The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microorganisms
2.3. Sample Preparation and Collection
2.4. Determination of pH and Titratable Acidity (TA)
2.5. Determination of Organic Acid Content
2.6. Measurement of Total Phenolic Compounds and Flavonoids
2.7. Measurement of Peptides and Free Amino Acids (FAAs)
2.8. Microbiological Diversity
2.9. Data Analysis
3. Results and Discussion
3.1. Changes in the Values of pH and TA during Fermentation
3.2. Changes in Metabolites
3.2.1. Organic Acids
3.2.2. Total Phenolic Compounds and Flavonoids
3.2.3. Peptides and Total FFAs
3.3. Changes in Microbial Communities during Fermentation
3.3.1. Bacterial Communities
3.3.2. Fungal Communities
3.4. Correlation between Microorganisms and Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pino, J.A. Odour-active compounds in pineapple (Ananas comosus [L.] Merril cv. Red Spanish). Int. J. Food Sci. Technol. 2013, 48, 564–570. [Google Scholar] [CrossRef]
- Li, D.; Jing, M.; Dai, X.; Chen, Z.; Ma, C.; Chen, J. Current status of pineapple breeding, industrial development, and genetics in China. Euphytica 2022, 218, 85. [Google Scholar] [CrossRef]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef]
- Yao, D.; Xu, L.; Wang, C.Y. Diversity of the microbial community and antioxidant activity during fermentation of red raspberry Enzymes. Food Sci. Nutr. 2021, 9, 99–110. [Google Scholar] [CrossRef]
- Di Cagno, R.; Cardinali, G.; Minervini, G.; Antonielli, L.; Rizzello, C.G.; Ricciuti, P.; Gobbetti, M. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food Microbiol. 2010, 27, 381–389. [Google Scholar] [CrossRef]
- Amorim, J.C.; Piccoli, R.H.; Duarte, W.F. Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res. Int. 2018, 107, 518–527. [Google Scholar] [CrossRef]
- Li, Y.; Rokayya, S.; Jia, F.; Nie, X.; Xu, J.; Elhakem, A.; Almatrafi, M.; Benajiba, N.; Helal, M. Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Sci. Rep. 2021, 11, 55. [Google Scholar] [CrossRef]
- Wen-Qiong, W.; Jie-Long, Z.; Qian, Y.; Ji-Yang, Z.; Mao-Lin, L.; Rui-Xia, G.; Yujun, H. Structural and compositional changes of whey protein and blueberry juice fermented using Lactobacillus plantarum or Lactobacillus casei during fermentation. RSC Adv. 2021, 11, 26291–26302. [Google Scholar] [CrossRef]
- Khalifa, I.; Peng, J.; Jia, Y.; Li, J.; Zhu, W.; Yu-Juan, X.; Li, C. Anti-glycation and anti-hardening effects of microencapsulated mulberry polyphenols in high-protein-sugar ball models through binding with some glycation sites of whey proteins. Int. J. Biol. Macromol. 2019, 123, 10–19. [Google Scholar] [CrossRef]
- Mohd Taha, M.D.; Mohd Jaini, M.F.; Saidi, N.B.; Abdul Rahim, R.; Md Shah, U.K.; Mohd Hashim, A. Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS ONE 2019, 14, e224431. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, Y.; Tang, L.J.; Li, X.X.; Xiao, Y.W.; Bin Zhang, Z.; Yan, R.M.; Yang, H.L.; Chang, J.; Zhu, B.; et al. Yeasts from Nanfeng mandarin plants: Occurrence, diversity and capability to produce indole-3-acetic acid. Biotechnol. Biotechnol. Equip. 2018, 32, 1496–1506. [Google Scholar] [CrossRef]
- Sarkar, T.; Salauddin, M.; Hazra, S.K.; Chakraborty, R. The impact of raw and differently dried pineapple (Ananas comosus) fortification on the vitamins, organic acid and carotene profile of dairy rasgulla (sweetened cheese ball). Heliyon 2020, 6, e5233. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Koh, E. Changes in the antioxidant capacity and phenolic compounds of maesil extract during one-year fermentation. Food Sci. Biotechnol. 2017, 26, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Mora, L.; Gallego, M.; Escudero, E.; Reig, M.; Toldra, F. Small peptides hydrolysis in dry-cured meats. Int. J. Food Microbiol. 2015, 212, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Yu, X.; Fang, J.; Lu, Y.; Liu, P.; Xing, Y.; Wang, Q.; Che, Z.; He, Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018, 23, 1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Wu, Z.; Zhang, X.; Xi, G.; Zhao, Z.; Lai, M.; Zhao, M. Microbial community and metabolic function analysis of cigar tobacco leaves during fermentation. MicrobiologyOpen 2021, 10, e1171. [Google Scholar] [CrossRef]
- Andeta, A.F.; Vandeweyer, D.; Woldesenbet, F.; Eshetu, F.; Hailemicael, A.; Woldeyes, F.; Crauwels, S.; Lievens, B.; Ceusters, J.; Vancampenhout, K.; et al. Fermentation of enset (Ensete ventricosum) in the Gamo highlands of Ethiopia: Physicochemical and microbial community dynamics. Food Microbiol. 2018, 73, 342–350. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Z.; Hao, Y.; Zhang, L.; Ren, Y.; Zhang, Y.; Chen, Z.; Mandlaa. Correlation between bacterial communities and organic acids in the fermentation stage of traditional Chinese sour porridge. Int. J. Food Prop. 2020, 23, 1430–1440. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef]
- Moriyama, S.; Nishio, K.; Mizushima, T. Structure of glyoxysomal malate dehydrogenase (MDH3) from Saccharomyces cerevisiae. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2018, 74, 617–624. [Google Scholar] [CrossRef]
- Fahimi, N.; Brandam, C.; Taillandier, P. A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni. World J. Microbiol. Biotechnol. 2014, 30, 3163–3172. [Google Scholar] [CrossRef] [Green Version]
- García-Quintáns, N.; Repizo, G.; Martín, M.; Magni, C.; López, P. Activation of the Diacetyl/Acetoin Pathway in Lactococcus lactis subsp.lactis bv. diacetylactis CRL264 by Acidic Growth. Appl. Environ. Microb. 2008, 74, 1988–1996. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Luo, W.; Peng, Y.; Niu, K.; Liu, X.; Shen, G.; Zhang, Z.; Wan, H.; Luo, Q.; Li, S. Quality and microbial flora changes of radish paocai during multiple fermentation rounds. Food Control 2019, 106, 106733. [Google Scholar] [CrossRef]
- Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chem. Eng. Technol. 2008, 31, 647–654. [Google Scholar] [CrossRef]
- Hu, W.; Sarengaowa; Guan, Y.; Feng, K. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables. Front. Microbiol. 2022, 13, 906069. [Google Scholar] [CrossRef]
- Gao, Q.; Song, Y.; Liang, Y.; Li, Y.; Chang, Y.; Ma, R.; Cao, X.; Wang, S. Dynamics of Physicochemical Properties, Functional Compounds and Antioxidant Capacity during Spontaneous Fermentation of Lycium ruthenicum Murr. (Qinghai–Tibet Plateau) Natural Vinegar. Foods 2022, 11, 1344. [Google Scholar] [CrossRef]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef]
- Ruiz-Garcia, Y.; Beres, C.; Chavez, D.; Pereira, D.; Santiago, M.; Godoy, R.D.; Gomes, F.D.; Antoniassi, R.; Tonon, R.V.; Cabral, L. In vitro digestion and colonic fermentation of an Alicante Bouschet (Vitis vinifera L.) skin extract. LWT-Food Sci. Technol. 2022, 157, 113083. [Google Scholar] [CrossRef]
- Sun, Y.; Chou, C.; Yu, R. Antioxidant activity of lactic-fermented Chinese cabbage. Food Chem. 2009, 115, 912–917. [Google Scholar] [CrossRef]
- Wroblewska, B.; Markiewicz, L.H.; Szyc, A.M.; Dietrich, M.A.; Szymkiewicz, A.; Fotschki, J. Lactobacillus casei LcY decreases milk protein immunoreactivity of fermented buttermilk but also contains IgE-reactive proteins. Food Res. Int. 2016, 83, 95–101. [Google Scholar] [CrossRef]
- Li, W.; Ren, M.; Duo, L.; Li, J.; Wang, S.; Sun, Y.; Li, M.; Ren, W.; Hou, Q.; Yu, J.; et al. Fermentation Characteristics of Lactococcus lactis subsp. lactis Isolated from Naturally Fermented Dairy Products and Screening of Potential Starter Isolates. Front. Microbiol. 2020, 11, 1794. [Google Scholar] [CrossRef]
- Ammor, M.S.; Mayo, B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 2007, 76, 138–146. [Google Scholar] [CrossRef]
- Sobrino-Lopez, A.; Martin-Belloso, O. Use of nisin and other bacteriocins for preservation of dairy products. Int. Dairy J. 2008, 18, 329–343. [Google Scholar] [CrossRef]
- Wang, X.; Glawe, D.A.; Kramer, E.; Weller, D.; Okubara, P.A. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Phytopathology 2018, 108, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Du, X.; Wee, J. Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking. Fermentation 2021, 7, 15. [Google Scholar] [CrossRef]
- Belloch, C.; Villa-Carvajal, M.; Alvarez-Rodriguez, M.L.; Coque, J. Rhodotorula subericola sp nov., an anamorphic basidiomycetous yeast species isolated from bark of Quercus suber (cork oak). Int. J. Syst. Evol. Microbiol. 2007, 57, 1668–1671. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Rosales, P.U.; Ragazzo-Sánchez, J.A.; Ruiz-Montañez, G.; Ortiz-Basurto, R.I.; Luna-Solano, G.; Calderón-Santoyo, M. Saccharomyces cerevisiae Mixed Culture of Blackberry (Rubus ulmifolius L.) Juice: Synergism in the Aroma Compounds Production. Sci. World J. 2014, 2014, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Saab, M.; Formey, D.; Torres, M.; Aragón, W.; Padilla, E.A.; Tromas, A.; Sohlenkamp, C.; Schwan-Estrada, K.R.F.; Serrano, M. Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea. Front. Microbiol. 2018, 9, 1596. [Google Scholar] [CrossRef]
- Huang, X.; Yu, S.; Han, B.; Chen, J. Bacterial community succession and metabolite changes during sufu fermentation. LWT 2018, 97, 537–545. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, A.; Wu, Z.; Liu, C.; Zhang, W. Characterization of Microbial Community during the Fermentation of Chinese Homemade paocai, a Traditional Fermented Vegetable Food. Food Sci. Technol. Res. 2016, 22, 467–475. [Google Scholar] [CrossRef]
- Salgado, C.L.; Munoz, R.; Blanco, A.; Lienqueo, M.E. Valorization and upgrading of the nutritional value of seaweed and seaweed waste using the marine fungi Paradendryphiella salina to produce mycoprotein. Algal Res. 2021, 53, 102135. [Google Scholar] [CrossRef]
- Van Wyk, N.; Scansani, S.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Pretorius, I.S.; Rauhut, D.; von Wallbrunn, C. The Use of Hanseniaspora occidentalis in a Sequential Must Inoculation to Reduce the Malic Acid Content of Wine. Appl. Sci. 2022, 12, 6919. [Google Scholar] [CrossRef]
- Escribano-Viana, R.; Gonzalez-Arenzana, L.; Garijo, P.; Fernandez, L.; Lopez, R.; Santamaria, P.; Gutierrez, A.R. Bioprotective Effect of a Torulaspora delbrueckii/Lachancea thermotolerans-Mixed Inoculum in Red Winemaking. Fermentation 2022, 8, 337. [Google Scholar] [CrossRef]
- Feng, M.F.; Lv, Y.; Li, T.T.; Li, X.M.; Liu, J.Y.; Chen, X.L.; Zhang, Y.; Chen, X.; Wang, A.X. Postharvest Treatments with Three Yeast Strains and Their Combinations to Control Botrytis cinerea of Snap Beans. Foods 2021, 10, 2736. [Google Scholar] [CrossRef]
- Valera, M.J.; Olivera, V.; Boido, E.; Dellacassa, E.; Carrau, F. Wine Aroma Characterization of the Two Main Fermentation Yeast Species of the Apiculate Genus Hanseniaspora. Fermentation 2021, 7, 162. [Google Scholar] [CrossRef]
Parameters | Fermentation Time (h) | |||
---|---|---|---|---|
0 | 8 | 14 | 26 | |
pH value | 5.01 ± 0.010 a | 4.52 ± 0.010 b | 4.43 ± 0.011 c | 3.97 ± 0.011 d |
TA (as % Lactic acid) | 0.63 ± 0.045 c | 0.74 ± 0.029 c | 0.92 ± 0.025 b | 1.11 ± 0.032 a |
Oxalic acid (mg/g) | 0.10 ± 0.0032 c | 0.12 ± 0.0085 b | 0.20 ± 0.0018 a | 0.21 ± 0.0092 a |
Tartaric acid (mg/g) | 0.36 ± 0.0014 d | 0.41 ± 0.0045 c | 0.47 ± 0.010 b | 0.65 ± 0.0072 a |
Malic acid (mg/g) | 2.52 ± 0.066 a | 1.51 ± 0.0081 b | 1.09 ± 0.0084 c | 0.92 ± 0.011 d |
Ascorbic acid (mg/g) | 0.31 ± 0.016 c | 0.32 ± 0.0067 c | 0.34 ± 0.0044 b | 0.37 ± 0.0060 a |
Lactic acid (mg/g) | 0.41 ± 0.0035 d | 3.12 ± 0.087 c | 3.45 ± 0.052 b | 4.36 ± 0.037 a |
Citric acid (mg/g) | 2.91 ± 0.028 a | 2.27 ± 0.14 b | 2.15 ± 0.094 bc | 2.07 ± 0.013 c |
Succinic acid (mg/g) | 0.66 ± 0.056 d | 0.95 ± 0.14 c | 3.18 ± 0.18 b | 3.52 ± 0.13 a |
Total FAAs (mg/g) | 2.34 ± 0.038 d | 3.28 ± 0.038 c | 4.66 ± 0.055 b | 5.44 ± 0.052 a |
Total phenolic compounds (mg GAE/g) | 0.53 ± 0.012 d | 0.62 ± 0.012 c | 0.69 ± 0.016 b | 0.83 ± 0.0053 a |
Flavonoids (mg/g) | 0.40 ± 0.077 c | 0.41 ± 0.091 c | 0.52 ± 0.098 b | 0.76 ± 0.049 a |
Protein Annotation | Uniprot Entries | 0 h | 8 h | 14 h | 26 h | Total |
---|---|---|---|---|---|---|
Progestagen-associated endometrial protein | A0A3Q1LYE8 | 0 | 7 | 3 | 3 | 13 |
SERPIN domain-containing protein | A0A0A0MPA0 | 0 | 6 | 0 | 0 | 6 |
Beta-lactoglobulin | E7E1Q8, A0A0P0HAN3, A0A6B7KGW3 | 0 | 148 | 120 | 58 | 326 |
Alpha-lactalbumin | A1YQB2, P00711 | 0 | 42 | 43 | 25 | 110 |
Kappa-casein | A0A140T8A9, A1YT10 | 0 | 2 | 0 | 11 | 13 |
Glyceraldehyde-3-phosphate dehydrogenase | A0A1H0PLI9 | 0 | 1 | 0 | 0 | 1 |
Osteopontin | A0A3Q1LZU0 | 0 | 2 | 0 | 4 | 6 |
Uncharacterized protein | A0A3Q1M3L6, G5E513, A5D7Q2, A0A4W2HPP0 | 0 | 13 | 4 | 12 | 29 |
Transthyretin | A0A3Q1MRM2 | 0 | 1 | 3 | 0 | 4 |
Beta-casein | A0A4W2EW77, A0A452DHW7 | 0 | 7 | 4 | 10 | 21 |
Immunoglobulin heavy constant mu | A0A4W2DQN7, A0A4W2BTP2, A0A4W2BTN1 | 0 | 4 | 4 | 0 | 8 |
Phosphoinositide 5-phosphatase | A0A4W2D0I2, A0A4W2ISM3 | 0 | 2 | 0 | 0 | 2 |
Lactoperoxidase | G3MXZ0 | 0 | 2 | 0 | 0 | 2 |
Nucleobindin 2 | F6Q8A8 | 0 | 3 | 0 | 1 | 4 |
IGK protein | B0JYP6 | 0 | 1 | 0 | 0 | 1 |
Chaperone protein DnaK | A0A6G8I0H9 | 0 | 1 | 0 | 0 | 1 |
Vitamin D-binding protein | A0A4W2IIR6 | 0 | 2 | 0 | 0 | 2 |
Lipocalin 2 | A0A4W2HSN3, E1B6Z6 | 0 | 1 | 1 | 0 | 2 |
Chloride intracellular channel 3 | A0A4W2H7R9 | 0 | 1 | 0 | 0 | 1 |
Serotransferrin | A0A4W2GXB7 | 0 | 1 | 0 | 1 | 2 |
Glycosylation-dependent cell adhesion molecule 1 | A0A4W2FPA7 | 0 | 7 | 0 | 5 | 12 |
Fatty acid-binding protein 3 | A0A4W2FMN0 | 0 | 1 | 0 | 0 | 1 |
Collagen type I alpha 1 chain | A0A4W2FAL4 | 0 | 2 | 0 | 1 | 3 |
Platelet glycoprotein 4 | A0A4W2F343 | 0 | 1 | 0 | 1 | 2 |
Butyrophilin subfamily 2 member A2 | A0A4W2E527 | 0 | 1 | 0 | 0 | 1 |
Albumin | A0A4W2D8T3 | 0 | 2 | 2 | 7 | 11 |
NPC intracellular cholesterol transporter 2 | A0A4W2GY29 | 0 | 1 | 0 | 1 | 2 |
Collagen type XV alpha 1 chain | A0A3Q1M0N0 | 0 | 0 | 1 | 0 | 1 |
Lipocln_cytosolic_FA-bd_dom domain-containing protein | A0A4W2BL56 | 0 | 0 | 1 | 0 | 1 |
Serpin A3-8 | A0A4W2HYK5 | 0 | 0 | 1 | 0 | 1 |
Prostaglandin-H2 D-isomerase | A0A4W2H9E9 | 0 | 0 | 1 | 0 | 1 |
Collagen alpha-2(I) chain | P02465 | 0 | 0 | 1 | 0 | 1 |
Butyrophilin subfamily 1 member A1 | A0A4W2DWX4 | 0 | 0 | 1 | 2 | 3 |
WC1-12 | H6WF02 | 0 | 0 | 1 | 0 | 1 |
Milk fat globule-EGF factor 8 protein | A0A4W2GFX5 | 0 | 0 | 0 | 4 | 4 |
Beta-2-microglobulin | A0A3Q1MU93 | 0 | 0 | 0 | 1 | 1 |
Mucin-15 | A0A3S5ZPG9 | 0 | 0 | 0 | 2 | 2 |
Nucleobindin-1 | Q0P569 | 0 | 0 | 0 | 1 | 1 |
Polymeric immunoglobulin receptor | A0A4W2FHG6 | 0 | 0 | 0 | 1 | 1 |
Collagen alpha-1(XVII) chain | W0SK50 | 0 | 0 | 0 | 1 | 1 |
Transmembrane protein 170A | A0A4W2DQW6 | 1 | 0 | 0 | 0 | 1 |
Rotatin | A0A4W2C5F6 | 1 | 0 | 0 | 0 | 1 |
RNA-directed RNA polymerase | A0A1L7BCC4 | 2 | 0 | 0 | 0 | 2 |
Total | 4 | 262 | 191 | 152 | 609 |
Sequence | Protein Accession and Position | Protein Annotation | Activity | Sample |
---|---|---|---|---|
AASDISLLDAQSAPLR | A0A3Q1LYE8 | Beta-lactoglobulin | Antimicrobial | 8, 14, 26 h |
VYVEELKPTPE | A0A3Q1LYE8 | Beta-lactoglobulin | Antihypertensive | 8, 14, 26 h |
YPFPGPIPNSL | A0A4W2EW77 | Beta-casein | Antihypertensive, immuno- and cyto-modulatory | 26 h |
LVYPFPGPIPNSLP | A0A4W2EW77 | Beta-casein | Antihypertensive | 26 h |
LVYPFPGPIPN | A0A4W2EW77 | Beta-casein | Antihypertensive | 26 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Xiao, S.; Wang, J.; Wang, B.; Cai, Y.; Hu, W. The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast. Fermentation 2023, 9, 79. https://doi.org/10.3390/fermentation9020079
Luo J, Xiao S, Wang J, Wang B, Cai Y, Hu W. The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast. Fermentation. 2023; 9(2):79. https://doi.org/10.3390/fermentation9020079
Chicago/Turabian StyleLuo, Jiawei, Shan Xiao, Jihui Wang, Bo Wang, Yanxue Cai, and Wenfeng Hu. 2023. "The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast" Fermentation 9, no. 2: 79. https://doi.org/10.3390/fermentation9020079
APA StyleLuo, J., Xiao, S., Wang, J., Wang, B., Cai, Y., & Hu, W. (2023). The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast. Fermentation, 9(2), 79. https://doi.org/10.3390/fermentation9020079