The Effect of the Stirring Speed on the In Vitro Dry Matter Degradability of Feeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Degradability of Feeds
2.2. Rotation Speed of the Jars
2.3. Measured Parameters
2.4. Statistical Analysis
3. Results
3.1. Degradability of Feeds
3.2. Rotation Speed of the Jars
3.2.1. Original Rotation System
3.2.2. Modified Rotation System
4. Discussion
- The weight of the filled jars on the drive rollers caused the jars to slip or the drive belts to slip on the drive pulleys.
- The weight of the filled jars on the free rollers caused friction between the free rollers and the supporting pins, which in turn slowed down or even stopped the rotation of the jars.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Modification Introduced to Ensure a Constant Speed of the Jars
Appendix A.1. Drive Belt, Pulley, and Roller Slipping
- A new drive pulley with tracks was constructed to fit four drive belts, using a piece of polycarbonate on which four tracks were cut to accommodate the four drive belts, as shown in Figure A1. Polycarbonate seemed to be the most suitable material because the inner surface of the tracks remained rougher when this material was used. A 1 cm piece of a 4 mm bolt was used as a screw set. A 3.2 mm hole was drilled and filleted at a depth of 4 mm, as shown in Figure A1.
- b.
- Two drive rollers were obtained to fit the two drive belts by modifying the two original drive rollers in ADII. Two other tracks were carved into the original drive roller, as shown in Figure A2, near the original tracks, to position the second drive belt.
Appendix A.2. Preventing Free Roller Slipping
References
- Russell, J.B. Rumen. Encyclopedia of Microbiology, 3rd ed.; Academic Press: Oxford, UK, 2009; pp. 164–174. [Google Scholar]
- Ramos, M.A.; Carabaño, R.; Boisen, S. An in vitro method for estimating digestibility in rabbits. J. Appl. Rabbit. Res. 1992, 15, 938–946. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B. A new laboratory procedure for estimating kinetic parameters associated with the digestibility of forages. In Proceedings of the International Symposium on Forage Cell Wall Structure and Digestibility, USD-ARS, Madison, WI, USA, 7–10 October 1991. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H.; Moore, L.A. Estimation of the true digestibility of forages by the in vitro digestion of cell walls. In Proceedings of the 10th International Grassland Congress, Finnish Grassland Association, Helsinki, Finland, 7–8 July 1966; pp. 438–441. [Google Scholar]
- Goering, M.K.; Van Soest, P.J. Forage Fiaber Analyses (Apparatus, Reagents, Procedures, and Some Applications), No. 379; US Agricultural Research Service: Washington, DC, USA, 1970.
- Tassone, S.; Fortina, R.; Peiretti, P.G. In vitro techniques using the DaisyII incubator for the assessment of digestibility: A review. Animals 2020, 10, 775. [Google Scholar] [CrossRef]
- Alende, M.; Lascano, G.J.; Jenkins, T.C.; Koch Pas, L.E.; Andrae, J.G. Comparison of 4 methods for determining in vitro ruminal digestibility of annual ryegrass. Prof. Anim. Sci. 2018, 34, 306–309. [Google Scholar] [CrossRef]
- Mabjeesh, S.J.; Cohen, M.; Arieli, A. In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: Comparison of methods and inoculum source. J. Dairy Sci. 2000, 83, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef]
- Wilman, D.; Adesogan, A. A comparison of filter bag methods with conventional tube methods of determining the in vitro digestibility of forages. Anim. Feed Sci. Technol. 2000, 84, 33–47. [Google Scholar] [CrossRef]
- Adesogan, A.T. Effect of bag type on the apparent digestibility of feeds in Ankom DaisyII incubators. Anim. Feed Sci. Technol. 2005, 119, 333–344. [Google Scholar] [CrossRef]
- Anassori, E.; Dalir-Naghadeh, B.; Pirmohammadi, R.; Taghizadeh, A.; Asri-Rezaei, S.; Farahmand-Azar, S.; Besharati, M.; Tahmoozi, M. In vitro assessment of the digestibility of forage based sheep diet, supplemented with raw garlic, garlic oil and monensin. Vet. Res. Forum 2012, 3, 5–11. [Google Scholar]
- Valentine, M.E.; Karayilandli, E.; Cherney, J.H.; Cherney, D.J. Comparison of in vitro long digestion methods and digestion rates for diverse forages. Crop. Sci. 2019, 59, 422–435. [Google Scholar] [CrossRef]
- Raffrenato, E.; Ross, D.A.; Van Amburgh, M.E. Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. J. Dairy Sci. 2018, 101, 9888–9900. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.H.; Campbell Matthews, M.; Fadel, J.G. Influence of storage time and temperature on in vitro digestion of neutral detergent fibre at 48 h, and comparison to 48 h in sacco neutral detergent fibre digestion. Anim. Feed Sci. Technol. 1999, 80, 257–266. [Google Scholar] [CrossRef]
- Trujillo, A.I.; Marichal, M.D.J.; Carriquiry, M. Comparison of dry matter and neutral detergent fibre degradation of fibrous feedstuffs as determined with in situ and in vitro gravimetric procedures. Anim. Feed Sci. Technol. 2010, 161, 49–57. [Google Scholar] [CrossRef]
- Bender, R.W.; Cook, D.E.; Combs, D.K. Comparison of in situ versus in vitro methods of fiber digestion at 120 and 288 h to quantify the indigestible neutral detergent fiber fraction of corn silage samples. J. Dairy Sci. 2016, 99, 5394–5400. [Google Scholar] [CrossRef] [Green Version]
- Cattani, M.; Tagliapietra, F.; Bailoni, L.; Schiavon, S. In vitro rumen feed degradability assessed with DaisyII and batch culture: Effect of sample size. Ital. J. Anim. Sci. 2009, 8, 169–171. [Google Scholar] [CrossRef] [Green Version]
- Mauricio, R.M.; Owen, E.; Mould, F.L.; Givens, I.; Theodorou, M.K.; France, J.; Davi, D.R.; Dhanoa, M.S. Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages. Anim. Feed Sci. Technol. 2001, 89, 33–48. [Google Scholar] [CrossRef]
- Hughes, M.M.; Mlambo, V.; Lallo, C.H.O.; Jennings, P.G.A. Potency of microbial inocula from bovine faeces and rumen fluid for in vitro digestion of different tropical forage substrates. Grass Forage Sci. 2012, 67, 263–273. [Google Scholar] [CrossRef]
- Ramin, M.; Lerose, D.; Tagliapietra, F.; Huhtanen, P. Comparison of rumen fluid inoculum vs. faecal inoculum on predicted methane production using a fully automated in vitro gas production system. Livest. Sci. 2015, 181, 65–71. [Google Scholar] [CrossRef]
- Chiaravalli, M.; Rapetti, L.; Rota Graziosi, A.; Galassi, G.; Crovetto, G.M.; Colombini, S. Comparison of faecal versus rumen inocula for the estimation of NDF digestibility. Animals 2019, 9, 928. [Google Scholar] [CrossRef] [Green Version]
- Ruminant Fecal Inolucum for In Vitro Feed Digestibility Analysis. Available online: https://unsl.academia.edu/RicardoSager (accessed on 25 February 2020).
- Marinucci, M.T.; Dehority, B.A.; Loerch, S.C. In vitro and in vivo studies of factors affecting digestion of feeds in synthetic fiber bags. J. Anim. Sci. 1992, 70, 296–307. [Google Scholar] [CrossRef]
- Holden, L.A. Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci. 1999, 82, 1791–1794. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Plaizier, J.C. Effect of source of rumen fluid on in vitro dry matter digestibility of feeds determined using the DAISYII Incubator. Can. J. Anim. Sci. 2006, 86, 439–441. [Google Scholar] [CrossRef] [Green Version]
- Ammar, H.; Lopez, S.; Andres, S.; Ranilla, M.J.; Boda, R.; Gonzalez, J.S. In vitro digestibility and fermentation kinetics of some browse plants using sheep or goat ruminal fluid as the source of inoculum. Anim. Feed Sci. Technol. 2008, 147, 90–104. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; Arco-Pérez, A.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Frutos, P.; Hervás, G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed Sci. Technol. 2014, 198, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Beyihayo, G.A.; Omaria, R.; Namazzi, C.; Atuhaire, A. Comparison of in vitro digestibility using slaughtered and fistulated cattle as sources of inoculum. Uganda J. Agric. Sci. 2015, 16, 93–98. [Google Scholar] [CrossRef]
- Alba, H.D.R.; Oliveira, R.L.; de Carvalho, S.T.; Ítavo, L.C.V.; Ribeiro, O.L.; do Nascimento Júnior, N.G.; Freitas, M.D.; Bezerra, L.R. Can ruminal inoculum from slaughtered cattle replace inoculum from cannulated cattle for feed evaluation research? Semin. Ciências Agrárias 2018, 39, 2133–2144. [Google Scholar] [CrossRef]
- Spanghero, M.; Chiaravalli, M.; Colombini, S.; Fabro, C.; Froldi, F.; Mason, F.; Moschini, M.; Sarnataro, C.; Schiavon, S.; Tagliapietra, F. Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests. Animals 2019, 9, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hervas, G.; Frutos, P.; Giraldez, F.J.; Mora, M.J.; Fernandez, B.; Mantecon, A.R. E↵ect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim. Feed Sci. Technol. 2005, 123–124, 107–118. [Google Scholar] [CrossRef]
- Chaudhry, A.S.; Mohamed, R.A.I. Fresh of frozen rumen contents from slaughtered cattle to estimate in vitro degradation of two contrasting feeds. Czech. J. Anim. Sci. 2012, 6, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Denek, N.; Can, A.; Avci, M. Frozen rumen fluid as microbial inoculum in the two-stage in vitro digestibility assay of ruminant feeds. S. Afr. J. Anim. Sci. 2010, 40, 251–256. [Google Scholar] [CrossRef]
- Mould, F.L.; Kliem, K.E.; Morgan, R.; Mauricio, R.M. In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Technol. 2005, 123–124, 31–50. [Google Scholar] [CrossRef]
- Coblentz, W.; Akins, M. Comparisons of fiber digestibility for triticale forages at two different sample sizes using the Ankom Daisy Incubator II System. In Proceedings of the ADSA Annual Meeting, Cincinnati, OH, USA,, 23–26 June 2019. Abstract T69. [Google Scholar]
- Soto, E.C.; Molina-Alcaide, E.; Khelil, H.; Yáñez-Ruiz, D.R. Ruminal microbiota developing in different in vitro simulation systems inoculated with goats rumen liquor. Anim. Feed Sci. Technol. 2013, 185, 9–18. [Google Scholar] [CrossRef]
- Figueiredo, M.; Mbhele, A.; Zondi, J. An evaluation of the Daisy II-220 technique for determining in vitro digestibility of animal feeds in comparison with the Minson & McLeod technique. S. Afr. J. Anim. Sci. 2000, 30, 45–46. [Google Scholar] [CrossRef]
- Spanghero, M.; Gruber, L.; Zanfi, C. Precision and accuracy of the NDF rumen degradability of hays measured by the Daisy fermenter. Ital. J. Anim. Sci. 2007, 6, 363–365. [Google Scholar] [CrossRef]
- Ankom Technology. Available online: https://www.ankom.com/technical-support/daisy-incubator (accessed on 28 February 2022).
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen Fluid from Slaughtered Animals: A Standardized Procedure for Sampling, Storage and Use in Digestibility Trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Sarnataro, C.; Spanghero, M. In vitro rumen fermentation of feed substrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Animal Nutr. 2020, 6, 54–60. [Google Scholar] [CrossRef]
- Spanghero, M.; Berzaghi, P.; Fortina, R.; Masoero, F.; Rapetti, L.; Zanfi, C.; Tassone, S.; Gallo, A.; Colombini, S.; Ferlito, J.C. Technical note: Precision and accuracy of in vitro digestion of neutral detergent fiber and predicted net energy of lactation content of fibrous feeds. J. Dairy Sci. 2010, 93, 4855–4859. [Google Scholar] [CrossRef] [Green Version]
- Ankom Technology Method 3. In Vitro True Digestibility Method (IVTD—Daisy). Available online: https://www.ankom.com/sites/default/files/document-files/Method_3_Invitro_D200_D200I.pdf (accessed on 13 February 2022).
- Ankom Technology Method 3. Neutral Detergent Fiber in Feeds—Filter bag technique. Available online: https://www.ankom.com/sites/default/files/document-files/Method_15_NDF_DELTA.pdf (accessed on 13 February 2022).
- SAS. The SAS System for Windows, Release 9.4M7. SAS Institute Inc.: Cary, NC, USA. 2022. Available online: http://support.sas.com/documentation (accessed on 27 November 2022).
- Gallo, A.; Giuberti, G.; Masoero, F. Gas production and starch degradability of corn and barley meals differing in mean particle size. J. Dairy Sci. 2016, 99, 4347–4359. [Google Scholar] [CrossRef] [Green Version]
- Hironaka, R.; Mathison, G.W.; Kerrigan, B.K.; Vlach, I. The effect of pelleting of alfalfa hay on methane production and digestibility by steers. Sci. Total Environ. 1996, 180, 221–227. [Google Scholar] [CrossRef]
- Martinéz, J.R.; Noguera, R.R.; Posada Ochoa, S.L. Effect of soaking on in vitro digestibility and bromatological characteristics of grass hay. Livest. Res. Rural. Dev. 2018, 30, 28. [Google Scholar]
- Weinberg, Z.G.; Shatz, O.; Chen, Y.; Yosef, E.; Nikbahat, M.; Ben-Ghadalia, D.; Miron, J. Effect of lactic acid bacteria inoculants on in vitro digestibility of wheat and corn silages. J. Dairy Sci. 2007, 90, 4754–4762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalçin, S.; Sehu, A.; Önol, A.G. Straw degradability as a predictor of intake and growth rate in sheep. Anim. Sci. 1998, 67, 485–490. [Google Scholar] [CrossRef]
Feed | AD1 | AD2 | MSE | ||
---|---|---|---|---|---|
Original | Modified | Original | Modified | ||
Apparent dry matter degradability (ADMD, % DM) | |||||
Grass hay | 51.2A | 53.0A | 35.4C | 41.2B | 18.23 |
Barley meal | 72.1aA | 77.8aA | 59.6B | 71.4bA | 38.62 |
Pelleted alfalfa | 49.5A | 50.7A | 40.4B | 44.0B | 19.02 |
Straw | 32.6A | 35.9A | 13.7B | 16.7B | 38.52 |
Corn silage | 56.2aA | 60.1A | 50.5bB | 57.3A | 34.42 |
TMR | 57.6A | 60.5aA | 47.4B | 56.1bA | 19.31 |
True dry matter degradability (TDMD, % DM) | |||||
Grass hay | 64.5A | 66.6A | 50.0C | 55.1B | 17.37 |
Barley meal | 85.4aAB | 86.9A | 82.6bB | 85.6aAB | 6.79 |
Pelleted alfalfa | 63.6A | 64.9A | 56.7bB | 59.5aB | 7.73 |
Straw | 41.8A | 44.4A | 25.9B | 28.8B | 30.16 |
Corn silage | 66.3aAB | 69.1A | 61.5bB | 67.6A | 20.09 |
TMR | 68.3abA | 70.6aA | 59.9B | 66.8bbA | 16.66 |
Rotation speed (rph) | 38.4D | 59.4B | 47.7C | 66.9A | 32.91 |
Delay (%) | 32.2A | 0.3C | 5.8B | −0.5D | 119.44 |
Parameter | Content | System | AD1 | AD2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Jar1 | Jar2 | Jar3 | Jar4 | Jar1 | Jar2 | Jar3 | Jar4 | |||
Speed mean (rph) | Empty | Original | 56.4 | 56.3 | 57.1 | 56.9 | 50.2 | 49.9 | 53.4 | 53.3 |
Modified | 58.3 | 58.4 | 61.2 | 61.0 | 64.3 | 63.7 | 67.2 | 67.2 | ||
Liquid | Original | 30.4 | 34.3 | 47.4 | 43.2 | 26.8 | 46.6 | 49.6 | 49.3 | |
Modified | 57.1 | 57.9 | 59.8 | 59.5 | 65.6 | 66.5 | 67.4 | 66.8 | ||
RF + bags | Original | 45.0 | 31.6 | 48.7 | 42.0 | |||||
Modified | 59.1 | 59.7 | 66.8 | 66.9 | ||||||
Speed SD (rph) | Empty | Original | 0.77 | 0.78 | 1.63 | 1.67 | 0.55 | 0.47 | 0.47 | 0.47 |
Modified | 1.65 | 1.68 | 0.63 | 0.60 | 0.56 | 0.63 | 0.63 | 0.62 | ||
Liquid | Original | 7.69 | 9.65 | 3.02 | 8.34 | 16.04 | 7.89 | 0.53 | 4.16 | |
Modified | 1.56 | 1.68 | 0.79 | 1.21 | 0.42 | 0.94 | 0.62 | 1.05 | ||
RF + bags | Original | 5.96 | 6.47 | 16.44 | 18.94 | |||||
Modified | 0.85 | 2.12 | 2.30 | 1.11 | ||||||
Slowest round (rph) | Empty | Original | 27.9 | 27.9 | 50.7 | 50.7 | 42.9 | 41.9 | 44.4 | 44.4 |
Modified | 55.4 | 55.4 | 58.1 | 57.1 | 63.2 | 63.2 | 65.5 | 66.7 | ||
Liquid | Original | 13.6 | 0.2 | 40.9 | 1.1 | 0.1 | 0.1 | 46.8 | 0.1 | |
Modified | 52.9 | 26.3 | 57.1 | 0.1 | 64.3 | 10.7 | 65.5 | 4.8 | ||
RF + bags | Original | 0.2 | 0.0 | 0.1 | 0.0 | |||||
Modified | 26.5 | 0.1 | 0.0 | 4.8 | ||||||
Delay mean (%) | Liquid | Original | 46.1 | 39.1 | 17.0 | 24.0 | 46.5 | 6.7 | 7.2 | 7.5 |
Modified | 2.1 | 0.7 | 2.4 | 2.6 | −2.0 | −4.5 | −0.3 | 0.5 | ||
RF + bags | Original | 20.2 | 44.7 | 2.9 | 21.4 | |||||
Modified | −1.2 | 2.4 | −3.9 | 0.5 |
Content | System | AD1 | AD2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Jar 1 | Jar 2 | Jar 3 | Jar 4 | Jar 1 | Jar 2 | Jar 3 | Jar 4 | ||
Liquid | Original | 46.1A | 39.1B | 17.0D | 24.0C | 46.5A | 6.7C | 7.2B | 7.5B |
Modified | 2.1B | 0.7C | 2.4AB | 2.6A | −2.0C | −4.5D | −0.3B | 0.5A | |
RF + bags | Original | 20.2B | 44.7A | 2.9B | 21.4A | ||||
Modified | −1.2B | 2.4A | −3.9B | 0.5A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassone, S.; Sarnataro, C.; Glorio Patrucco, S.; Mabrouki, S.; Barbera, S. The Effect of the Stirring Speed on the In Vitro Dry Matter Degradability of Feeds. Fermentation 2023, 9, 56. https://doi.org/10.3390/fermentation9010056
Tassone S, Sarnataro C, Glorio Patrucco S, Mabrouki S, Barbera S. The Effect of the Stirring Speed on the In Vitro Dry Matter Degradability of Feeds. Fermentation. 2023; 9(1):56. https://doi.org/10.3390/fermentation9010056
Chicago/Turabian StyleTassone, Sonia, Chiara Sarnataro, Sara Glorio Patrucco, Sabah Mabrouki, and Salvatore Barbera. 2023. "The Effect of the Stirring Speed on the In Vitro Dry Matter Degradability of Feeds" Fermentation 9, no. 1: 56. https://doi.org/10.3390/fermentation9010056
APA StyleTassone, S., Sarnataro, C., Glorio Patrucco, S., Mabrouki, S., & Barbera, S. (2023). The Effect of the Stirring Speed on the In Vitro Dry Matter Degradability of Feeds. Fermentation, 9(1), 56. https://doi.org/10.3390/fermentation9010056