Production of Biofuels from Glycerol from the Biodiesel Production Process—A Brief Review
Abstract
:1. Introduction
2. Glycerol
3. Biofuel Production Processes Using Glycerol as Biomass
3.1. Biogas
3.2. Hydrogen
3.3. Ethanol
4. Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, S.K. Biomass & Bio-Waste Supply Chain Sustainability for Bio-Energy and Bio-Fuel Production. Procedia Environ. Sci. 2016, 31, 31–39. [Google Scholar] [CrossRef]
- Gaurav, N.; Sivasankari, S.; Kiran, G.S.; Ninawe, A.; Selvin, J. Utilization of Bioresources for Sustainable Biofuels: A Review. Renew. Sustain. Energy Rev. 2017, 73, 205–214. [Google Scholar] [CrossRef]
- Luque, R.; Lovett, J.C.; Datta, B.; Clancy, J.; Campelo, J.M.; Romero, A.A. Biodiesel as Feasible Petrol Fuel Replacement: A Multidisciplinary Overview. Energy Environ. Sci. 2010, 3, 1706–1721. [Google Scholar] [CrossRef]
- Chuah, L.F.; Klemeš, J.J.; Yusup, S.; Bokhari, A.; Akbar, M.M. A Review of Cleaner Intensification Technologies in Biodiesel Production. J. Clean. Prod. 2017, 146, 181–193. [Google Scholar] [CrossRef]
- Mamtani, K.; Shahbaz, K.; Farid, M.M. Deep Eutectic Solvents—Versatile Chemicals in Biodiesel Production. Fuel 2021, 295. [Google Scholar] [CrossRef]
- Demirbas, A. Competitive Liquid Biofuels from Biomass. Appl. Energy 2011, 88, 17–28. [Google Scholar] [CrossRef]
- Srilatha, K.; Prabhavathi Devi, B.L.A.; Lingaiah, N.; Prasad, R.B.N.; Sai Prasad, P.S. Biodiesel Production from Used Cooking Oil by Two-Step Heterogeneous Catalyzed Process. Bioresour. Technol. 2012, 119, 306–311. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current Biodiesel Production Technologies: A Comparative Review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- Faruque, M.O.; Razzak, S.A.; Hossain, M.M. Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review. Catalysts 2020, 10, 1025. [Google Scholar] [CrossRef]
- Tachibana, Y.; Shi, X.; Graiver, D.; Narayan, R. The Use of Glycerol Carbonate in the Preparation of Highly Branched Siloxy Polymers. Silicon 2015, 7, 5–13. [Google Scholar] [CrossRef]
- Badia-Fabregat, M.; Rago, L.; Baeza, J.A.; Guisasola, A. Hydrogen Production from Crude Glycerol in an Alkaline Microbial Electrolysis Cell. Int. J. Hydrog. Energy 2019, 44, 17204–17213. [Google Scholar] [CrossRef]
- Zhou, J.J.; Shen, J.T.; Wang, X.L.; Sun, Y.Q.; Xiu, Z.L. Stability and Oscillatory Behavior of Microbial Consortium in Continuous Conversion of Crude Glycerol to 1,3-Propanediol. Appl. Microbiol. Biotechnol. 2018, 102, 8291–8305. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Kumar, N. Scope and Opportunities of Using Glycerol as an Energy Source. Renew. Sustain. Energy Rev. 2012, 16, 4551–4556. [Google Scholar] [CrossRef]
- da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A Promising and Abundant Carbon Source for Industrial Microbiology. Biotechnol. Adv. 2009, 27, 30–39. [Google Scholar] [CrossRef]
- Faccendini, P.L.; Ribone, M.É.; Lagier, C.M. Selective Application of Two Rapid, Low-Cost Electrochemical Methods to Quantify Glycerol According to the Sample Nature. Sens. Actuators B Chem. 2014, 193, 142–148. [Google Scholar] [CrossRef]
- Anitha, M.; Kamarudin, S.K.; Kofli, N.T. The Potential of Glycerol as a Value-Added Commodity. Chem. Eng. J. 2016, 295, 119–130. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Energy Balance of Biofuel Production from Biological Conversion of Crude Glycerol. J. Environ. Manag. 2016, 170, 169–176. [Google Scholar] [CrossRef]
- Elgharbawy, A.S.; Sadik, W.A.; Sadek, O.M.; Kasaby, M.A. Maximizing Biodiesel Production from High Free Fatty Acids Feedstocks through Glycerolysis Treatment. Biomass Bioenergy 2021, 146, 105997. [Google Scholar] [CrossRef]
- Almeida, E.L.; Andrade, C.M.G.; Andreo Dos Santos, O. Production of Biodiesel via Catalytic Processes: A Brief Review. Int. J. Chem. React. Eng. 2018, 16, 20170130. [Google Scholar] [CrossRef]
- Bournay, L.; Casanave, D.; Delfort, B.; Hillion, G.; Chodorge, J.A. New Heterogeneous Process for Biodiesel Production: A Way to Improve the Quality and the Value of the Crude Glycerin Produced by Biodiesel Plants. Catal. Today 2005, 106, 190–192. [Google Scholar] [CrossRef]
- Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. Biodiesel Production from High FFA Rubber Seed Oil. Fuel 2005, 84, 335–340. [Google Scholar] [CrossRef]
- Ladero, M.; de Gracia, M.; Tamayo, J.J.; de Ahumada, I.L.; Trujillo, F.; Garcia-Ochoa, F. Kinetic Modelling of the Esterification of Rosin and Glycerol: Application to Industrial Operation. Chem. Eng. J. 2011, 169, 319–328. [Google Scholar] [CrossRef]
- Mendes, D.B.; Serra, J.C.V. Glicerina: Uma abordagem sobre a produção e o tratamento. Rev. Liberato. 2012, 13, 59–68. [Google Scholar] [CrossRef]
- Quispe, C.A.G.; Coronado, C.J.R.; Carvalho, J.A. Glycerol: Production, Consumption, Prices, Characterization and New Trends in Combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Haigh, K.F.; Vladisavljević, G.T.; Reynolds, J.C.; Nagy, Z.; Saha, B. Kinetics of the Pre-Treatment of Used Cooking Oil Using Novozyme 435 for Biodiesel Production. Chem. Eng. Res. Des. 2014, 92, 713–719. [Google Scholar] [CrossRef]
- Perdomo, F.A.; Perdomo, L.; Millán, B.M.; Aragón, J.L. Design and Improvement of Biodiesel Fuels Blends by Optimization of Their Molecular Structures and Compositions. Chem. Eng. Res. Des. 2014, 92, 1482–1494. [Google Scholar] [CrossRef]
- Dasari, S.R.; Borugadda, V.B.; Goud, V.V. Reactive Extraction of Castor Seeds and Storage Stability Characteristics of Produced Biodiesel. Process Saf. Environ. Prot. 2016, 100, 252–263. [Google Scholar] [CrossRef]
- Dasari, S.R.; Goud, V.V. Simultaneous Extraction and Transesterification of Castor Seeds for Biodiesel Production: Assessment of Biodegradability. Process Saf. Environ. Prot. 2017, 107, 373–387. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, M.P.; Dwivedi, G. Impact of Alcohol on Biodiesel Production and Properties. Renew. Sustain. Energy Rev. 2016, 56, 319–333. [Google Scholar] [CrossRef]
- Jafari, D.; Esfandyari, M. Optimization of Temperature and Molar Flow Ratios of Triglyceride/Alcohol in Biodiesel Production in a Batch Reactor. Biofuels 2020, 11, 261–267. [Google Scholar] [CrossRef]
- Moser, B.R. Biodiesel Production, Properties, and Feedstocks. In Vitr. Cell. Dev. Biol. Plant 2009, 45, 229–266. [Google Scholar] [CrossRef]
- Tan, K.T.; Lee, K.T. A Review on Supercritical Fluids (SCF) Technology in Sustainable Biodiesel Production: Potential and Challenges. Renew. Sustain. Energy Rev. 2011, 15, 2452–2456. [Google Scholar] [CrossRef]
- Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N. Production of Biodiesel Using High Free Fatty Acid Feedstocks. Renew. Sustain. Energy Rev. 2012, 16, 3275–3285. [Google Scholar] [CrossRef]
- Bateni, H.; Karimi, K. Biodiesel Production from Castor Plant Integrating Ethanol Production via a Biorefinery Approach. Chem. Eng. Res. Des. 2016, 107, 4–12. [Google Scholar] [CrossRef]
- Cristina Santos de Mello, M.; Gomes D’Amato Villardi, H.; Ferreira Young, A.; Luiz Pellegrini Pessoa, F.; Medeiros Salgado, A. Life Cycle Assessment of Biodiesel Produced by the Methylic-Alkaline and Ethylic-Enzymatic Routes. Fuel 2017, 208, 329–336. [Google Scholar] [CrossRef]
- Wong, W.Y.; Lim, S.; Pang, Y.L.; Shuit, S.H.; Chen, W.H.; Lee, K.T. Synthesis of Renewable Heterogeneous Acid Catalyst from Oil Palm Empty Fruit Bunch for Glycerol-Free Biodiesel Production. Sci. Total Environ. 2020, 727, 138534. [Google Scholar] [CrossRef]
- Alaba, P.A.; Sani, Y.M.; Ashri Wan Daud, W.M. Efficient Biodiesel Production: via Solid Superacid Catalysis: A Critical Review on Recent Breakthrough. RSC Adv. 2016, 6, 78351–78368. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Trautwein, G.; Marco-Lozar, J.P. Biodiesel Production by Acid Catalysis with Heteropolyacids Supported on Activated Carbon Fibers. Appl. Catal. A Gen. 2013, 468, 432–441. [Google Scholar] [CrossRef]
- Lee, A.F.; Wilson, K. Recent Developments in Heterogeneous Catalysis for the Sustainable Production of Biodiesel. Catal. Today 2015, 242, 3–18. [Google Scholar] [CrossRef]
- Vieira, S.S.; Magriotis, Z.M.; Santos, N.A.V.; Saczk, A.A.; Hori, C.E.; Arroyo, P.A. Biodiesel Production by Free Fatty Acid Esterification Using Lanthanum (La3+) and HZSM-5 Based Catalysts. Bioresour. Technol. 2013, 133, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, B.; Teixeira, J.C.; Dragone, G.; Teixeira, J.A. Oleaginous Yeasts for Sustainable Lipid Production—From Biodiesel to Surf Boards, a Wide Range of “Green” Applications. Appl. Microbiol. Biotechnol. 2019, 103, 3651–3667. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, M.; Karmegam, N.; Gundupalli, M.P.; Bizuneh Gebeyehu, K.; Tessema Asfaw, B.; Chang, S.W.; Ravindran, B.; Awasthi, M.K. Heterogeneous Base Catalysts: Synthesis and Application for Biodiesel Production—A Review. Bioresour. Technol. 2021, 331, 125054. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Pandey, A.; Larroche, C.; Madamwar, D. Algal Green Energy—R&D and Technological Perspectives for Biodiesel Production. Renew. Sustain. Energy Rev. 2018, 82, 2946–2969. [Google Scholar]
- Almeida, E.L.; Gomes, S.I.; Andrade, C.M.G.; dos Santos, O.A.A. Biodiesel Production Process Versus Bioethanol Production Process. Preliminary Analysis; Faculty of Law, University of Maribor: Maribor, Slovenija, 2017; pp. 333–342. [Google Scholar]
- Luo, X.; Ge, X.; Cui, S.; Li, Y. Value-Added Processing of Crude Glycerol into Chemicals and Polymers. Bioresour. Technol. 2016, 215, 144–154. [Google Scholar] [CrossRef]
- Ardi, M.S.; Aroua, M.K.; Hashim, N.A. Progress, Prospect and Challenges in Glycerol Purification Process: A Review. Renew. Sustain. Energy Rev. 2015, 42, 1164–1173. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Kim, I.W.; Otari, S.; Patel, S.K.S.; Pagolu, R.; Losetty, V.; Kalia, V.C.; Lee, J.K. Co-Generation of Hydrogen and Electricity from Biodiesel Process Effluents. Int. J. Hydrog. Energy 2019, 44, 27285–27296. [Google Scholar] [CrossRef]
- Steinmetz, S.A.; Herrington, J.S.; Winterrowd, C.K.; Roberts, W.L.; Wendt, J.O.L.; Linak, W.P. Crude Glycerol Combustion: Particulate, Acrolein, and Other Volatile Organic Emissions. Proc. Combust. Inst. 2013, 34, 2749–2757. [Google Scholar] [CrossRef]
- Baba, Y.; Tada, C.; Watanabe, R.; Fukuda, Y.; Chida, N.; Nakai, Y. Bioresource Technology Anaerobic Digestion of Crude Glycerol from Biodiesel Manufacturing Using a Large-Scale Pilot Plant: Methane Production and Application of Digested Sludge as Fertilizer. Bioresour. Technol. 2013, 140, 342–348. [Google Scholar] [CrossRef]
- Fontes, G.C.; Ramos, N.M.; Amaral, P.F.F.; Nele, M.; Coelho, M.A.Z. Renewable Resources for Biosurfactant Production by Yarrowia Lipolytica. Braz. J. Chem. Eng. 2012, 29, 483–493. [Google Scholar] [CrossRef]
- Paulista, L.O.; Boaventura, R.A.R.; Vilar, V.J.P.; Pinheiro, A.L.N.; Martins, R.J.E. Enhancing Methane Yield from Crude Glycerol Anaerobic Digestion by Coupling with Ultrasound or A. Niger/E. Coli Biodegradation. Environ. Sci. Pollut. Res. 2020, 27, 1461–1474. [Google Scholar] [CrossRef] [PubMed]
- Maragkaki, A.E.; Fountoulakis, M.; Gypakis, A.; Kyriakou, A.; Lasaridi, K.; Manios, T. Pilot-Scale Anaerobic Co-Digestion of Sewage Sludge with Agro-Industrial by-Products for Increased Biogas Production of Existing Digesters at Wastewater Treatment Plants. Waste Manag. 2017, 59, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, M.S.; Manios, T. Bioresource Technology Enhanced Methane and Hydrogen Production from Municipal Solid Waste and Agro-Industrial by-Products Co-Digested with Crude Glycerol. Bioresour. Technol. 2009, 100, 3043–3047. [Google Scholar] [CrossRef] [PubMed]
- Konstantinović, S.; Danilović, B.R.; Ćirić, J.T.; Ilić, S.B.; Savić, D.S.; Veljković, V.B. Valorization of Crude Glycerol from Biodiesel Production. Chem. Ind. Chem. Eng. Q. 2016, 22, 461–489. [Google Scholar] [CrossRef]
- Chiodo, V.; Zafarana, G.; Maisano, S.; Freni, S.; Galvagno, A.; Urbani, F. Molten Carbonate Fuel Cell System Fed with Biofuels for Electricity Production. Int. J. Hydrog. Energy 2016, 41, 18815–18821. [Google Scholar] [CrossRef]
- Ferreira, J.S.; Volschan, I.; Cammarota, M.C. Enhanced Biogas Production in Pilot Digesters Treating a Mixture of Sewage Sludge, Glycerol, and Food Waste. Energy Fuels 2018, 32, 6839–6846. [Google Scholar] [CrossRef]
- Astals, S.; Nolla-Ardèvol, V.; Mata-Alvarez, J. Anaerobic Co-Digestion of Pig Manure and Crude Glycerol at Mesophilic Conditions: Biogas and Digestate. Bioresour. Technol. 2012, 110, 63–70. [Google Scholar] [CrossRef]
- Siles, J.A.; Martín, M.A.; Chica, A.F.; Martín, A. Anaerobic Co-Digestion of Glycerol and Wastewater Derived from Biodiesel Manufacturing. Bioresour. Technol. 2010, 101, 6315–6321. [Google Scholar] [CrossRef]
- Beschkov, V.; Sapundzhiev, T.; Angelov, I. Modelling of Biogas Production from Glycerol by Anaerobic Process in a Baffled Multi-Stage Digestor. Biotechnol. Biotechnol. Equip. 2012, 26, 3244–3248. [Google Scholar] [CrossRef]
- Oliveira, J.V.; Alves, M.M.; Costa, J.C. Optimization of Biogas Production from Sargassum sp. Using a Design of Experiments to Assess the Co-Digestion with Glycerol and Waste Frying Oil. Bioresour. Technol. 2015, 175, 480–485. [Google Scholar] [CrossRef]
- Sittijunda, S.; Reungsang, A. Methane Production from the Co-Digestion of Algal Biomass with Crude Glycerol by Anaerobic Mixed Cultures. Waste Biomass Valorization 2018, 11, 1873–1881. [Google Scholar] [CrossRef]
- Chou, Y.C.; Su, J.J. Biogas Production by Anaerobic Co-Digestion of Dairy Wastewater with the Crude Glycerol from Slaughterhouse Sludge Cake Transesterification. Animals 2019, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Sawasdee, V.; Haosagul, S.; Pisutpaisal, N. Co-Digestion of Waste Glycerol and Glucose to Enhance Biogas Production. Int. J. Hydrog. Energy 2019, 44, 29575–29582. [Google Scholar] [CrossRef]
- Alves, I.R.F.S.; Mahler, C.F.; Oliveira, L.B.; Reis, M.M.; Bassin, J.P. Assessing the Use of Crude Glycerol from Biodiesel Production as an Alternative to Boost Methane Generation by Anaerobic Co-Digestion of Sewage Sludge. Biomass Bioenergy 2020, 143, 105831. [Google Scholar] [CrossRef]
- Prasertsan, P.; Leamdum, C.; Chantong, S.; Mamimin, C.; Kongjan, P.; O-Thong, S. Enhanced Biogas Production by Co-Digestion of Crude Glycerol and Ethanol with Palm Oil Mill Effluent and Microbial Community Analysis. Biomass Bioenergy 2021, 148, 106037. [Google Scholar] [CrossRef]
- Takeda, P.Y.; Gotardo, J.T.; Gomes, S.D. Anaerobic Co-Digestion of Leachate and Glycerol for Renewable Energy Generation. Environ. Technol. 2022, 43, 1118–1128. [Google Scholar] [CrossRef]
- Bułkowska, K.; Mikucka, W.; Pokój, T. Enhancement of Biogas Production from Cattle Manure Using Glycerine Phase as a Co-Substrate in Anaerobic Digestion. Fuel 2022, 317, 123456. [Google Scholar] [CrossRef]
- Alves, I.R.F.S.; Mahler, C.F.; Oliveira, L.B.; Reis, M.M.; Bassin, J.P. Investigating the Effect of Crude Glycerol from Biodiesel Industry on the Anaerobic Co-Digestion of Sewage Sludge and Food Waste in Ternary Mixtures. Energy 2022, 241, 122818. [Google Scholar] [CrossRef]
- Wang, R.; Liu, S.; Liu, S.; Li, X.; Zhang, Y.; Xie, C.; Zhou, S.; Qiu, Y.; Luo, S.; Jing, F.; et al. Glycerol Steam Reforming for Hydrogen Production over Bimetallic MNi/CNTs (M[Dbnd]Co, Cu and Fe) Catalysts. Catal. Today 2020, 355, 128–138. [Google Scholar] [CrossRef]
- Cortright, R.D.; Davda, R.R.; Dumesic, J.A. Hydrogen from Catalytic Reforming of Biomass-Derived Hydrocarbons in Liquid Water. Nature 2002, 418, 964–967. [Google Scholar] [CrossRef]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J. Status and Perspectives of CO2 Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes. Energy Environ. Sci 2013, 6, 3112–3135. [Google Scholar] [CrossRef]
- Sarma, S.; Ortega, D.; Minton, N.P.; Dubey, V.K.; Moholkar, V.S. Homologous Overexpression of Hydrogenase and Glycerol Dehydrogenase in Clostridium Pasteurianum to Enhance Hydrogen Production from Crude Glycerol. Bioresour. Technol. 2019, 284, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Varella Rodrigues, C.; Oliveira Santana, K.; Nespeca, M.G.; Varella Rodrigues, A.; Oliveira Pires, L.; Maintinguer, S.I. Energy Valorization of Crude Glycerol and Sanitary Sewage in Hydrogen Generation by Biological Processes. Int. J. Hydrog. Energy 2020, 45, 11943–11953. [Google Scholar] [CrossRef]
- Pott, R.W.M.; Howe, C.J.; Dennis, J.S. The Purification of Crude Glycerol Derived from Biodiesel Manufacture and Its Use as a Substrate by Rhodopseudomonas Palustris to Produce Hydrogen. Bioresour. Technol. 2014, 152, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.M.; Wu, T.Y.; Juan, J.C. A Review of Sustainable Hydrogen Production Using Seed Sludge via Dark Fermentation. Renew. Sustain. Energy Rev. 2014, 34, 471–482. [Google Scholar] [CrossRef]
- De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R. A Review of Dark Fermentative Hydrogen Production from Biodegradable Municipal Waste Fractions. Waste Manag. 2013, 33, 1345–1361. [Google Scholar] [CrossRef]
- Maru, B.T.; López, F.; Kengen, S.W.M.; Constantí, M.; Medina, F. Dark Fermentative Hydrogen and Ethanol Production from Biodiesel Waste Glycerol Using a Co-Culture of Escherichia Coli and Enterobacter sp. Fuel 2016, 186, 375–384. [Google Scholar] [CrossRef]
- Chookaew, T.; Prasertsan, P.; Ren, Z.J. Two-Stage Conversion of Crude Glycerol to Energy Using Dark Fermentation Linked with Microbial Fuel Cell or Microbial Electrolysis Cell. New Biotechnol. 2014, 31, 179–184. [Google Scholar] [CrossRef]
- Ghimire, A.; Frunzo, L.; Pirozzi, F.; Trably, E.; Escudie, R.; Lens, P.N.L.; Esposito, G. A Review on Dark Fermentative Biohydrogen Production from Organic Biomass: Process Parameters and Use of by-Products. Appl. Energy 2015, 144, 73–95. [Google Scholar] [CrossRef]
- Sittijunda, S.; Reungsang, A. Valorization of Crude Glycerol into Hydrogen, 1,3-Propanediol, and Ethanol in an up-Flow Anaerobic Sludge Blanket (UASB) Reactor under Thermophilic Conditions. Renew. Energy 2020, 161, 361–372. [Google Scholar] [CrossRef]
- Prakash, J.; Sharma, R.; Patel, S.K.S.; Kim, I.W.; Kalia, V.C. Bio-Hydrogen Production by Co-Digestion of Domestic Wastewater and Biodiesel Industry Effluent. PLoS ONE 2018, 13, e0199059. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Wang, J. Comparison of Fermentative Hydrogen Production from Glycerol Using Immobilized and Suspended Mixed Cultures. Int. J. Hydrog. Energy 2021, 46, 8986–8994. [Google Scholar] [CrossRef]
- Cristina, M.; Silva, A.; Monteggia, L.O. Hydrogen Production Potential Comparison of Sucrose and Crude Glycerol Using Different Inoculums Sources; Inderscience Enterprises Ltd.: Cointrin-Geneva, Switzerland, 2020; Volume 25. [Google Scholar]
- Mirzoyan, S.; Trchounian, A.; Trchounian, K. Hydrogen Production by Escherichia Coli during Anaerobic Utilization of Mixture of Lactose and Glycerol: Enhanced Rate and Yield, Prolonged Production. Int. J. Hydrog. Energy 2019, 44, 9272–9281. [Google Scholar] [CrossRef]
- Toledo-Alarcón, J.; Cabrol, L.; Jeison, D.; Trably, E.; Steyer, J.P.; Tapia-Venegas, E. Impact of the Microbial Inoculum Source on Pre-Treatment Efficiency for Fermentative H2 Production from Glycerol. Int. J. Hydrog. Energy 2020, 45, 1597–1607. [Google Scholar] [CrossRef]
- Cardona, C.A.; Sánchez, Ó.J. Fuel Ethanol Production: Process Design Trends and Integration Opportunities. Bioresour. Technol. 2007, 98, 2415–2457. [Google Scholar] [CrossRef]
- Ganguly, A.; Chatterjee, P.K.; Dey, A. Studies on Ethanol Production from Water Hyacinth—A Review. Renew. Sustain. Energy Rev. 2012, 16, 966–972. [Google Scholar] [CrossRef]
- Acorsi, R.L.; De Giovanni, M.Y.G.; Andrade, C.M.G.; Olivo, J.E. Modeling and Simulation of Batch Sugarcane Alcoholic Fermentation Using the Metabolic Model. Fermentation 2022, 8, 82. [Google Scholar] [CrossRef]
- Yazdani, S.S.; Gonzalez, R. Anaerobic Fermentation of Glycerol: A Path to Economic Viability for the Biofuels Industry. Curr. Opin. Biotechnol. 2007, 18, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Posada, J.A.; Cardona, C.A. Design and Analysis of Fuel Ethanol Production from Raw Glycerol. Energy 2010, 35, 5286–5293. [Google Scholar] [CrossRef]
- Sunarno, J.N.; Prasertsan, P.; Duangsuwan, W.; Kongjan, P.; Cheirsilp, B. Mathematical Modeling of Ethanol Production from Glycerol by Enterobacter Aerogenes Concerning the Influence of Impurities, Substrate, and Product Concentration. Biochem. Eng. J. 2020, 155, 107471. [Google Scholar] [CrossRef]
- Chozhavendhan, S.; Karthiga Devi, G.; Bharathiraja, B.; Praveen Kumar, R.; Elavazhagan, S. Assessment of Crude Glycerol Utilization for Sustainable Development of Biorefineries. In Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 195–212. ISBN 9780128189962. [Google Scholar]
- Gonela, V.; Zhang, J. Design of the Optimal Industrial Symbiosis System to Improve Bioethanol Production. J. Clean. Prod. 2014, 64, 513–534. [Google Scholar] [CrossRef]
- Yu, K.O.; Kim, S.W.; Han, S.O. Engineering of Glycerol Utilization Pathway for Ethanol Production by Saccharomyces Cerevisiae. Bioresour. Technol. 2010, 101, 4157–4161. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoo, H.Y.; Lee, S.K.; Chun, Y.; Kim, H.R.; Bankeeree, W.; Lotrakul, P.; Punnapayak, H.; Prasongsuk, S.; Kim, S.W. Significant Impact of Casein Hydrolysate to Overcome the Low Consumption of Glycerol by Klebsiella Aerogenes ATCC 29007 and Its Application to Bioethanol Production. Energy Convers. Manag. 2020, 221, 113181. [Google Scholar] [CrossRef]
- Sunarno, J.N.; Prasertsan, P.; Duangsuwan, W.; Cheirsilp, B.; Sangkharak, K. Biodiesel Derived Crude Glycerol and Tuna Condensate as an Alternative Low-Cost Fermentation Medium for Ethanol Production by Enterobacter Aerogenes. Ind. Crops Prod. 2019, 138, 111451. [Google Scholar] [CrossRef]
- Oh, Y.K.; Hwang, K.R.; Kim, C.; Kim, J.R.; Lee, J.S. Recent Developments and Key Barriers to Advanced Biofuels: A Short Review. Bioresour. Technol. 2018, 257, 320–333. [Google Scholar] [CrossRef]
- Stepanov, N.; Efremenko, E. Immobilised Cells of Pachysolen Tannophilus Yeast for Ethanol Production from Crude Glycerol. New Biotechnol. 2017, 34, 54–58. [Google Scholar] [CrossRef]
- Sunarno, J.N.; Prasertsan, P.; Duangsuwan, W.; Cheirsilp, B.; Sangkharak, K. Improve Biotransformation of Crude Glycerol to Ethanol of Enterobacter Aerogenes by Two-Stage Redox Potential Fed-Batch Process under Microaerobic Environment. Biomass Bioenergy 2020, 134, 105503. [Google Scholar] [CrossRef]
- Suzuki, T.; Seta, K.; Nishikawa, C.; Hara, E.; Shigeno, T.; Nakajima-Kambe, T. Improved Ethanol Tolerance and Ethanol Production from Glycerol in a Streptomycin-Resistant Klebsiella Variicola Mutant Obtained by Ribosome Engineering. Bioresour. Technol. 2015, 176, 156–162. [Google Scholar] [CrossRef]
- Vikromvarasiri, N.; Haosagul, S.; Boonyawanich, S.; Pisutpaisal, N. Microbial Dynamics in Ethanol Fermentation from Glycerol. Int. J. Hydrog. Energy 2016, 41, 15667–15673. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, J.H.; Yang, X.; Yoo, H.Y.; Han, S.O.; Park, C.; Kim, S.W. Re-Utilization of Waste Glycerol for Continuous Production of Bioethanol by Immobilized Enterobacter Aerogenes. J. Clean. Prod. 2017, 161, 757–764. [Google Scholar] [CrossRef]
- Pereyra, D.D.L.A.D.; Rueger, I.B.; Barbosa, P.A.M.D.A.; Peiter, F.S.; da Silva Freitas, D.M.; de Amorim, E.L.C. Co-Fermentation of Glycerol and Molasses for Obtaining Biofuels and Value-Added Products. Braz. J. Chem. Eng. 2020, 37, 653–660. [Google Scholar] [CrossRef]
- Ren, J.; Manzardo, A.; Mazzi, A.; Fedele, A.; Scipioni, A. Emergy Analysis and Sustainability Efficiency Analysis of Different Crop-Based Biodiesel in Life Cycle Perspective. Sci. World J. 2013, 2013, 918514. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.B.; Freitas, A.V.; Leitão, R.C.; Pinto, G.A.S.; Santaella, S.T. Anaerobic Digestion of Crude Glycerol: A Review. Environ. Technol. Rev. 2012, 1, 81–92. [Google Scholar] [CrossRef]
- Bułkowska, K.; Białobrzewski, I.; Klimiuk, E.; Pokój, T. Kinetic Parameters of Volatile Fatty Acids Uptake in the ADM1 as Key Factors for Modeling Co-Digestion of Silages with Pig Manure, Thin Stillage and Glycerine Phase. Renew. Energy 2018, 126, 163–176. [Google Scholar] [CrossRef]
- Kapoor, R.; Ghosh, P.; Tyagi, B.; Vijay, V.K.; Vijay, V.; Thakur, I.S.; Kamyab, H.; Nguyen, D.D.; Kumar, A. Advances in Biogas Valorization and Utilization Systems: A Comprehensive Review. J. Clean. Prod 2020, 273, 123052. [Google Scholar] [CrossRef]
- Kurahashi, K.; Kimura, C.; Fujimoto, Y.; Tokumoto, H. Value-Adding Conversion and Volume Reduction of Sewage Sludge by Anaerobic Co-Digestion with Crude Glycerol. Bioresour. Technol. 2017, 232, 119–125. [Google Scholar] [CrossRef]
- Valvassore, M.S.; de Freitas, H.F.S.; Andrade, C.M.G.; Costa, C.B.B. Improving Feeding Profile Strategy for Hydrogen Production by Cyanothece sp. ATCC 51142 Using Meta-Heuristic Methods. Chem. Eng. Commun. 2023, 210, 1–15. [Google Scholar] [CrossRef]
- Vivek, N.; Pandey, A.; Binod, P. Biological Valorization of Pure and Crude Glycerol into 1,3-Propanediol Using a Novel Isolate Lactobacillus Brevis N1E9.3.3. Bioresour. Technol. 2016, 213, 222–230. [Google Scholar] [CrossRef]
- Johnson, E.E.; Rehmann, L. The Role of 1,3-Propanediol Production in Fermentation of Glycerol by Clostridium Pasteurianum. Bioresour. Technol. 2016, 209, 1–7. [Google Scholar] [CrossRef]
- Poladyan, A.; Baghdasaryan, L.; Trchounian, A. Escherichia Coli Wild Type and Hydrogenase Mutant Cells Growth and Hydrogen Production upon Xylose and Glycerol Co-Fermentation in Media with Different Buffer Capacities. Int. J. Hydrog. Energy 2018, 43, 15870–15879. [Google Scholar] [CrossRef]
- Jansen, M.L.A.; Bracher, J.M.; Papapetridis, I.; Verhoeven, M.D.; De Bruijn, H.; De Waal, P.P.; Van Maris, A.J.A.; Klaassen, P.; Pronk, J.T. Saccharomyces Cerevisiae Strains for Second-Generation Ethanol Production: From Academic Exploration to Industrial Implementation. FEMS Yeast Res. 2017, 17, fox044. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Zamani, A.; Taherzadeh, M.J. Bioethylene Production from Ethanol: A Review and Techno-Economical Evaluation. ChemBioEng Rev. 2017, 4, 75–91. [Google Scholar] [CrossRef]
- De Freitas, H.F.S.; Olivo, J.E.; Andrade, C.M.G. Optimization of Bioethanol in Silico Production Process in a Fed-Batch Bioreactor Using Non-Linear Model Predictive Control and Evolutionary Computation Techniques. Energies 2017, 10, 1763. [Google Scholar] [CrossRef]
- Rodrigues, R.; Sperandio, L.C.C.; Andrade, C.M.G. Investigation of Color and Turbidity in the Clarification of Sugarcane Juice by Ozone. J. Food Process Eng. 2018, 41, e12661. [Google Scholar] [CrossRef]
- Yu, K.O.; Kim, S.W.; Han, S.O. Reduction of Glycerol Production to Improve Ethanol Yield in an Engineered Saccharomyces Cerevisiae Using Glycerol as a Substrate. J. Biotechnol. 2010, 150, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Farobie, O.; Sasanami, K.; Matsumura, Y. A Novel Spiral Reactor for Biodiesel Production in Supercritical Ethanol. Appl. Energy 2015, 147, 20–29. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Mardina, P.; Kim, D.; Kim, S.Y.; Kalia, V.C.; Kim, I.W.; Lee, J.K. Improvement in Methanol Production by Regulating the Composition of Synthetic Gas Mixture and Raw Biogas. Bioresour. Technol. 2016, 218, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.; De Souza, S.N.M.; De Lima Afonso, A.D.; Ricieri, R.P. Confecção e Avaliação de Um Sistema de Remoção Do CO2 Contido No Biogás. Acta Sci. Technol. 2004, 26, 11–19. [Google Scholar]
- Bozzano, G.; Manenti, F. Efficient Methanol Synthesis: Perspectives, Technologies and Optimization Strategies. Prog. Energy Combust. Sci. 2016, 56, 71–105. [Google Scholar] [CrossRef]
- Su, Z.; Ge, X.; Zhang, W.; Wang, L.; Yu, Z.; Li, Y. Methanol Production from Biogas with a Thermotolerant Methanotrophic Consortium Isolated from an Anaerobic Digestion System. Energy Fuels 2017, 31, 2970–2975. [Google Scholar] [CrossRef]
- Keshavarz, A.; Mirvakili, A.; Chahibakhsh, S.; Shariati, A.; Rahimpour, M.R. Simultaneous Methanol Production and Separation in the Methanol Synthesis Reactor to Increase Methanol Production. Chem. Eng. Process. Process Intensif. 2020, 158, 108176. [Google Scholar] [CrossRef]
- Riaz, A.; Zahedi, G.; Klemeš, J.J. A Review of Cleaner Production Methods for the Manufacture of Methanol. J. Clean. Prod. 2013, 57, 19–37. [Google Scholar] [CrossRef]
- Hogendoorn, C.; Pol, A.; Nuijten, G.H.L.; Op den Camp, H.J.M. Methanol Production by “Methylacidiphilum Fumariolicum” Solv under Different Growth Conditions. Appl. Environ. Microbiol. 2020, 86, e01188-20. [Google Scholar] [CrossRef] [PubMed]
- Bannantine, J.P.; Register, K.B.; White, D.M. Application of the Biosafety RAM and EProtocol Software Programs to Streamline Institutional Biosafety Committee Processes at the USDA-National Animal Disease Center. Appl. Biosaf. 2018, 23, 100–105. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Molecular weight | 92.09 g/mol |
Density at 20 °C | 1.261 g/cm3 |
Viscosity at 20 °C | 1499 cP |
Specific heat at 26 °C | 2.42 J/g |
Heat of formation | 159.6 Kcal/g mol |
Heat of combustion | 1662 KJ/mol |
Heat of fusion | 18.3 KJ/mol |
Fusion point | 17.8 °C |
Flash point | 177 °C |
Point of combustion | 204 °C |
Point of decomposition | 290 °C |
Authors | Feedstock | Microorganism | Time | Temperature | pH | Results |
---|---|---|---|---|---|---|
Fountoulakis et al. (2009) [54] | Urban effluent and crude glycerol | The inoculum was obtained from anaerobic sludge from a municipal station | 46 days | 35 °C | 7.0–7.5 | The authors observed the production of 1400 mL CH4/d without adding glycerol and 2094 mL CH4/d after adding glycerol |
Astals et al. (2012) [58] | Swine effluent and crude glycerol | Pig manure was used as inoculum | 20 days | – | 6.5 | The best yield was obtained with 4% crude glycerol added to the bioreactor, obtaining a 400% increase in biogas production with respect to monodigestion |
Siles et al. (2010) [59] | Crude glycerol and wastewater from the biodiesel production process | Active methanogenic granular biomass | – | 37 °C | 7.38 | Maximum production was 310 mL of CH4/g organic matter removed |
Beschkov et al. (2012) [60] | Crude glycerol | Klebsiella sp. | – | 32 °C | 7.5 | The authors carried out modeling of a multistage biodigester. From this modeling, it was possible to estimate the number of stages necessary so that one stage does not inhibit another |
Oliveira (2015) [61] | Crude glycerol and residual frying oil | Sargassum sp. | 42 days | 37 °C | 7.0–7.4 | Without the addition of glycerol and residual oil, the biochemical potential of Sargassum sp. was 181 ± 1 L CH4/L of DOC. The methane rate increased 56% with the addition of glycerol and 46% with the addition of residual oil |
Sawasdee et al. (2019) [64] | Glucose and glycerol | The inoculum was obtained from cassava starch sludge | – | 37 °C | 6.63–7.04 | The highest yield of biogas production was for the 5:5 ratio of glycerol/glucose, with a maximum production rate of 8 mL/h |
Alves et al. (2020) [65] | Crude glycerol and primary sewage sludge | The inoculum was obtained from primary sewage sludge | 20 days | 37 °C | 7.55–7.48 | The methane yields were 223.8 mL CH4/g VS for 1% glycerol concentration and 368.8 mL CH4/g VS for 3% glycerol concentration when crude glycerol was added |
Prasertsan et al. (2021) [66] | Palm oil factory effluent, crude glycerol and ethanol as co-substrates | Methanosarcina sp. and Methanospirillum sp. | 45 days | 37 °C | 6.8–7.4 | The optimal concentrations for both substrates were 1% for glycerol and 5% for ethanol. The results showed a production rate of 553.46 mLCH4/g VS for glycerol and 582.12 mLCH4/g VS for ethanol |
Takeda et al. (2022) [67] | Landfill leachate and crude glycerol | The inoculum was obtained from municipal wastewater | 33 days | 37 °C | 7.0 | Under optimal conditions, biogas production was 403.15 mL/g VSS |
Bułkowska et al. (2022) [68] | Crude glycerol | The inoculum was obtained from bovine manure | 30 days | 39 °C | 7.47–7.49 | Adding 10% v/v of glycerol VS increased the methane production rate from 0.295 to 0.844 L/L day and the yield coefficient from 0.143 to 0.394 L/g VS |
Alves et al. (2022) [69] | Crude glycerol, primary sewage sludge, and food waste | The inoculum was obtained from primary sewage sludge | 20 days | 37 °C | 7.48–7.13 | Biogas yields of 432.4 and 692.6 mL/g VS for 1% and 3% crude glycerol, respectively. The methane yields corresponded to 343.3 and 525.7 mL CH4/g VS for 1% and 3% v/v crude glycerol, respectively. |
Authors | Feedstock | Microorganism | Results |
---|---|---|---|
Maru et al. (2016) [78] | Pure and crude glycerol | Escherichia coli CECT432, Escherichia coli CECT434, and Enterobacter cloacae MCM2/1 | Co-culture of Escherichia coli CECT 432 and Enterobacter cloacae yielded 1.26 mol H2/mol residual glycerol |
Sittijunda e Reungsang (2020) [81] | Pure and crude glycerol | Enterobacter sp., Klebsiella sp., and Klebsiella pneumoniae | The yields of hydrogen were 2.90 mol H2/mol pure glycerol and 2.05 mol H2/mol residual glycerol |
Prakash et al. (2018) [82] | Domestic wastewater and waste glycerol | Bacillus thuringiensis EGU4, Bacillus amyloliquefaciens strain CD16 | The hydrogen yield with Bacillus thuringiensis EGU4 was 100 L H2/L of residual glycerol and with Bacillus amyloliquefaciens strain CD16 was 120 L H2/L |
Chen et al. (2021) [83] | Gycerol | Clostridium sp. | The yields of hydrogen were 0.52 mol H2/mol glycerol for immobilized microorganisms and 0.29 mol H2/mol glycerol for suspended microorganisms |
Silva et al. (2020) [84] | Gycerol | Enterobacter and Clostridium | The hydrogen yields were 0.25 mol H2/mol glycerol for Enterobacter and 0.01 mol H2/mol glycerol for Clostridium |
Mirzoyan et al. (2019) [85] | Lactose and glycerol | Escherichia coli | High H2 yield was achieved during fermentation with 1 g/L lactose at pH 7.5, with a H2 production rate of 21.94 mL/L |
Toledo-Alarcon et al. (2020) [86] | Glycerol | Clostridium sp. | The presented results allowed a better understanding of the production of H2 in continuous systems and provided informationfor future industrial applications |
Authors | Feedstock | Microorganism | Results |
---|---|---|---|
Sunarno et al. (2019) [97] | Crude glycerol | Enterobacter aerogenes | With 20 g/L of crude glycerol and the pH maintained at 7, the ethanol production was 12.33 g/L |
Oh et al. (2011) [98] | Crude glycerol | Klebsiella pneumoniae GEM167 | The maximum production level was 21.5 g/L, with a productivity of 0.93 g/L/h |
Stepanov e Efremenko (2017) [99] | Glycerol | Pachysolen tannophilus | The conversion of glycerol into ethanol using immobilized yeast resulted in a yield of 90% in relation to the theoretical limit |
Sunarno et al. (2020) [100] | Crude glycerol | Enterobacter aerogenes TISTR1468 | In the fermentation process without aeration, the ethanol yield was 18.78 g/L; with aeration, it was 30.31 g/L in the continuous process and 12.33 g/L in the batch process |
Suzuki et al. (2015) [101] | Glycerol | Klebsiella variicola TB-83 e TB-83D | The strain TB-83D was effective for the production of ethanol from glycerol, and this strain was a mutant of Klebsiella variicola TB-83 |
Vikromvarasiri et al. (2016) [102] | Crude glycerol and waste water | Enterobacter and Klebsiella | The highest concentration of ethanol was 11.1 g/L obtained after 72 h of fermentation at an initial concentration of 45 g/L of glycerol |
Lee et al. (2017) [103] | Pure glycerol and crude glycerol | Enterobacter aerogenes ATCC 29007 immobilized | Under optimal conditions, the ethanol production and yield were approximately 5.38 g/L and 0.96 mol ethanol/mol glycerol with pure glycerol, respectively, while the ethanol production and yield were approximately 5.29 g/L and 0.91 mol ethanol/mol glycerol with crude glycerol, respectively |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, E.L.; Olivo, J.E.; Andrade, C.M.G. Production of Biofuels from Glycerol from the Biodiesel Production Process—A Brief Review. Fermentation 2023, 9, 869. https://doi.org/10.3390/fermentation9100869
Almeida EL, Olivo JE, Andrade CMG. Production of Biofuels from Glycerol from the Biodiesel Production Process—A Brief Review. Fermentation. 2023; 9(10):869. https://doi.org/10.3390/fermentation9100869
Chicago/Turabian StyleAlmeida, Eugênia Leandro, José Eduardo Olivo, and Cid Marcos Gonçalves Andrade. 2023. "Production of Biofuels from Glycerol from the Biodiesel Production Process—A Brief Review" Fermentation 9, no. 10: 869. https://doi.org/10.3390/fermentation9100869
APA StyleAlmeida, E. L., Olivo, J. E., & Andrade, C. M. G. (2023). Production of Biofuels from Glycerol from the Biodiesel Production Process—A Brief Review. Fermentation, 9(10), 869. https://doi.org/10.3390/fermentation9100869