The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Rations and Feed analysis
2.2. In Vitro Rumen Fermentation
2.2.1. Experimental Design
2.2.2. Rumen Fluid Collection
2.2.3. In Vitro Rumen Fermentation and Sampling
2.3. Calculations
2.4. Statistical Analysis
3. Results
3.1. In Vitro Dry Matter Degradability and Kinetic Gas Production
3.2. Final pH, MCP, and VFA Pattern
3.3. Fermentation Gas Composition
4. Discussion
4.1. The Use of GABA Dosage
4.2. Gas Production and Degradability Responses to Diet and GABA Addition
4.3. In Vitro Rumen Fermentation Characteristic Responses to Diet and GABA Addition
4.4. Fermentation Gas Composition Responses to Diet and GABA Addition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watanabe, M.; Maemura, K.; Kanbara, K.; Tamayama, T.; Hayasaki, H. GABA and GABA Receptors in the Central Nervous System and Other Organs. Int. Rev. Cytol. 2002, 213, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Govindpani, K.; Calvo-Flores Guzmán, B.; Vinnakota, C.; Waldvogel, H.J.; Faull, R.L.; Kwakowsky, A. Towards a Better Understanding of GABAergic Remodeling in Alzheimer’s Disease. Int. J. Mol. Sci. 2017, 18, 1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pessione, E. Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front. Cell. Infect. Microbiol. 2012, 2, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.-R.; Chang, J.-Y.; Chang, H.-C. Production of γ-Aminobutyric Acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 2007, 17, 104–109. [Google Scholar] [PubMed]
- Richard, H.T.; Foster, J.W. Acid resistance in Escherichia coli. Adv. Appl. Microbiol. 2003, 52, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G.; Coda, R.; Gobbetti, M. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 2007, 73, 7283–7290. [Google Scholar] [CrossRef] [Green Version]
- Mazzoli, R.; Pessione, E.; Dufour, M.; Laroute, V.; Giuffrida, M.G.; Giunta, C.; Cocaign-Bousquet, M.; Loubière, P. Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: Combined transcriptomic and proteomic analysis. Amino Acids 2010, 39, 727–737. [Google Scholar] [CrossRef]
- Rackwitz, R.; Gäbel, G. Gamma-aminobutyric acid (GABA) permeates ovine ruminal and jejunal epithelia, mainly by passive diffusion. J. Anim. Physiol. Anim. Nutr. 2017, 101, 38–45. [Google Scholar] [CrossRef]
- Matsumoto, D.; Takagi, M.; Fushimi, Y.; Okamoto, K.; Kido, M.; Ryuno, M.; Imura, Y.; Matsunaga, M.; Inokoshi, K.; Shahada, F.; et al. Effects of gamma-aminobutyric acid administration on health and growth rate of group-housed Japanese black calves fed using an automatic controlled milk feeder. J. Vet. Med. Sci. 2009, 71, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wang, C.; Liu, H.; Liu, J.; Ferguson, J. Effects of rumen-protected γ-aminobutyric acid on feed intake, lactation performance, and antioxidative status in early lactating dairy cows. J. Dairy Sci. 2013, 96, 3222–3227. [Google Scholar] [CrossRef]
- Cheng, J.B.; Bu, D.P.; Wang, J.Q.; Sun, X.Z.; Pan, L.; Zhou, L.Y.; Liu, W. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows. J. Dairy Sci. 2014, 97, 5599–5607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, K.; Cao, H.; Zhu, Y.; Wang, T.; Luo, J. Improving effects of dietary rumen protected γ-minobutyric acid additive on apparent nutrient digestibility, growth performance and health status in heat: Tressed beef cattle. Anim. Sci. J. 2018, 89, 1280–1286. [Google Scholar] [CrossRef]
- Dawson, L.; Mayne, C.S. The effect of infusion of putrescine and gamma amino butyric acid on the intake of steers offered grass silage containing three levels of lactic acid. Anim. Feed Sci. Technol. 1997, 66, 15–29. [Google Scholar] [CrossRef]
- Machado, S.C.; McManus, C.M.; Stumpf, M.T.; Fischer, V. Concentrate: Forage ratio in the diet of dairy cows does not alter milk physical attributes. Trop. Anim. Health Prod. 2014, 46, 855–859. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Association of Official Analytical Chemists: Official Methods of Analysis; Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Pang, D.G.; Yang, H.J.; Cao, B.B.; Wu, T.T.; Wang, J.Q. The beneficial effect of Enterococcus faecium on the in vitro ruminal fermentation rate and extent of three typical total mixed rations in northern China. Livest. Sci. 2014, 167, 154–160. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Chen, Y.; Wang, Y.; Wang, W.; Zhang, Z.; Si, X.; Cao, Z.; Li, S.; Yang, H. Rhodopseudomonas palustrisBeneficial effect of on rumen digestion and fermentation. Benef. Microbes 2020, 11, 91–99. [Google Scholar] [CrossRef]
- Yang, H.J.; Zhuang, H.; Meng, X.K.; Zhang, D.F.; Cao, B.H. Effect of melamine on in vitro rumen microbial growth, methane production and fermentation of Chinese wild rye hay and maize meal in binary mixtures. J. Agric. Sci. Camb. 2014, 152, 686–696. [Google Scholar] [CrossRef]
- Makkar, H.; Sharma, O.; Dawra, R.; Negi, S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Groot, J.C.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Orskov, E.R. Manipulation of rumen fermentation for maximum food utilization. World Rev. Nutr. Diet. 1975, 22, 152. [Google Scholar] [CrossRef]
- Coenen, M.; Scholz, H.; Sallmann, H.; Heimbeck, W.; Parys, C.; Eicken, K. The occurence of gamma-amino-butyric-acid (GABA) in grass silages with different degree in proteolysis. Society of Nutrition Physiology Proceedings of the Society of Nutrition Physiology. DLG Verl. Frankf. 2015, 24, 171. [Google Scholar]
- Wright, D.; Hungate, R. Amino acid concentrations in rumen fluid. Appl. Microbiol. 1967, 15, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Theermann, S.; Gresner, N.; Wichern, A.; Bollwein, H.; Höltershinken, M. In vitro studies on the effects of grass silage containing low true protein on γ-aminobutyric acid (Gaba) in bovine ruminal fluid. Vet. Stanica 2011, 42 (Suppl. S1), 85–87. [Google Scholar]
- Sirieix, C.; Tobia, C.; Schneider, R.; Darnall, R. Impaired arousal in rat pups with prenatal alcohol exposure is modulated by GABA ergic mechanisms. Physiol. Rep. 2015, 3, e12424. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Zhang, Q.; Yang, Y.; Zou, C.; Li, L.; Liang, X.; Wei, S.; Lin, B. Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. Anim. Nutr. 2018, 4, 100–108. [Google Scholar] [CrossRef]
- Reyes-García, M.G.; Hernández-Hernández, F.; García-Tamayo, F. Gamma-aminobutyric acid (GABA) increases in vitro germ-tube formation and phospholipase B1 mRNA expression in Candida albicans. Mycoscience 2012, 53, 36–39. [Google Scholar] [CrossRef]
- Dawson, L.E.R.; Mayne, C.S. The effect of intraruminal infusions of amines and gamma amino butyric acid on rumen fermentation parameters and food intake of steers offered grass silage. Anim. Feed Sci. Technol. 1996, 63, 35–49. [Google Scholar] [CrossRef]
- Reynal, S.M.; Ipharraguerre, I.R.; Lineiro, M.; Brito, A.F.; Broderick, G.A.; Clark, J.H. Omasal Flow of Soluble Proteins, Peptides, and Free Amino Acids in Dairy Cows Fed Diets Supplemented with Proteins of Varying Ruminal Degradabilities. J. Dairy Sci. 2007, 90, 1887–1903. [Google Scholar] [CrossRef]
- Aldrich, J.; Muller, L.; Varga, G.; Griel, L., Jr. Nonstructural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J. Dairy Sci. 1993, 76, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Chanthakhoun, V.; Wanapat, M.; Berg, J. Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livest. Sci. 2012, 144, 197–204. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Dong, Z.; Shao, T. Effects of lactic acid bacteria inoculants and fibrolytic enzymes on the fermentation quality, in vitro degradability, ruminal variables and microbial communities of high-moisture alfalfa silage. Grassl. Sci. 2019, 65, 216–225. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev 1990, 70, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 2008, 606, 67–108. [Google Scholar] [CrossRef]
- Syamsi, A.N.; Waldi, L.; Widodo, H.S.; Harwanto. Branched Chain Volatile Fatty Acids Profile of Rumen Fluids Suplemented by Different Meal Protein Sources and Protein-Energy Synchronization Index. IOP Conf. Ser. Earth Environ. Sci. 2019, 372, 012060. [Google Scholar] [CrossRef]
- Planamente, S.; Mondy, S.; Hommais, F.; Vigouroux, A.; Moréra, S.; Faure, D. Structural basis for selective GABA binding in bacterial pathogens. Mol. Microbiol. 2012, 86, 1085–1099. [Google Scholar] [CrossRef]
- Ferry, J.G.; Kastead, K.A. Methanogenesis. In Archaea: Molecular and Cellular Biology, Cavicchioli, R. Ed.; ASM Press: Washington, DC, USA, 2007. [Google Scholar]
- Mackie, R.I.; McSweeney, C.S.; Aminov, R.I. Rumen. In Encyclopedia of Life Sciences; Wiley & Sons, Ltd.: West Sussex, UK, 2001; Volume Chapter 1, pp. 1–11. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
Item | HF | LF |
---|---|---|
Ingredient | ||
Whole-corn silage | 700 | 300 |
Concentrate 1 | 300 | 700 |
Nutrient level (g/kg DM) | ||
Crude protein | 116.9 | 175.8 |
Neutral detergent fiber | 425.4 | 244.0 |
Acid detergent fiber | 25.58 | 158.0 |
Ether extract | 15.2 | 13.4 |
Ash | 57.9 | 69.7 |
Item 1 | Diet | GABA Addition (mg) 2 | S.E.M | p Value 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | Diet | L | Q | Diet × GABA | |||
IVDMD | LF | 0.88 | 0.87 | 0.89 | 0.88 | 0.87 | 0.89 | 0.004 | ** | ns | ns | ns |
HF | 0.85 a | 0.83 ab | 0.81 b | 0.80 b | 0.80 b | 0.81 b | ||||||
GP72(mL/g DM) | LF | 129.8 b | 112.1 c | 131.4 b | 137.6 ab | 150.5 a | 131.5 b | 2.04 | ns | ** | ns | ** |
HF | 112.9 | 111.8 | 107.9 | 123.9 | 126.5 | 114.2 | ||||||
Kinetic gas production | ||||||||||||
A (mL/g DM) | LF | 129.8 ab | 112.1 b | 116.8 b | 129.7 ab | 150.5 a | 125.7 b | 3.18 | ns | ns | 0.01 | ns |
HF | 104.0 c | 124.7 b | 109.5 c | 145.3 a | 140.0 a | 135.6 ab | ||||||
B | LF | 1.56 ab | 1.68 a | 1.71 a | 1.67 ab | 1.48 b | 1.62 ab | 0.020 | ** | ns | ** | ns |
HF | 1.38 ab | 1.43 a | 1.37 ab | 1.36 ab | 1.29 b | 1.41 ab | ||||||
C (h) | LF | 6.33 b | 7.13 ab | 7.40 a | 7.34 ab | 7.35 ab | 7.21 ab | 0.115 | 0.02 | ns | 0.04 | ns |
HF | 7.01 b | 7.99 a | 7.15 b | 8.09 a | 7.52 ab | 7.36 ab | ||||||
RmaxG (mL/h) | LF | 11.20 ab | 10.69 b | 10.35 b | 10.32 b | 12.20 a | 11.40 ab | 0.176 | ns | ns | 0.01 | ns |
HF | 11.15 | 10.55 | 11.24 | 11.65 | 11.93 | 11.04 | ||||||
TRmaxG (h) | LF | 2.18 b | 3.21 a | 3.29 a | 3.15 a | 2.26 b | 2.73 ab | 0.073 | ** | ns | ** | ns |
HF | 1.87 ab | 2.49 a | 2.00 ab | 2.26 a | 1.58 b | 2.16 ab | ||||||
RmaxS (/h) | LF | 0.12 ab | 0.13 a | 0.10 c | 0.11 abc | 0.10 c | 0.11 abc | 0.001 | ** | ** | ns | ns |
HF | 0.11 a | 0.09 b | 0.10 ab | 0.09 b | 0.10 b | 0.10 b | ||||||
TRmaxS (h) | LF | 4.58 bc | 5.29 abc | 5.68 ab | 5.89 a | 4.37 c | 5.04 abc | 0.134 | ** | ns | ** | ns |
HF | 3.71 a | 4.24 a | 2.84 b | 3.92 a | 2.90 b | 3.70 a |
Item 1 | Diet | GABA Addition(mg) 2 | S.E.M | p Value 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | Diet | L | Q | Diet × GABA | |||
Final pH | LF | 6.79 | 6.76 | 6.71 | 6.73 | 6.77 | 6.78 | 0.032 | ** | ns | ns | ns |
HF | 6.75 | 6.75 | 6.69 | 6.72 | 6.68 | 6.66 | ||||||
MCP (mg/mL) | LF | 1.41 | 1.44 | 1.45 | 1.46 | 1.43 | 1.38 | 0.009 | ** | ns | ns | ns |
HF | 1.51 | 1.49 | 1.51 | 1.49 | 1.47 | 1.49 | ||||||
Total VFAs (mM) | LF | 89.38 c | 89.50 c | 95.36 bc | 98.56 abc | 101.35 ab | 107.19 a | 2.53 | ns | ** | ns | ns |
HF | 90.81 b | 94.41 ab | 102.23 a | 101.26 a | 99.37 ab | 99.37 ab | ||||||
VFA pattern (%, molar) | ||||||||||||
Acetate | LF | 68.67 c | 74.27 a | 73.99 a | 70.63 bc | 71.64 b | 70.81 bc | 0.272 | ns | ns | ** | ** |
HF | 71.16 b | 72.70 ab | 72.21 a | 73.80 ab | 73.06 ab | 71.71 b | ||||||
Propionate | LF | 13.55 a | 11.63 b | 12.53 ab | 12.68 ab | 12.64 ab | 12.78 ab | 0.213 | ** | ns | 0.01 | ns |
HF | 13.91 a | 13.52 ab | 13.30 ab | 13.10 ab | 13.46 ab | 12.74 b | ||||||
Butyrate | LF | 7.60 de | 7.31 e | 7.98 dc | 8.19 bc | 8.60 ab | 9.01 a | 0.065 | ** | ** | ** | 0.01 |
HF | 7.59 c | 7.42 c | 7.79 bc | 7.39 c | 8.38 a | 8.12 ab | ||||||
Valerate | LF | 3.86 a | 1.38 c | 1.46 c | 1.43 c | 1.33 c | 1.82 b | 0.039 | ** | ** | ** | ** |
HF | 2.35 a | 1.43 b | 1.34 b | 0.81 c | 1.18 b | 2.18 a | ||||||
BCVFA | LF | 6.10 a | 4.54 c | 4.75 c | 5.38 b | 5.83 ab | 5.96 a | 0.089 | ns | 0.02 | 0.02 | ** |
HF | 5.11 bc | 5.23 bc | 5.57 ab | 4.94 bc | 4.73 c | 4.85 c | ||||||
NGR | LF | 5.30 c | 6.79 a | 6.42 ab | 6.24 ab | 6.45 ab | 6.21 b | 0.074 | ns | ** | ** | 0.03 |
HF | 5.44 b | 5.91 ab | 5.93 ab | 6.44 a | 6.42 a | 6.12 a | ||||||
A/P | LF | 5.31 b | 6.43 a | 5.49 b | 5.55 b | 5.6 b | 5.55 b | 0.054 | ** | ns | 0.01 | ** |
HF | 5.08 b | 5.37 ab | 5.41 ab | 5.65 a | 5.37 ab | 5.58 a | ||||||
FE | LF | 0.712 a | 0.701 b | 0.701 b | 0.706 ab | 0.707 ab | 0.709 ab | 0.0010 | ns | ns | ** | ns |
HF | 0.709 | 0.707 | 0.705 | 0.705 | 0.706 | 0.705 |
Item | Diet | GABA Addition (mg) 1 | S.E.M | p Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | 50 | Diet | L | Q | Diet × GABA | |||
CO2 (%) | ||||||||||||
6 h | LF | 89.6 ab | 90.6 a | 89.02 b | 88.6 b | 89.3 ab | 88.6 b | 0.33 | 0.03 | ns | ns | ** |
HF | 88.1 b | 89.9 a | 89.8 a | 90.7 a | 90.1 a | 90.6 a | ||||||
12 h | LF | 82.9 | 82.7 | 82.5 | 83.3 | 83.1 | 82.9 | 0.22 | ** | ns | ns | ns |
HF | 83.6 ab | 83.5 b | 83.3 b | 83.1 b | 83.5 b | 84.1 a | ||||||
24 h | LF | 82.0 | 82.0 | 82.1 | 82.1 | 82.4 | 82.5 | 0.28 | ns | 0.04 | ns | ns |
HF | 82.2 | 82.4 | 82.5 | 82.0 | 82.3 | 82.9 | ||||||
48 h | LF | 78.01 | 77.7 | 78.4 | 78.0 | 79.0 | 78.6 | 0.46 | ** | 0.02 | ns | ns |
HF | 78.8 | 79.6 | 79.3 | 79.5 | 80.0 | 79.9 | ||||||
72 h | LF | 73.8 a | 69.8 d | 72.9 b | 71.5 c | 72.8 b | 71.3 c | 0.56 | ** | ns | 0.03 | 0.02 |
HF | 74.0 | 73.7 | 73.7 | 72.3 | 73.1 | 74.2 | ||||||
CH4 (%) | ||||||||||||
6 h | LF | 10.2 ab | 9.2 b | 10.7 a | 11.1 a | 10.4 ab | 11.1 a | 0.47 | 0.04 | ns | 0.04 | ** |
HF | 11.7 a | 9.8 b | 10.0 b | 9.0 b | 9.6 b | 9.1 b | ||||||
12 h | LF | 16.9 | 17.1 | 17.3 | 16.5 | 16.7 | 16.9 | 0.22 | ** | ns | ns | ns |
HF | 16.2 ab | 16.3 ab | 16.6 a | 16.7 a | 16.3 a | 15.7 b | ||||||
24 h | LF | 17.9 | 17.9 | 17.8 | 17.7 | 17.4 | 17.4 | 0.28 | ns | 0.04 | ns | ns |
HF | 17.7 | 17.4 | 17.4 | 17.9 | 17.6 | 17.0 | ||||||
48 h | LF | 21.9 | 22.1 | 21.5 | 21.8 | 20.9 | 21.2 | 0.47 | ** | 0.02 | ns | ns |
HF | 21.0 | 20.3 | 20.6 | 20.4 | 19.9 | 20.0 | ||||||
72 h | LF | 26.1 d | 30.1 a | 27.0 c | 28.4 b | 27.1 c | 28.6 b | 0.55 | ** | ns | 0.03 | ns |
HF | 25.9 | 26.2 | 26.2 | 27.6 | 26.8 | 25.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-L.; Zhang, Z.-H.; Wang, W.-K.; Wu, Q.-C.; Zhang, F.; Li, W.-J.; Li, S.-L.; Wang, W.; Cao, Z.-J.; Yang, H.-J. The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio. Fermentation 2023, 9, 105. https://doi.org/10.3390/fermentation9020105
Wang Y-L, Zhang Z-H, Wang W-K, Wu Q-C, Zhang F, Li W-J, Li S-L, Wang W, Cao Z-J, Yang H-J. The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio. Fermentation. 2023; 9(2):105. https://doi.org/10.3390/fermentation9020105
Chicago/Turabian StyleWang, Yan-Lu, Zhi-Hui Zhang, Wei-Kang Wang, Qi-Chao Wu, Fan Zhang, Wen-Juan Li, Sheng-Li Li, Wei Wang, Zhi-Jun Cao, and Hong-Jian Yang. 2023. "The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio" Fermentation 9, no. 2: 105. https://doi.org/10.3390/fermentation9020105
APA StyleWang, Y. -L., Zhang, Z. -H., Wang, W. -K., Wu, Q. -C., Zhang, F., Li, W. -J., Li, S. -L., Wang, W., Cao, Z. -J., & Yang, H. -J. (2023). The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio. Fermentation, 9(2), 105. https://doi.org/10.3390/fermentation9020105