Treating Backwash and Recovering Nutrients from Intensive Aquaculture Systems. Bioresour. Technol. 2010, 101, 6630–6641. [Google Scholar] [CrossRef] [Green Version]
- Mirzoyan, N.; Tal, Y.; Gross, A. Anaerobic Digestion of Sludge from Intensive Recirculating Aquaculture Systems: Review. Aquaculture 2010, 306, 1–6. [Google Scholar] [CrossRef]
- Quinn, B.M.; Apolinario, E.A.; Gross, A.; Sowers, K.R. Characterization of a Microbial Consortium That Converts Mariculture Fish Waste to Biomethane. Aquaculture 2016, 453, 154–162. [Google Scholar] [CrossRef]
- Fagerström, A.; Seadi, T.A.; Rasi, S.; Briseid, T. The Role of Anaerobic Digestion and Biogas in the Circular Economy. In IEA Bioenergy Task 37; IEA Bioenergy: Cork, Ireland, 2018. [Google Scholar]
- Moeller, L.; Zehnsdorf, A. Process Upsets in a Full-Scale Anaerobic Digestion Bioreactor: Over-Acidification and Foam Formation during Biogas Production. Energ. Sustain. Soc. 2016, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Ye, J.; Zhang, P.; Xu, D.; Wu, Y.; Liu, J.; Zhang, H.; Fang, W.; Wang, B.; Zeng, G. Hydrogen Sulfide Formation Control and Microbial Competition in Batch Anaerobic Digestion of Slaughterhouse Wastewater Sludge: Effect of Initial Sludge PH. Bioresour. Technol. 2018, 259, 67–74. [Google Scholar] [CrossRef]
- Alavi-Borazjani, S.A.; Capela, I.; Tarelho, L.A.C. Over-Acidification Control Strategies for Enhanced Biogas Production from Anaerobic Digestion: A Review. Biomass Bioenergy 2020, 143, 105833. [Google Scholar] [CrossRef]
- Andriamanohiarisoamanana, F.J.; Shirai, T.; Yamashiro, T.; Yasui, S.; Iwasaki, M.; Ihara, I.; Nishida, T.; Tangtaweewipat, S.; Umetsu, K. Valorizing Waste Iron Powder in Biogas Production: Hydrogen Sulfide Control and Process Performances. J. Environ. Manag. 2018, 208, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Farghali, M.; Andriamanohiarisoamanana, F.J.; Ahmed, M.M.; Kotb, S.; Yamashiro, T.; Iwasaki, M.; Umetsu, K. Impacts of Iron Oxide and Titanium Dioxide Nanoparticles on Biogas Production: Hydrogen Sulfide Mitigation, Process Stability, and Prospective Challenges. J. Environ. Manag. 2019, 240, 160–167. [Google Scholar] [CrossRef]
- Letelier-Gordo, C.O.; Mancini, E.; Pedersen, P.B.; Angelidaki, I.; Fotidis, I.A. Saline Fish Wastewater in Biogas Plants—Biomethanation Toxicity and Safe Use. J. Environ. Manag. 2020, 275, 111233. [Google Scholar] [CrossRef] [PubMed]
- Moody, L.B.; Burns, R.T.; Bishop, G.; Sell, S.T.; Spajic, R. Using Biochemical Methane Potential Assays to Aid in Co-Substrate Selection for Co-Digestion. Appl. Eng. Agric. 2011, 27, 433–439. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, M.; Miao, H.; Huang, Z.; Gao, S.; Ruan, W. In Situ Volatile Fatty Acids Influence Biogas Generation from Kitchen Wastes by Anaerobic Digestion. Bioresour. Technol. 2014, 163, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Amha, Y.M.; Anwar, M.Z.; Brower, A.; Jacobsen, C.S.; Stadler, L.B.; Webster, T.M.; Smith, A.L. Inhibition of Anaerobic Digestion Processes: Applications of Molecular Tools. Bioresour. Technol. 2018, 247, 999–1014. [Google Scholar] [CrossRef]
- Mehariya, S.; Patel, A.K.; Obulisamy, P.K.; Punniyakotti, E.; Wong, J.W.C. Co-Digestion of Food Waste and Sewage Sludge for Methane Production: Current Status and Perspective. Bioresour. Technol. 2018, 265, 519–531. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Mustafa, A.M.; Sheng, K. Effects of Inoculum to Substrate Ratio and Co-Digestion with Bagasse on Biogas Production of Fish Waste. Environ. Technol. 2017, 38, 2517–2522. [Google Scholar] [CrossRef]
- Abdul Aziz, N.I.H.; Hanafiah, M.M.; Mohamed Ali, M.Y. Sustainable Biogas Production from Agrowaste and Effluents—A Promising Step for Small-Scale Industry Income. Renew. Energy 2019, 132, 363–369. [Google Scholar] [CrossRef]
- Sarker, P.K.; Bureau, D.P.; Hua, K.; Drew, M.D.; Forster, I.; Were, K.; Hicks, B.; Vandenberg, G.W. Sustainability Issues Related to Feeding Salmonids: A Canadian Perspective. Rev. Aquacult. 2013, 5, 199–219. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the Use of Insects in the Diet of Farmed Fish: Past and Future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Lanari, D.; Franci, C. Biogas Production from Solid Wastes Removed from Fish Farm Effluents. Aquat. Living Resour. 1998, 11, 289–295. [Google Scholar] [CrossRef]
- Suhr, K.I.; Letelier-Gordo, C.O.; Lund, I. Anaerobic Digestion of Solid Waste in RAS: Effect of Reactor Type on the Biochemical Acidogenic Potential (BAP) and Assessment of the Biochemical Methane Potential (BMP) by a Batch Assay. Aquac. Eng. 2015, 65, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Song, K. Process Performance of Anaerobic Co-Digestion of Waste Activated Sludge and Aquaculture Sludge. Aquac. Eng. 2020, 90, 102090. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.P.L.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.C.P.; et al. Nutrient Mineralization and Organic Matter Reduction Performance of RAS-Based Sludge in Sequential UASB-EGSB Reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.; Summerfelt, S. Solids Flushing, Mixing, and Water Velocity Profiles within Large (10 and 150 M3) Circular ‘Cornell-Type’ Dual-Drain Tanks. Aquac. Eng. 2004, 32, 245–271. [Google Scholar] [CrossRef]
- AgSTAR. Managing Manure with Biogas Recovery Systems Improved Performance at Competitive Costs; EPA: Springfield, IL, USA, 2002. [Google Scholar]
- Timmons, M.B.; Vinci, B.J. Recirculating Aquaculture, 5th ed.; Ithaca Publishing Company LLC: New York, NY, USA, 2022. [Google Scholar]
- Belle, A.J.; Lansing, S.; Mulbry, W.; Weil, R.R. Methane and Hydrogen Sulfide Production during Co-Digestion of Forage Radish and Dairy Manure. Biomass Bioenergy 2015, 80, 44–51. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Qiao, W. Transformations and Impacts of Ammonia and Hydrogen Sulfide in Anaerobic Reactors. In Anaerobic Biotechnology: Environmental Protection and Resource Recovery; World Scientific: Singapore, 2015; pp. 109–131. [Google Scholar]
- Shelford, T.J.; Gooch, C.A.; Lansing, S.A. Performance and Economic Results for Two Full-Scale Biotrickling Filters to Remove H2S from Dairy Manure-Derived Biogas. Appl. Eng. Agric. 2019, 35, 283–291. [Google Scholar] [CrossRef]
- Choudhury, A.; Shelford, T.; Felton, G.; Gooch, C.; Lansing, S. Evaluation of Hydrogen Sulfide Scrubbing Systems for Anaerobic Digesters on Two U.S. Dairy Farms. Energ. 2019, 12, 4605. [Google Scholar] [CrossRef] [Green Version]
- Ramos, I.; Fdz-Polanco, M. Microaerobic Control of Biogas Sulphide Content during Sewage Sludge Digestion by Using Biogas Production and Hydrogen Sulphide Concentration. Chem. Eng. J. 2014, 250, 303–311. [Google Scholar] [CrossRef]
- Forouzanmehr, F.; Solon, K.; Maisonnave, V.; Daniel, O.; Volcke, E.I.P.; Gillot, S.; Buffiere, P. Sulfur Transformations during Two-Stage Anaerobic Digestion and Intermediate Thermal Hydrolysis. Sci. Total Environ. 2022, 810, 151247. [Google Scholar] [CrossRef]
- Gebauer, R.; Eikebrokk, B. Mesophilic Anaerobic Treatment of Sludge from Salmon Smolt Hatching. Bioresour. Technol. 2006, 97, 2389–2401. [Google Scholar] [CrossRef] [PubMed]
- Letelier-Gordo, C.O.; Aalto, S.L.; Suurnäkki, S.; Pedersen, P.B. Increased Sulfate Availability in Saline Water Promotes Hydrogen Sulfide Production in Fish Organic Waste. Aquac. Eng. 2020, 89, 102062. [Google Scholar] [CrossRef]
- van Rijn, J.; Fonarev, N.; Berkowitz, B. Anaerobic Treatment of Intensive Fish Culture Effluents: Digestion of Fish Feed and Release of Volatile Fatty Acids. Aquaculture 1995, 133, 9–20. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, C.; Qiu, L.; Yao, Y.; Sun, G.; Guo, X. Anaerobic digestion of swine manure using aqueous pyrolysis liquid as an additive. Renew. Energy 2020, 147, 2484–2493. [Google Scholar] [CrossRef]
- Kuruti, K.; Begum, S.; Ahuja, S.; Anupoju, G.R.; Juntupally, S.; Gandu, B.; Ahuja, D.K. Exploitation of Rapid Acidification Phenomena of Food Waste in Reducing the Hydraulic Retention Time (HRT) of High Rate Anaerobic Digester without Conceding on Biogas Yield. Bioresour. Technol. 2017, 226, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Patni, N.K.; Jui, P.Y. Volatile Fatty Acids in Stored Dairy-Cattle Slurry. Agric. Wastes 1985, 13, 159–178. [Google Scholar] [CrossRef]
- Hobbs, S.R.; Landis, A.E.; Rittmann, B.E.; Young, M.N.; Parameswaran, P. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: Inoculum ratios. Waste Manag. 2018, 71, 612–617. [Google Scholar] [CrossRef]
Parameters | Fish Sludge (FS) | Inoculum |
---|---|---|
Total solids (mg/L) | 35,700 ± 794 | 53,700 ± 587 |
Volatile solids (mg/L) | 31,133 ± 1471 | 42,367 ± 936 |
Chemical oxygen demand (mg/L) | 54,875 ± 1151 | 64,650 ± 2406 |
Total ammonia (mg/L) | 422 ± 2 | 1072 ± 16 |
Total nitrogen (mg/L) | 2265 ± 33 | 2535 ± 64 |
Total phosphorus (mg/L) | 750 ± 6 | 440 ± 6 |
Total VFA (mg/L) | 6540 ± 232 | 36 ± 3 |
pH | 5.5 ± 0.0 | 7.7 ± 0.0 |
Treatment | Inoculum (mL) | Fish Sludge (mL) | Substrate TS (g) | Substrate VS (g) |
---|---|---|---|---|
Inoculum Control | 75 | - | - | - |
1.5% FS | 75 | 122.5 | 1.8 | 1.6 |
2.5% FS | 75 | 73.5 | 1.8 | 1.6 |
3.5% FS | 75 | 52.5 | 1.8 | 1.6 |
Treatment | %TS Reduction | %VS Reduction | %COD Reduction |
---|---|---|---|
1.5% FS | 44% | 30% | 57% |
2.5% FS | 42% | 27% | 62% |
3.5% FS | 50% | 29% | 69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, A.; Lepine, C.; Good, C. Methane and Hydrogen Sulfide Production from the Anaerobic Digestion of Fish Sludge from Recirculating Aquaculture Systems: Effect of Varying Initial Solid Concentrations. Fermentation 2023, 9, 94. https://doi.org/10.3390/fermentation9020094
Choudhury A, Lepine C, Good C. Methane and Hydrogen Sulfide Production from the Anaerobic Digestion of Fish Sludge from Recirculating Aquaculture Systems: Effect of Varying Initial Solid Concentrations. Fermentation. 2023; 9(2):94. https://doi.org/10.3390/fermentation9020094
Chicago/Turabian StyleChoudhury, Abhinav, Christine Lepine, and Christopher Good. 2023. "Methane and Hydrogen Sulfide Production from the Anaerobic Digestion of Fish Sludge from Recirculating Aquaculture Systems: Effect of Varying Initial Solid Concentrations" Fermentation 9, no. 2: 94. https://doi.org/10.3390/fermentation9020094
APA StyleChoudhury, A., Lepine, C., & Good, C. (2023). Methane and Hydrogen Sulfide Production from the Anaerobic Digestion of Fish Sludge from Recirculating Aquaculture Systems: Effect of Varying Initial Solid Concentrations. Fermentation, 9(2), 94. https://doi.org/10.3390/fermentation9020094