Design of 5′-UTR to Enhance Keratinase Activity in Bacillus subtilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene, Plasmids and Strains
2.2. Medium and Culture Conditions
2.3. Keratinase Activity
2.4. Analysis of 5′-UTR Secondary Structure
2.5. Fermentation Performance Validation in Fermenter
3. Results and Discussion
3.1. Replacement of Spacer Sequence C/G to A/T
3.2. Screening of Ribosome Binding Sites (RBS)
3.3. Simplification of the 5′ End Sequence
3.4. Fermentation Performance of B. subtilis WB600-SP-R-D
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Yang, W.; McKittrick, J.; Meyers, M.A. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chen, P.-Y.; Lin, A.Y.-M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Donato, R.K.; Mija, A. Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers 2019, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Callegaro, K.; Brandelli, A.; Daroit, D.J. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 2019, 95, 399–415. [Google Scholar] [CrossRef]
- Brandelli, A.; Daroit, D.J.; Riffel, A. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 2010, 85, 1735–1750. [Google Scholar] [CrossRef]
- Fang, Z.; Yong, Y.-C.; Zhang, J.; Du, G.; Chen, J. Keratinolytic protease: A green biocatalyst for leather industry. Appl. Microbiol. Biotechnol. 2017, 101, 7771–7779. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, D.; Zhang, X. Enzymatic decolorization of melanoidins from molasses wastewater by immobilized keratinase. Bioresour. Technol. 2019, 280, 165–172. [Google Scholar] [CrossRef]
- Peng, Z.; Mao, X.; Mu, W.; Du, G.; Chen, J.; Zhang, J. Modifying the Substrate Specificity of Keratinase for Industrial Dehairing to Replace Lime-Sulfide. ACS Sustain. Chem. Eng. 2022, 10, 6863–6870. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, R.; Beg, Q.K. Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 2013, 33, 216–228. [Google Scholar] [CrossRef]
- Verma, A.; Singh, H.; Anwar, S.; Chattopadhyay, A.; Tiwari, K.K.; Kaur, S.; Dhilon, G.S. Microbial keratinases: Industrial enzymes with waste management potential. Crit. Rev. Biotechnol. 2017, 37, 476–491. [Google Scholar] [CrossRef]
- Qiu, J.; Wilkens, C.; Barrett, K.; Meyer, A.S. Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol. Adv. 2020, 44, 107607. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Gong, J.-S.; Qin, J.; Li, H.; Li, H.; Xu, Z.-H.; Shi, J.-S. The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnol. Adv. 2020, 45, 107655. [Google Scholar] [CrossRef] [PubMed]
- Daroit, D.J.; Brandelli, A. A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 2014, 34, 372–384. [Google Scholar] [CrossRef]
- Prakash, P.; Jayalakshmi, S.K.; Sreeramulu, K. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl. Microbiol. Biotechnol. 2010, 87, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhang, J.; Song, Y.; Guo, R.; Du, G.; Chen, J. Engineered pro-peptide enhances the catalytic activity of keratinase to improve the conversion ability of feather waste. Biotechnol. Bioeng. 2021, 118, 2559–2571. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Gao, J.; He, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; Yu, J.; Han, G.; Chen, D. Codon Optimization Significantly Improves the Expression Level of a Keratinase Gene in Pichia pastoris. PLoS ONE 2013, 8, e58393. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Gong, J.-S.; Sun, Y.-X.; Qin, J.; Zhai, S.; Li, H.; Li, H.; Lu, Z.-M.; Xu, Z.-H.; Shi, J.-S. Combining Pro-peptide Engineering and Multisite Saturation Mutagenesis To Improve the Catalytic Potential of Keratinase. ACS Synth. Biol. 2019, 8, 425–433. [Google Scholar] [CrossRef]
- Peng, Z.; Mao, X.; Zhang, J.; Du, G.; Chen, J. Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnol. Biofuels 2020, 13, 61. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, J.; Liu, B.; Jiang, L.; Du, G.; Chen, J. Cloning, heterologous expression and characterization of two keratinases from Stenotrophomonas maltophilia BBE11-1. Process Biochem. 2014, 49, 647–654. [Google Scholar] [CrossRef]
- Cui, W.; Han, L.; Suo, F.; Liu, Z.; Zhou, L.; Zhou, Z. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J. Microbiol. Biotechnol. 2018, 34, 145. [Google Scholar] [CrossRef]
- Gingold, H.; Pilpel, Y. Determinants of translation efficiency and accuracy. Mol. Syst. Biol. 2011, 7, 481. [Google Scholar] [CrossRef] [PubMed]
- Espah Borujeni, A.; Salis, H.M. Translation Initiation is Controlled by RNA Folding Kinetics via a Ribosome Drafting Mechanism. J. Am. Chem. Soc. 2016, 138, 7016–7023. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, I.; Belardinelli, R.; Rodnina, M.V. Translation initiation in bacterial polysomes through ribosome loading on a standby site on a highly translated mRNA. Proc. Natl. Acad. Sci. USA 2018, 115, 4411–4416. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Li, Y.; Ma, A.; Liu, W.; Wang, H.; Zhuang, G. An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences. Anal. Bioanal. Chem. 2011, 401, 2891–2898. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ding, R.; Chen, J.; Du, G.; Li, H.; Zhou, J. Obtaining a Panel of Cascade Promoter-5′-UTR Complexes in Escherichia coli. ACS Synth. Biol. 2017, 6, 1065–1075. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, C.Y.; Busby, K.N.; Alexander, S.C.; Devaraj, N.K. Light-Activated Control of Translation by Enzymatic Covalent mRNA Labeling. Angew. Chem. Int. Ed. Engl. 2018, 57, 2822–2826. [Google Scholar] [CrossRef]
- Viegas, S.C.; Apura, P.; Martinez-García, E.; de Lorenzo, V.; Arraiano, C.M. Modulating Heterologous Gene Expression with Portable mRNA-Stabilizing 5′-UTR Sequences. ACS Synth. Biol. 2018, 7, 2177–2188. [Google Scholar] [CrossRef]
- Salis, H.M.; Mirsky, E.A.; Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 2009, 27, 946–950. [Google Scholar] [CrossRef]
- Cuperus, J.T.; Groves, B.; Kuchina, A.; Rosenberg, A.B.; Jojic, N.; Fields, S.; Seelig, G. Deep learning of the regulatory grammar of yeast 5′ untranslated regions from 500,000 random sequences. Genome Res. 2017, 27, 2015–2024. [Google Scholar] [CrossRef]
- Xiao, J.; Peng, B.; Su, Z.; Liu, A.; Hu, Y.; Nomura, C.T.; Chen, S.; Wang, Q. Facilitating Protein Expression with Portable 5′-UTR Secondary Structures in Bacillus licheniformis. ACS Synth. Biol. 2020, 9, 1051–1058. [Google Scholar] [CrossRef]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Osterman, I.A.; Evfratov, S.A.; Sergiev, P.V.; Dontsova, O.A. Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res. 2013, 41, 474–486. [Google Scholar] [CrossRef]
- Lee, H.-M.; Ren, J.; Kim, W.Y.; Vo, P.N.L.; Eyun, S.-I.; Na, D. Introduction of an AU-rich Element into the 5’ UTR of mRNAs Enhances Protein Expression in Escherichia coli by S1 Protein and Hfq Protein. Biotechnol. Bioprocess Eng. 2021, 26, 749–757. [Google Scholar] [CrossRef]
- Zelcbuch, L.; Antonovsky, N.; Bar-Even, A.; Levin-Karp, A.; Barenholz, U.; Dayagi, M.; Liebermeister, W.; Flamholz, A.; Noor, E.; Amram, S.; et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res. 2013, 41, e98. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.R.; Yurovsky, A.; Chen, Y.; Skiena, S.; Futcher, B. Re-annotation of 12,495 prokaryotic 16S rRNA 3’ ends and analysis of Shine-Dalgarno and anti-Shine-Dalgarno sequences. PLoS ONE 2018, 13, e0202767. [Google Scholar] [CrossRef] [PubMed]
- Komarova, E.S.; Chervontseva, Z.S.; Osterman, I.A.; Evfratov, S.A.; Rubtsova, M.P.; Zatsepin, T.S.; Semashko, T.A.; Kostryukova, E.S.; Bogdanov, A.A.; Gelfand, M.S.; et al. Influence of the spacer region between the Shine–Dalgarno box and the start codon for fine-tuning of the translation efficiency in Escherichia coli. Microb. Biotechnol. 2020, 13, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, L.; Shin, H.-D.; Chen, R.R.; Li, J.; Du, G.; Chen, J. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab. Eng. 2013, 19, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Lv, X.; Liu, Y.; Li, J.; Du, G.; Chen, J.; Rodrigo, L.-A.; Liu, L. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metab. Eng. 2019, 51, 59–69. [Google Scholar] [CrossRef]
Name | Sequence (5′-3′) |
---|---|
Strains | |
JM109 | Escherichia coli |
WB600 | Bacillus subtilis 168 derivate, missing nprE aprE epr bpr mpr nprB |
WB600-Ker | Bacillus subtilis WB600 contains plasmid pP43NMK-Ker |
Plasmids | |
pP43NMK | Ampr, Kmr, E. coli–B. subtilis shuttle vector |
pP43NMK-Ker | pP43NMK derivate with B. licheniformis Ker gene under the control of the promoter P43 |
Primers | |
Spacer | |
Spacer-3N-F | TTATAGGTAAGAGAGGAATNTANANATGATGAGGAAAAAGAGTTTTTGGCTTGG |
Spacer-3N-R | ATTCCTCTCTTACCTATAATGGTACCGCTAT |
RBS | |
RBS-6N-F | TAGCGGTACCATTATAGGNNNNNNAGGAATGTATAGATGATGAGGAAAAAGAGTTTTTG |
RBS-6N-R | CCTATAATGGTACCGCTATCACTTTATATTTTACATAATCG |
5′ end | |
Sim1-F | TAAAATATAAAGTGATAGCGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim2-F | TAAAATATAAAGTGATAGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim3-F | TAAAATATAAAGTGATAGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim4-F | ATTATGTAAAATATAAAGTATAGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim5-F | ATTATGTAAAATATAAATATAGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim6-F | ATGTAAAATATAAAGTGATGCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim7-F | ATGTAAAATATAAAGTGAGCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim1C-F | TAAAATATAAAGTGATAGCGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim2C-F | TAAAATATAAAGTGATAGGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim3C-F | TAAAATATAAAGTGATAGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim4C-F | ATTATGTAAAATATAAAGTATAGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim6C-F | ATGTAAAATATAAAGTGATGCGGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim7C-F | ATGTAAAATATAAAGTGAGCGGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim8-F | ATGTAAAATATAAAGTGGCGGTACCATTATAGGTATTGGAGGA |
Sim9-F | GATTATGTAAAATATAAAGGGCGGTACCATTATAGGTATTGGAGGA |
Sim10-F | ATTATGTAAAATATAAACGCGGTACCATTATAGGTATTGGAGGA |
Sim11-F | ATTATGTAAAATATAAAGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim123-R | TATCACTTTATATTTTACATAATCGCGCGCTTTTTTTC |
Sim4591011-R | TTTATATTTTACATAATCGCGCGCTTTTTTTCACG |
Sim678-R | CACTTTATATTTTACATAATCGCGCGCTTTTTTTC |
Strains | Spacer (5′-3′) | Activity (U mL−1) |
---|---|---|
KerZ1 | AATGTACAC | 10,380 |
1-A1 1-E1 1-E2 1-H4 2-A10 2-F12 3-B8 3-F3 | AATTTACAT AATTTACAT AATTTACAC AATTTATAA AATTTACAT AATTTACAA AATGTATAG AATTTACAT | 35,935 43,800 23,745 59,845 41,915 33,615 82,435 36,565 |
Strains | RBS (5′-3′) | Activity (U mL−1) | Translation Initiation Rate (au) |
---|---|---|---|
SP | GTAAGAGAGG | 82,435 | 72.08 |
1-B10 1-E12 2-A7 2-D12 2-G12 3-A10 3-B8 3-C8 3-F11 | GCTGCACAGG GCTTGCGAGG GGGAAGTAGG GATGGTAAGG GTATTGGAGG GAAAGACAGG GGACGGAAGG GTGTTGCAGG GGGGGCTAGG | 7695 25,350 45,740 7510 139,650 11,060 99,860 30,395 15,710 | 11.63 26.81 362.40 37.82 85.58 23.71 127.08 29.45 121.96 |
Mutants | 5′-UTR Sequence (5′-3′) |
---|---|
2-G12 | GTGATAGCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim1 | GTGATAGC--GTACCATTATAGGTATTGGAGGAATGTACAC |
Sim1C | GTGATAGC--GTAACATTATAGGTATTGGAGGAATGTACAC |
Sim2 | GTGATAG----GTACCATTATAGGTATTGGAGGAATGTACAC |
Sim2C | GTGATAG----GTAACATTATAGGTATTGGAGGAATGTACAC |
Sim3 | GTGATA------GTACCATTATAGGTATTGGAGGAATGTACAC |
Sim3C | GTGATA------GTAACATTATAGGTATTGGAGGAATGTACAC |
Sim4 | GT--ATA------GTACCATTATAGGTATTGGAGGAATGTACAC |
Sim4C | GT--ATA------GTAACATTATAGGTATTGGAGGAATGTACAC |
Sim5 | --T--ATA------GTACCATTATAGGTATTGGAGGAATGTACAC |
Sim6 | GTGAT--GCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim6C | GTGAT--GCGGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim7 | GTGA----GCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim7C | GTGA----GCGGTAACATTATAGGTATTGGAGGAATGTACAC |
Sim8 | GTG------GCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim9 | G--G------GCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim10 | ------------GCGGTACCATTATAGGTATTGGAGGAATGTACAC |
Sim11 | ------------------GTACCATTATAGGTATTGGAGGAATGTACAC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Zhou, G.; Ji, X.; Zhang, G.; Peng, Z.; Zhang, J. Design of 5′-UTR to Enhance Keratinase Activity in Bacillus subtilis. Fermentation 2022, 8, 426. https://doi.org/10.3390/fermentation8090426
Fang J, Zhou G, Ji X, Zhang G, Peng Z, Zhang J. Design of 5′-UTR to Enhance Keratinase Activity in Bacillus subtilis. Fermentation. 2022; 8(9):426. https://doi.org/10.3390/fermentation8090426
Chicago/Turabian StyleFang, Jun, Guanyu Zhou, Xiaomei Ji, Guoqiang Zhang, Zheng Peng, and Juan Zhang. 2022. "Design of 5′-UTR to Enhance Keratinase Activity in Bacillus subtilis" Fermentation 8, no. 9: 426. https://doi.org/10.3390/fermentation8090426
APA StyleFang, J., Zhou, G., Ji, X., Zhang, G., Peng, Z., & Zhang, J. (2022). Design of 5′-UTR to Enhance Keratinase Activity in Bacillus subtilis. Fermentation, 8(9), 426. https://doi.org/10.3390/fermentation8090426