Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of YERSEK
2.2. Animals, Treatments and Experimental Design
2.3. Data Collection and Sampling Procedures
2.4. Statistical Analysis
3. Results
3.1. The Chemical Composition of Diets
3.2. Feed Intake and Nutrient Digestibility
3.3. Ruminal Fermentation and Microbial Population
3.4. Microbial Protein Synthesis
4. Discussion
4.1. The Chemical Composition of Diets
4.2. Feed Intake and Nutrient Digestibility
4.3. Ruminal Fermentation and Microbial Population
4.4. Microbial Protein Synthesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cherdthong, A.; Wanapat, M.; Saenkamsorn, A.; Waraphila, N.; Khota, W.; Rakwongrit, D.; Anantasook, N.; Gunun, P. Effects of replacing soybean meal with dried rumen digesta on feed intake, digestibility of nutrients, rumen fermentation and nitrogen use efficiency in Thai cattle fed on rice straw. Livest. Sci. 2014, 169, 71–77. [Google Scholar] [CrossRef]
- Yusup, S.; Khan, M. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics. Biomass Bioenergy 2010, 34, 1523–1526. [Google Scholar] [CrossRef]
- Pha-obnga, N.; Aiumlamai, S.; Wachirapakorn, C. Nutritive value and effect of different levels of rubber seed kernel in total mixed ration on digestibility using in vitro gas production technique. KKU Res. J. 2016, 21, 51–62. [Google Scholar]
- Chanjula, P.; Siriwathananukul, Y.; Lawpetchara, A. Effect of feeding rubber seed kernel and palm kernel cake in combination on nutrient utilization, rumen fermentation characteristics, and microbial populations in goats fed on Briachiaria humidicola hay-based diets. Anim. Biosci. 2011, 24, 73–81. [Google Scholar] [CrossRef]
- Moallem, U.; Lehrer, H.; Livshitz, L.; Zachut, M.; Yakoby, S. The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. J. Dairy Sci. 2009, 92, 343–351. [Google Scholar] [CrossRef]
- Amin, A.B.; Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminant: A review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef]
- Newbold, C.J. Probiotics for ruminants. Ann. Zootech. 1996, 45 (Suppl. S1), 329–335. [Google Scholar] [CrossRef] [Green Version]
- Chaucheyras-Durand, F.; Chevaux, E.; Martin, C.; Forano, E. Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fiber degradation, and microbiota according to the diet. In Probiotic in Animals; Rigobelo, E., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Polyorach, S.; Poungchompu, O.; Wanapat, M.; Cherdthong, A. Optimal cultivation time for yeast and lactic acid bacteria in fermented milk and effects of fermented soybean meal on rumen degradability using nylon bac technique. Anim. Biosci. 2016, 29, 1273–1279. [Google Scholar] [CrossRef] [Green Version]
- Promkot, C.; Nitipot, P.; Piamphon, N.; Abdullah, N.; Promkot, A. Cassava root fermented with yeast improved feed digestibility in Brahman beef cattle. Anim. Prod. Sci. 2017, 57, 1613–1617. [Google Scholar] [CrossRef]
- Boonnop, K.; Wanapat, M.; Nontaso, N.; Wanapat, S. Enriching nutritive value of cassava root by yeast fermentation. Sci. Agric. 2009, 66, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Supapong, C. Improving the nutritive value of cassava bioethanol waste using fermented yeast as a partial replacement of protein source in dairy calf ration. Trop. Anim. Health Prod. 2019, 51, 2139–2144. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Polyorach, S.; Chanthakhoun, V.; Sornsongnern, N. Yeast-fermented cassava chip protein (YEFECAP) concentrate for lactating dairy cows fed on urea-lime treated rice straw. Livest. Sci. 2011, 139, 258–263. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2016. [Google Scholar]
- Udén, P.; Robinson, P.H.; Wiseman, J. Use of detergent system terminology and criteria for submission of manuscripts on new, or revised, analytical methods as well as descriptive information on feed analysis and/or variability. Anim. Feed Sci. Technol. 2005, 118, 181–186. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- IAEA. Determination of purine derivative in urine. In Estimation of the Rumen Microbial Protein Production from Purine Derivatives in Rumen; Animal Production and Health Section: Vienna, Austria, 1997. [Google Scholar]
- Hawk, P.B.; Oser, B.L.; Summerson, W.H. Practical Physiological Chemistry, 14th ed.; McGraw Hill Publishing Company Ltd.: London, UK, 1976. [Google Scholar]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivative-an Overview of the Technique Details; International Feed Resources Unit, Rowett Research Institute: Aberdeen, UK, 1995. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Samuel, M.; Sagathewan, S.; Thomus, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids of rumen fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Galyean, M. Laboratory Procedures in Animal Nutrition Research; Department of Animals and Range Science, New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- Suzuki, T.; Sommart, K.; Angthong, W.; Nguyen, T.V.; Chaokaur, A.; Nitipot, P.; Phromloungsri, A.; Cai, Y.; Sakai, T.; Nishida, T.; et al. Prediction of enteric methane emission from beef cattle in Southeast Asia. Anim. Sci. J. 2018, 89, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar]
- Statistical Analysis Systems (SAS). SAS/STAT User’s Guide. In Statistical Analysis Systems Institute, 5th ed.; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Wanapat, M.; Kang, S.; Polyorach, S. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. J. Anim. Sci. Biotechnol. 2013, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Verduin, J.; den Uijl, M.J.; Peters, R.J.B.; van Bommel, M.R. Photodegradation products and their analysis in food. J. Food Sci. Nutr. 2020, 6, 067. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry and reaction of reactive oxygen species in food. J. Food Sci. 2005, 70, 28–36. [Google Scholar] [CrossRef]
- Doreau, M.; Chillard, Y. Effects of ruminal or postruminal fish oil supplementation on intake and digestion in dairy cows. Reprod. Nutr. Dev. 1997, 37, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, S.G.; Younis, H.M. The effect of adding ruminally protected fat in fattening diets on nutrient intake, digestibility and growth performance of Awassi lambs. Anim. Feed Sci. Technol. 2004, 113, 61–69. [Google Scholar] [CrossRef]
- Behan, A.A.; Loh, T.C.; Fakurazi, S.; Kaka, U.; Kaka, A.; Samsudin, A.A. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals 2019, 9, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanjula, P.; Pongprayoon, S. Effects of varying the levels of rubber seed kernel on feed intake, rumen ecology and blood metabolites in goats. In Proceedings of the 15th AAAP Animal Science Congress, Thammasat University, Rangsit Campus, Pathum, Thailand, 26–30 November 2012. [Google Scholar]
- Gunun, P.; Wanapat, M.; Gunun, N.; Cherdthong, A.; Sirilaophaisan, S.; Kaewwongsa, W. Effects of condensed tannins in mao (Antidesma thwaitesianum Muell. Arg.) seed meal on rumen fermentation characteristics and nitrogen utilization in goats. Asian Australas. J. Anim. Sci. 2016, 29, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef] [Green Version]
- Storm, E.; Ørskov, E.R. The nutritive value of rumen microorganisms in ruminant. 1. Large-scale isolation and chemical composition of rumen microorganisms. Br. J. Nutr. 1983, 50, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Promkot, C.; Pornanek, P. The use of yeast-fermented cassava roots as a sole source of protein in beef cows. J. Anim. Feed Sci. 2020, 29, 206–214. [Google Scholar] [CrossRef]
- Funaba, M.; Kagiyama, K.; Iriki, T.; Abe, M. Duodenal flow of microbial nitrogen estimated from urinary excretion of purine derivatives in calves after early weaning. J. Anim. Sci. 1997, 75, 1965–1973. [Google Scholar] [CrossRef]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Effect of plants Containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Anim. Biosci. 2013, 26, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Karsli, M.K.; Russell, J.R. Effects of source and concentrations of nitrogen and carbohydrate on ruminal microbial protein synthesis. Turk. J. Vet. Anim. Sci. 2002, 26, 201–207. [Google Scholar]
- Gunun, P.; Wanapat, M.; Anantasook, N. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Anim. Biosci. 2013, 26, 1689–1697. [Google Scholar] [CrossRef] [Green Version]
- Weakley, D.C.; Owens, F.N. Influence of ammonia concentration on microbial protein synthesis in the rumen. Oklahoma Agr. Exp. Station 1983, MP-114, 39–44. [Google Scholar]
- Lila, Z.A.; Mohammed, N.; Yasui, T.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 2004, 82, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.H.; Garrett, J.E. Effect of yeast culture (Saccharomyces cerevisiae) on adaption of cows to postpartum diets and on lactational performance. J. Anim. Sci. 1999, 77, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Ramsing, E.M.; Davidson, J.A.; French, P.D.; Yoon, I.; Keller, M.; Peters-Fleckenstein, H. Effects of yeast culture on peripartum intake and milk production of primiparous and multiparous Holstein cows. Prof. Anim. Sci. 2009, 25, 487–495. [Google Scholar] [CrossRef]
- Rossow, H.A.; Riordan, T.; Riordan, A. Effects of addition of a live yeast product on dairy cattle performance. J. Appl. Anim. Res. 2018, 46, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Hristove, A.N.; Varga, G.; Cassidy, T.; Long, M.; Heyler, K.; Karnati, S.K.R.; Corl, B.; Hovde, C.J.; Yoon, I. Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. J. Dairy Sci. 2010, 93, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Boonnop, K.; Wanapat, M.; Navanukraw, C. Replacement of soybean meal by yeast fermented-cassava chip protein (YEFECAP) in concentrate diets fed on rumen fermentation, microbial population and nutrient digestibilities in ruminants. J. Anim. Vet. Adv. 2010, 9, 1727–1734. [Google Scholar] [CrossRef] [Green Version]
Item | Level of YERSEK (g/kg of DM) | ||||
---|---|---|---|---|---|
0 | 100 | 150 | 200 | 250 | |
Ingredient, g/kg of DM | |||||
Cassava chip | 637 | 637 | 637 | 637 | 642 |
Soybean meal | 225 | 154 | 119 | 83 | 32 |
YERSEK | 0 | 100 | 150 | 200 | 250 |
Rice bran | 90 | 61 | 46 | 32 | 32 |
Urea | 8 | 8 | 8 | 8 | 4 |
Molasses | 20 | 20 | 20 | 20 | 20 |
Minerals and vitamins 1 | 10 | 10 | 10 | 10 | 10 |
Salt | 5 | 5 | 5 | 5 | 5 |
Sulfur | 5 | 5 | 5 | 5 | 5 |
Chemical composition | |||||
Dry matter, g/kg | 909 | 903 | 906 | 889 | 889 |
Organic matter, g/kg DM | 941 | 941 | 942 | 949 | 947 |
Crude protein, g/kg DM | 148 | 147 | 149 | 147 | 146 |
Ether extract, g/kg DM | 8 | 28 | 54 | 55 | 72 |
Neutral detergent fiber, g/kg DM | 240 | 239 | 231 | 232 | 219 |
Acid detergent fiber, g/kg DM | 129 | 127 | 126 | 125 | 120 |
Gross energy, MJ/kg DM | 16.1 | 17.0 | 16.9 | 17.3 | 17.3 |
Price, Thai baht/kg | 9.3 | 8.8 | 8.6 | 8.4 | 8.0 |
Item | RSK | YERSEK | Rice Straw |
---|---|---|---|
Chemical composition | |||
Dry matter, g/kg | 913 | 932 | 919 |
Organic matter, g/kg DM | 963 | 958 | 893 |
Crude protein, g/kg DM | 212 | 336 | 33 |
Ether extract, g/kg DM | 343 | 274 | 3 |
Neutral detergent fiber, g/kg DM | 215 | 145 | 885 |
Acid detergent fiber, g/kg DM | 173 | 104 | 608 |
Gross energy, MJ/kg DM | 33.6 | 26.7 | 13.7 |
Item | Level of YERSEK (g/kg of DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 150 | 200 | 250 | Linear | Quadratic | ||
DM intake, kg/d | 3.8 | 3.6 | 3.4 | 3.4 | 3.2 | 0.15 | 0.02 | 0.88 |
Rice straw | 3.8 | 3.6 | 3.4 | 3.4 | 3.2 | 0.15 | 0.02 | 0.88 |
Concentrate | 2.5 | 2.4 | 2.3 | 2.5 | 2.4 | 0.07 | 0.45 | 0.69 |
Total intake | 6.2 | 6.0 | 5.8 | 5.9 | 5.6 | 0.19 | 0.03 | 0.79 |
Nutrient intake, kg/d | ||||||||
Organic matter | 5.7 | 5.5 | 5.3 | 5.4 | 5.1 | 0.18 | 0.05 | 0.81 |
Crude protein | 0.490 | 0.476 | 0.460 | 0.474 | 0.454 | 0.01 | 0.09 | 0.71 |
Ether extract | 0.03 | 0.07 | 0.13 | 0.14 | 0.18 | 0.01 | <0.001 | 0.02 |
Neutral detergent fiber | 3.9 | 3.7 | 3.6 | 3.6 | 3.4 | 0.13 | 0.01 | 0.90 |
Acid detergent fiber | 2.6 | 2.5 | 2.4 | 2.4 | 2.2 | 0.09 | 0.02 | 0.92 |
Digestibility coefficients, % | ||||||||
Dry matter | 60.5 | 61.5 | 60.9 | 60.5 | 59.2 | 1.72 | 0.60 | 0.45 |
Organic matter | 62.7 | 64.3 | 63.5 | 63.2 | 61.7 | 1.85 | 0.62 | 0.41 |
Crude protein | 47.8 | 45.7 | 48.4 | 48.0 | 47.3 | 2.02 | 0.85 | 0.97 |
Ether extract | 51.7 | 79.8 | 88.0 | 85.6 | 85.2 | 1.97 | <0.001 | <0.001 |
Neutral detergent fiber | 53.4 | 55.3 | 53.9 | 51.6 | 50.6 | 2.19 | 0.22 | 0.44 |
Acid detergent fiber | 45.0 | 45.9 | 45.7 | 45.6 | 43.1 | 1.82 | 0.51 | 0.35 |
Item | Level of YERSEK (g/kg of DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 150 | 200 | 250 | Linear | Quadratic | ||
Rumen pH | ||||||||
0 h post-feeding | 6.9 | 6.9 | 6.8 | 6.9 | 7.0 | 0.06 | 0.21 | 0.44 |
4 h post-feeding | 6.8 | 6.5 | 6.3 | 6.5 | 6.6 | 0.12 | 0.56 | 0.05 |
NH3-N, mg/dl | ||||||||
0 h post-feeding | 16.5 | 16.8 | 18.1 | 18.1 | 19.2 | 1.05 | <0.01 | 0.83 |
4 h post-feeding | 20.5 | 22.6 | 23.1 | 23.8 | 24.8 | 2.08 | <0.001 | 0.29 |
BUN, mg/dl | ||||||||
0 h post-feeding | 5.2 | 4.0 | 3.8 | 3.4 | 3.5 | 3.95 | <0.01 | 0.19 |
4 h post-feeding | 6.2 | 7.2 | 6.6 | 6.6 | 4.5 | 6.23 | 0.35 | 0.26 |
Total VFA, mmol/d | ||||||||
0 h post-feeding | 105.3 | 106.1 | 111.1 | 101.7 | 87.5 | 3.24 | 0.09 | 0.10 |
4 h post-feeding | 125.6 | 120.6 | 118.3 | 102.1 | 102.6 | 2.81 | <0.01 | 0.89 |
VFA, mol/100 mol | ||||||||
Acetic acid (C2) | ||||||||
0 h post-feeding | 63.6 | 64.1 | 63.2 | 64.2 | 65.1 | 0.93 | 0.52 | 0.91 |
4 h post-feeding | 64.6 | 64.4 | 63.4 | 63.6 | 63.9 | 0.99 | 0.75 | 0.77 |
Propionic acid (C3) | ||||||||
0 h post-feeding | 28.7 | 28.0 | 29.1 | 28.0 | 27.1 | 0.86 | 0.45 | 0.91 |
4 h post-feeding | 27.3 | 27.8 | 28.7 | 28.2 | 28.3 | 0.95 | 0.71 | 0.77 |
Butyrate (C4) | ||||||||
0 h post-feeding | 7.7 | 7.9 | 7.7 | 7.8 | 7.9 | 0.11 | 0.62 | 0.95 |
4 h post-feeding | 8.1 | 7.8 | 7.9 | 8.1 | 7.8 | 0.19 | 0.81 | 0.93 |
C2:C3 ratio | ||||||||
0 h post-feeding | 2.2 | 2.3 | 2.2 | 2.3 | 2.4 | 0.12 | 0.52 | 0.90 |
4 h post-feeding | 2.4 | 2.3 | 2.2 | 2.3 | 2.3 | 0.18 | 0.33 | 0.47 |
CH4, g/d | 150.3 | 145.2 | 139.6 | 142.8 | 135.4 | 6.45 | 0.44 | 0.93 |
Item | Level of YERSEK (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 150 | 200 | 250 | Linear | Quadratic | ||
Microbial population, (cell/mL) | ||||||||
Bacteria, ×109 | ||||||||
0 h post-feeding | 4.6 | 6.1 | 5.1 | 6.5 | 4.9 | 0.71 | 0.68 | 0.18 |
4 h post-feeding | 4.4 | 6.4 | 4.7 | 7.3 | 6.7 | 0.87 | 0.07 | 0.77 |
Protozoa, ×105 | ||||||||
0 h post-feeding | 1.3 | 3.5 | 2.6 | 2.4 | 2.7 | 0.50 | 0.34 | 0.14 |
4 h post-feeding | 3.9 | 3.8 | 3.3 | 3.7 | 3.0 | 0.63 | 0.40 | 0.91 |
Fungi, ×104 | ||||||||
0 h post-feeding | 1.8 | 1.0 | 1.2 | 1.0 | 2.4 | 0.87 | 0.69 | 0.25 |
4 h post-feeding | 2.4 | 2.8 | 2.4 | 2.4 | 2.6 | 1.09 | 0.99 | 0.99 |
Item | Level of YERSEK (%DM) | SEM | Contrast | |||||
---|---|---|---|---|---|---|---|---|
0 | 100 | 150 | 200 | 250 | Linear | Quadratic | ||
Urinary purine derivatives, mmol/d | ||||||||
Purine excretion | 40.2 | 38.6 | 37.9 | 43.8 | 25.4 | 3.52 | 0.84 | 0.32 |
Purine absorption | 52.2 | 51.3 | 50.1 | 54.7 | 40.8 | 2.66 | 0.24 | 0.71 |
Urine creatinine | 7.0 | 7.6 | 6.7 | 6.0 | 7.6 | 0.20 | 0.84 | 0.32 |
MN, g/d | 29.2 | 28.1 | 27.6 | 31.8 | 18.5 | 2.56 | 0.26 | 0.70 |
MCP, g/d | 146.7 | 175.4 | 172.2 | 199.0 | 135.7 | 16.02 | 0.26 | 0.70 |
EMNS, g/kg OMDR | 14.1 | 13.4 | 12.3 | 16.3 | 11.0 | 0.07 | 0.32 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunun, N.; Ouppamong, T.; Khejornsart, P.; Cherdthong, A.; Wanapat, M.; Polyorach, S.; Kaewpila, C.; Kang, S.; Gunun, P. Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers. Fermentation 2022, 8, 288. https://doi.org/10.3390/fermentation8060288
Gunun N, Ouppamong T, Khejornsart P, Cherdthong A, Wanapat M, Polyorach S, Kaewpila C, Kang S, Gunun P. Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers. Fermentation. 2022; 8(6):288. https://doi.org/10.3390/fermentation8060288
Chicago/Turabian StyleGunun, Nirawan, Thanaporn Ouppamong, Pichad Khejornsart, Anusorn Cherdthong, Metha Wanapat, Sineenart Polyorach, Chatchai Kaewpila, Sungchhang Kang, and Pongsatorn Gunun. 2022. "Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers" Fermentation 8, no. 6: 288. https://doi.org/10.3390/fermentation8060288
APA StyleGunun, N., Ouppamong, T., Khejornsart, P., Cherdthong, A., Wanapat, M., Polyorach, S., Kaewpila, C., Kang, S., & Gunun, P. (2022). Effects of Rubber Seed Kernel Fermented with Yeast on Feed Utilization, Rumen Fermentation and Microbial Protein Synthesis in Dairy Heifers. Fermentation, 8(6), 288. https://doi.org/10.3390/fermentation8060288