Maltose-Negative Yeast in Non-Alcoholic and Low-Alcoholic Beer Production
Abstract
:1. Introduction
2. Rising Interest in NABLAB
3. Beer and Flavour
3.1. Production Methods for NABLAB
- Thermal processes (thin-layer evaporation, continuous vacuum rectification, and falling film vacuum evaporation);
- Membrane technologies (dialysis, reverse osmosis);
- Extraction (solvent extraction, supercritical carbon dioxide, and adsorption extraction).
- Arrested fermentation;
- The cold contact process;
- The use of unique microorganisms.
3.2. Maltose-Negative Microorganisms
3.2.1. Genetics
3.2.2. Application of Maltose-Negative Yeast Strains for NABLAB Brewing
- It should not be capable of fermenting maltose;
- It should have the ability to grow in the presence of iso-α-acids, which are derived from hops;
- It should not exhibit positive POF behaviour (phenolic off-flavours—POF1 gene absence) POFs: 4-vinylguaiacol—clove-like flavour, only acceptable in special types of beers such as Belgian/German ales [95], 4-vinylphenol—a solvent-like flavour, 4-vinylstyrene, which has a plastic-chemical like flavour [96]);
- It should flocculate easily (strongly strain-dependent);
- It should be consumer safe.
3.3. Safety
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Anjos, O.; Zhao, H. Functionality of Special Beer Processes and Potential Health Benefits. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Mellor, D.D.; Hanna-Khalil, B.; Carson, R. A Review of the Potential Health Benefits of Low Alcohol and Alcohol-Free Beer: Effects of Ingredients and Craft Brewing Processes on Potentially Bioactive Metabolites. Beverages 2020, 6, 25. [Google Scholar] [CrossRef]
- Montanari, L.; Marconi, O.; Mayer, H.; Fantozzi, P. Production of Alcohol-Free Beer. In Beer in Health and Disease Prevention; Elsevier: London, UK, 2009; pp. 61–75. [Google Scholar]
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; Almeida e Silva, J.B. A Review of Methods of Low Alcohol and Alcohol-Free Beer Production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; Atzler, J.J.; Hoehnel, A.; Lynch, K.M.; Arendt, E.K. Screening and Application of Cyberlindnera Yeasts to Produce a Fruity, Non-alcoholic Beer. Fermentation 2019, 5, 103. [Google Scholar] [CrossRef]
- Johansson, L.; Nikulin, J.; Juvonen, R.; Krogerus, K.; Magalhães, F.; Mikkelson, A.; Nuppunen-Puputti, M.; Sohlberg, E.; de Francesco, G.; Perretti, G. Sourdough Cultures as Reservoirs of Maltose-Negative Yeasts for Low-Alcohol Beer Brewing. Food Microbiol. 2021, 94, 103629. [Google Scholar] [CrossRef]
- Lai, Y.-T.; Hsieh, C.-W.; Lo, Y.-C.; Liou, B.-K.; Lin, H.-W.; Hou, C.-Y.; Cheng, K.-C. Isolation and Identification of Aroma-Producing Non-Saccharomyces Yeast Strains and the Enological Characteristic Comparison in Wine Making. LWT 2022, 154, 112653. [Google Scholar] [CrossRef]
- Rautio, J.; Londesborough, J. Maltose Transport by Brewer’s Yeasts in Brewer’s Wort. J. Inst. Brewing 2003, 109, 251–261. [Google Scholar] [CrossRef]
- Day, R.E.; Rogers, P.J.; Dawes, I.W.; Higgins, V.J. Molecular Analysis of Maltotriose Transport and Utilization by Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 2002, 68, 5326–5335. [Google Scholar] [CrossRef]
- Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; De Schutter, D.P.; Daenen, L.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Application of Non-saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. Fermentation 2018, 4, 66. [Google Scholar] [CrossRef]
- Bourdichon, F.; Laulund, S.; Tenning, P. Inventory of Microbial Species with a Rationale: A Comparison of the IDF/EFFCA Inventory of Microbial Food Cultures with the EFSA Biohazard Panel Qualified Presumption of Safety. FEMS Microbiol. Lett. 2019, 366, fnz048. [Google Scholar] [CrossRef]
- Verberg, S. From Herbal to Hopped Beer: The Displacement of Regional Herbal Beer Traditions by Commercial Export Brewing in Medieval Europe. Brew. Hist. 2020, 183, 9–23. [Google Scholar]
- Korpelainen, H.; Pietiläinen, M. Hop (Humulus lupulus L.): Traditional and Present Use, and Future Potential. Econ. Bot. 2021, 75, 305–322. [Google Scholar] [CrossRef]
- Abdi, F.; Mobedi, H.; Roozbeh, N. Hops for Menopausal Vasomotor Symptoms: Mechanisms of Action. J. Menopausal Med. 2016, 22, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Erkkola, R.; Vervarcke, S.; Vansteelandt, S.; Rompotti, P.; De Keukeleire, D.; Heyerick, A. A Randomized, Double-Blind, Placebo-Controlled, Cross-over Pilot Study on the Use of a Standardized Hop Extract to Alleviate Menopausal Discomforts. Phytomedicine 2010, 17, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.L.; Dunlap, T.L.; Hajirahimkhan, A.; Mbachu, O.; Chen, S.-N.; Chadwick, L.; Nikolic, D.; van Breemen, R.B.; Pauli, G.F.; Dietz, B.M. The Multiple Biological Targets of Hops and Bioactive Compounds. Chem. Res. Toxicol. 2019, 32, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Karabín, M.; Haimannová, T.; Fialová, K.; Jelínek, L.; Dostálek, P. Preparation of Hop Estrogen-Active Material for Production of Food Supplements. Molecules 2021, 26, 6065. [Google Scholar] [CrossRef]
- Macías-Rodríguez, R.U.; Ruiz-Margáin, A.; Román-Calleja, B.M.; Espin-Nasser, M.E.; Flores-García, N.C.; Torre, A.; Galicia-Hernández, G.; Rios-Torres, S.L.; Fernández-del-Rivero, G.; Orea-Tejeda, A. Effect of Non-alcoholic Beer, Diet and Exercise on Endothelial Function, Nutrition and Quality of Life in Patients with Cirrhosis. World J. Hepatol. 2020, 12, 1299. [Google Scholar] [CrossRef]
- Birell. Available online: https://www.birell.cz/content/vylep%C5%A1en%C3%BD-birell-sv%C4%9Btl%C3%BD (accessed on 14 May 2022).
- Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J.F.; Scalbert, A.; Mazur, A. Hesperidin Contributes to the Vascular Protective Effects of Orange Juice: A Randomized Crossover Study in Healthy Volunteers. Am. J. Clin. Nutr. 2011, 93, 73–80. [Google Scholar] [CrossRef]
- Kokole, D.; Jané Llopis, E.; Anderson, P. Non-Alcoholic Beer in the European Union and UK: Availability and Apparent Consumption. Drug Alcohol Rev. 2022, 41, 550–560. [Google Scholar] [CrossRef]
- Varela, C. The Impact of Non-Saccharomyces Yeasts in the Production of Alcoholic Beverages. Appl. Microbiol. Biot. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Andrés-Iglesias, C.; Nešpor, J.; Karabín, M.; Montero, O.; Blanco, C.A.; Dostálek, P. Comparison of Carbonyl Profiles from Czech and Spanish Lagers: Traditional and Modern Technology. Lwt-Food Sci. Technol. 2016, 66, 390–397. [Google Scholar] [CrossRef]
- Iorizzo, M.; Coppola, F.; Letizia, F.; Testa, B.; Sorrentino, E. Role of Yeasts in the Brewing Process: Tradition and Innovation. Processes 2021, 9, 839. [Google Scholar] [CrossRef]
- Rossi, S.; Sileoni, V.; Perretti, G.; Marconi, O. Characterization of the Volatile Profiles of Beer Using Headspace Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. J. Sci. Food Agr. 2014, 94, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Pires, E.; Brányik, T. Biochemistry of Beer Fermentation; Springer International Publishing AG: Cham, Switzerland, 2015. [Google Scholar]
- Barth, R. The Chemistry of Beer. In Using Food To Stimulate Interest in the Chemistry Classroom; ACS Publications: Hoboken, NJ, USA, 2013; pp. 37–47. [Google Scholar]
- Muller, C.; Neves, L.E.; Gomes, L.; Guimarães, M.; Ghesti, G. Processes for Alcohol-Free Beer Production: A Review. Food Sci. Tech.-Brazil 2019, 40, 273–281. [Google Scholar] [CrossRef]
- Missbach, B.; Majchrzak, D.; Sulzner, R.; Wansink, B.; Reichel, M.; Koenig, J. Exploring the Flavor Life Cycle of Beers with Varying Alcohol Content. Food Sci. Nutr. 2017, 5, 889–895. [Google Scholar] [CrossRef]
- Cordente, A.G.; Solomon, M.; Schulkin, A.; Francis, I.L.; Barker, A.; Borneman, A.R.; Curtin, C.D. Novel Wine Yeast with ARO4 and TYR1 Mutations That Overproduce ‘Floral’Aroma Compounds 2-Phenylethanol and 2-Phenylethyl Acetate. Appl. Microbiol. Biot. 2018, 102, 5977–5988. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Torrico, D.D.; Godbole, A.; Dunshea, F.R. Chemical Characterization of Aromas in Beer and Their Effect on Consumers Liking. Food Chem. 2019, 293, 479–485. [Google Scholar] [CrossRef]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The Soul of Beer’s Aroma—A Review of Flavour-Active Esters and Higher Alcohols Produced by the Brewing Yeast. Appl. Microbiol. Biot. 2014, 98, 1937–1949. [Google Scholar] [CrossRef]
- Nešpor, J.; Andrés-Iglesias, C.; Karabín, M.; Montero, O.; Blanco, C.A.; Dostálek, P. Volatile Compound Profiling in Czech and Spanish Lager Beers in Relation to Used Production Technology. Food Anal. Method. 2019, 12, 2293–2305. [Google Scholar] [CrossRef]
- Deak, T. Thermal Treatment. In Food Safety Management; Elsevier: London, UK, 2014; pp. 423–442. [Google Scholar]
- Guyot-Declerck, C.; François, N.; Ritter, C.; Govaerts, B.; Collin, S. Influence of pH and Ageing on Beer Organoleptic Properties. A Sensory Analysis Based on AEDA Data. Food Qual. Prefer. 2005, 16, 157–162. [Google Scholar] [CrossRef]
- De Francesco, G.; Sannino, C.; Sileoni, V.; Marconi, O.; Filippucci, S.; Tasselli, G.; Turchetti, B. Mrakia Gelida in Brewing Process: An Innovative Production of Low Alcohol Beer Using a Psychrophilic Yeast Strain. Food Microbiol. 2018, 76, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A Review of Flavour Formation in Continuous Beer Fermentations. J. Inst. Brewing 2008, 114, 3–13. [Google Scholar] [CrossRef]
- Perpète, P.; Collin, S. Influence of Beer Ethanol Content on the Wort Flavour Perception. Food Chem. 2000, 71, 379–385. [Google Scholar] [CrossRef]
- Marconi, O.; Rossi, S.; Galgano, F.; Sileoni, V.; Perretti, G. Influence of Yeast Strain, Priming Solution and Temperature on Beer Bottle Conditioning. J. Sci. Food Agr. 2016, 96, 4106–4115. [Google Scholar] [CrossRef]
- Peppard, T.; Halsey, S. Malt Flavour—Transformation of Carbonyl Compounds by Yeast during Fermentation. J. Inst. Brewing 1981, 87, 386–390. [Google Scholar] [CrossRef]
- Beal, A.D.; Mottram, D.S. Compounds Contributing to the Characteristic Aroma of Malted Barley. J. Agr. Food Chem. 1994, 42, 2880–2884. [Google Scholar] [CrossRef]
- Perpete, P.; Collin, S. Contribution of 3-Methylthiopropionaldehyde to the Worty Flavor of Alcohol-Free Beers. J. Agr. Food Chem. 1999, 47, 2374–2378. [Google Scholar] [CrossRef]
- Piornos, J.A.; Balagiannis, D.P.; Methven, L.; Koussissi, E.; Brouwer, E.; Parker, J.K. Elucidating the Odor-Active Aroma Compounds in Alcohol-Free Beer and Their Contribution to the Worty Flavor. J. Agr. Food Chem. 2020, 68, 10088–10096. [Google Scholar] [CrossRef]
- Guido, L.F.; Curto, A.; Boivin, P.; Benismail, N.; Gonçalves, C.; Barros, A.A. Predicting the Organoleptic Stability of Beer from Chemical Data Using Multivariate Analysis. Eur. Food Res. Technol. 2007, 226, 57–62. [Google Scholar] [CrossRef]
- Gibson, B.; Vidgren, V.; Peddinti, G.; Krogerus, K. Diacetyl Control during Brewery Fermentation via Adaptive Laboratory Engineering of the Lager Yeast Saccharomyces Pastorianus. J. Ind. Microbiol. Biotechnol. 2018, 45, 1103–1112. [Google Scholar] [CrossRef]
- Krogerus, K.; Gibson, B.R. 125th Anniversary Review: Diacetyl and Its Control during Brewery Fermentation. J. Inst. Brewing 2013, 119, 86–97. [Google Scholar]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort Composition and Its Impact on the Flavour-Active Higher Alcohol and Ester Formation of Beer—A Review. J. Inst. Brewing 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M. Influence of Kilning Temperature on Chemical Composition of a Greek Barley Malt and Its Wort Properties. Millenium-J. Educ. Technol. Health 2018, 7, 49–58. [Google Scholar] [CrossRef]
- Zastrow, C.; Hollatz, C.; De Araujo, P.; Stambuk, B. Maltotriose Fermentation by Saccharomyces Cerevisiae. J. Ind. Microbiol. Biotechnol. 2001, 27, 34–38. [Google Scholar] [CrossRef]
- Vidgren, V.; Huuskonen, A.; Virtanen, H.; Ruohonen, L.; Londesborough, J. Improved Fermentation Performance of a Lager Yeast after Repair of its AGT1 Maltose and Maltotriose Transporter Genes. Appl. Environ. Microbiol. 2009, 75, 2333–2345. [Google Scholar] [CrossRef]
- Rettberg, N.; Lafontaine, S.; Schubert, C.; Dennenlöhr, J.; Knoke, L.; Diniz-Fischer, P.; Fuchs, J.; Thörner, S. Effect of Production Technique on Pilsner-Style Non-Alcoholic Beer (NAB) Chemistry and Flavor. Beverages 2022, 8, 4. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Zhao, H. Non-alcoholic and Craft Beer Production and Challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Zürcher, A.; Jakob, M.; Back, W. Improvements in Flavor and Colloidal Stability of Alcohol Free Beers. In Proceedings of the European Brewing Convention Congress, Prague, Czech Republic, 14–19 May 2005; pp. 14–19. [Google Scholar]
- Gernat, D.; Brouwer, E.; Ottens, M. Aldehydes as Wort Off-Flavours in Alcohol-Free Beers—Origin and Control. Food Bioprocess. Tech. 2020, 13, 195–216. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, A.; Fornari, T.; Jaime, L.; Vázquez, E.; Amador, B.; Nieto, J.A.; Yuste, M.; Mercader, M.; Reglero, G. Supercritical CO2 Extraction Applied toward the Production of a Functional Beverage from Wine. J. Supercrit. Fluids 2012, 61, 92–100. [Google Scholar] [CrossRef]
- Gamse, T.; Rogler, I.; Marr, R. Supercritical CO2 Extraction for Utilisation of Excess Wine of Poor Quality. J. Supercrit. Fluids 1999, 14, 123–128. [Google Scholar] [CrossRef]
- Esslinger, H.M. Handbook of Brewing: Processes, Technology, Markets; John Wiley & Sons: Weinheim, Germany, 2009. [Google Scholar]
- Strejc, J.; Siříšťová, L.; Karabín, M.; Almeida e Silva, J.B.; Brányik, T. Production of Alcohol-Free Beer with Elevated Amounts of Flavouring Compounds Using Lager Yeast Mutants. J. Inst. Brewing 2013, 119, 149–155. [Google Scholar] [CrossRef]
- Selecký, R.; Šmogrovičová, D.; Sulo, P. Beer with Reduced Ethanol Content Produced Using Saccharomyces Cerevisiae Yeasts Deficient in Various Tricarboxylic Acid Cycle Enzymes. J. Inst. Brewing 2008, 114, 97–101. [Google Scholar] [CrossRef]
- Ishii, T.; Araki, M. Consumer Acceptance of Food Crops Developed by Genome Editing. Plant Cell Rep. 2016, 35, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Stovicek, V.; Holkenbrink, C.; Borodina, I. CRISPR/Cas System for Yeast Genome Engineering: Advances and Applications. FEMS Yeast Res. 2017, 17, fox030. [Google Scholar] [CrossRef]
- Waks, Z.; Silver, P.A. Engineering a Synthetic Dual-Organism System for Hydrogen Production. Appl. Environ. Microbiol. 2009, 75, 1867–1875. [Google Scholar] [CrossRef]
- Nandi, R.; Sengupta, S. Microbial Production of Hydrogen: An Overview. Crit. Rev. Microbiol. 1998, 24, 61–84. [Google Scholar] [CrossRef]
- Denby, C.M.; Li, R.A.; Vu, V.T.; Costello, Z.; Lin, W.; Chan, L.J.G.; Williams, J.; Donaldson, B.; Bamforth, C.W.; Petzold, C.J. Industrial Brewing Yeast Engineered for the Production of Primary Flavor Determinants in Hopped Beer. Nat. Commun. 2018, 9, 965. [Google Scholar] [CrossRef]
- Horák, J. Regulations of Sugar Transporters: Insights from Yeast. Curr. Genet. 2013, 59, 1–31. [Google Scholar] [CrossRef]
- Novak, S.; Zechner-Krpan, V.; Marić, V. Regulation of Maltose Transport and Metabolism in Saccharomyces Cerevisiae. Food Technol. Biotech. 2004, 42, 213–218. [Google Scholar]
- Vanoni, M.; Sollitti, P.; Goldenthal, M.; Marmur, J. Structure and Regulation of the Multigene Family Controlling Maltose Fermentation in Budding Yeast. Prog. Nucleic Acid Res. Mol. Biol. 1989, 37, 281–322. [Google Scholar]
- Charron, M.J.; Michels, C.A. The Naturally Occurring Alleles of MAL1 in Saccharomyces Species Evolved by Various Mutagenic Processes Including Chromosomal Rearrangement. Genetics 1988, 120, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Dueñas-Sánchez, R.; Gutiérrez, G.; Rincón, A.M.; Codón, A.C.; Benítez, T. Transcriptional Regulation of Fermentative and Respiratory Metabolism in Saccharomyces Cerevisiae Industrial Bakers’ Strains. FEMS Yeast Res. 2012, 12, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Vidgren, V.; Ruohonen, L.; Londesborough, J. Characterization and Functional Analysis of the MAL and MPH Loci for Maltose Utilization in Some Ale and Lager Yeast Strains. Appl. Environ. Microbiol. 2005, 71, 7846–7857. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, F.; Vidgren, V.; Ruohonen, L.; Gibson, B. Maltose and Maltotriose Utilisation by Group I Strains of the Hybrid Lager Yeast Saccharomyces Pastorianus. FEMS Yeast Res. 2016, 16, fow053. [Google Scholar] [CrossRef]
- Brickwedde, A.; Brouwers, N.; van den Broek, M.; Gallego Murillo, J.S.; Fraiture, J.L.; Pronk, J.T.; Daran, J.-M.G. Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in Saccharomyces Eubayanus CBS 12357T. Front. Microbiol. 2018, 9, 1786. [Google Scholar] [CrossRef]
- Han, E.K.; Cotty, F.; Sottas, C.; Jiang, H.; Michels, C.A. Characterization of AGT1 Encoding a General α-Glucoside Transporter from Saccharomyces. Mol. Microbiol. 1995, 17, 1093–1107. [Google Scholar] [CrossRef]
- Dietvorst, J.; Londesborough, J.; Steensma, H. Maltotriose Utilization in Lager Yeast Strains: MTT1 Encodes a Maltotriose Transporter. Yeast 2005, 22, 775–788. [Google Scholar] [CrossRef]
- Salema-Oom, M.; Valadão Pinto, V.; Gonçalves, P.; Spencer-Martins, I. Maltotriose Utilization by Industrial Saccharomyces Strains: Characterization of a New Member of the α-Glucoside Transporter Family. Appl. Environ. Microbiol. 2005, 71, 5044–5049. [Google Scholar] [CrossRef]
- Day, R.E.; Higgins, V.J.; Rogers, P.J.; Dawes, I.W. Characterization of the Putative Maltose Transporters Encoded by YDL247w and YJR160c. Yeast 2002, 19, 1015–1027. [Google Scholar] [CrossRef]
- Jespersen, L.; Cesar, L.B.; Meaden, P.G.; Jakobsen, M. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast. Appl. Environ. Microbiol. 1999, 65, 450–456. [Google Scholar] [CrossRef]
- Alves, S.L., Jr.; Herberts, R.A.; Hollatz, C.; Trichez, D.; Miletti, L.C.; de Araujo, P.S.; Stambuk, B.U. Molecular Analysis of Maltotriose Active Transport and Fermentation by Saccharomyces Cerevisiae Reveals a Determinant Role for the AGT1 Permease. Appl. Environ. Microbiol. 2008, 74, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Duval, E.; Alves, S., Jr.; Dunn, B.; Sherlock, G.; Stambuk, B. Microarray Karyotyping of Maltose-Fermenting Saccharomyces Yeasts with Differing Maltotriose Utilization Profiles Reveals Copy Number Variation in Genes Involved in Maltose and Maltotriose Utilization. J. Appl. Microbiol. 2010, 109, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.A.; Murray, A.W.; Verstrepen, K.J. Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts. Curr. Biol. 2010, 20, 895–903. [Google Scholar] [CrossRef]
- Hu, Z.; Gibson, A.W.; Kim, J.H.; Wojciechowicz, L.A.; Zhang, B.; Michels, C.A. Functional Domain Analysis of the Saccharomyces MAL-Activator. Curr. Genet. 1999, 36, 1–12. [Google Scholar] [CrossRef]
- Baker, E.; Wang, B.; Bellora, N.; Peris, D.; Hulfachor, A.B.; Koshalek, J.A.; Adams, M.; Libkind, D.; Hittinger, C.T. The Genome Sequence of Saccharomyces Eubayanus and the Domestication of Lager-Brewing Yeasts. Mol. Biol. Evol. 2015, 32, 2818–2831. [Google Scholar] [CrossRef] [PubMed]
- Charron, M.J.; Read, E.; Haut, S.R.; Michels, C.A. Molecular Evolution of the Telomere-Associated MAL loci of Saccharomyces. Genetics 1989, 122, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Grijalva-Vallejos, N.; Aranda, A.; Matallana, E. Evaluation of Yeasts from Ecuadorian Chicha by Their Performance as Starters for Alcoholic Fermentations in the Food Industry. Int. J. Food Microbiol. 2020, 317, 108462. [Google Scholar] [CrossRef] [PubMed]
- Strauss, M.; Jolly, N.; Lambrechts, M.; Van Rensburg, P. Screening for the Production of Extracellular Hydrolytic Enzymes by Non-Saccharomyces Wine Yeasts. J. Appl. Microbiol. 2001, 91, 182–190. [Google Scholar] [CrossRef]
- Gibson, B.; Geertman, J.; Hittinger, C.; Krogerus, K.; Libkind, D.; Louis, E.J.; Magalhães, F.; Sampaio, J. New Yeasts—New Brews: Modern Approaches to Brewing Yeast Design and Development. FEMS Yeast Res. 2017, 17, fox038. [Google Scholar] [CrossRef]
- Grijalva-Vallejos, N.; Krogerus, K.; Nikulin, J.; Magalhães, F.; Aranda, A.; Matallana, E.; Gibson, B. Potential Application of Yeasts from Ecuadorian Chichas in Controlled Beer and Chicha Production. Food Microbiol. 2021, 98, 103644. [Google Scholar] [CrossRef]
- Struyf, N.; Van der Maelen, E.; Hemdane, S.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Bread Dough and Baker’s Yeast: An Uplifting Synergy. Compr. Rev. Food Sci. Food Saf. 2017, 16, 850–867. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, G.; Turchetti, B.; Sileoni, V.; Marconi, O.; Perretti, G. Screening of New Strains of Saccharomycodes Ludwigii and Zygosaccharomyces Rouxii to Produce Low-Alcohol Beer. J. Inst. Brewing 2015, 121, 113–121. [Google Scholar] [CrossRef]
- Madrera, R.R.; Bedriñana, R.P.; Valles, B.S. Evaluation of Indigenous Non-saccharomyces Cider Yeasts for Use in Brewing. Eur. Food Res. Technol. 2021, 247, 819–828. [Google Scholar] [CrossRef]
- Bellut, K.; Krogerus, K.; Arendt, E.K. Lachancea Fermentati Strains Isolated from Kombucha: Fundamental Insights, and Practical Application in Low Alcohol Beer Brewing. Front. Microbiol. 2020, 11, 764. [Google Scholar] [CrossRef] [PubMed]
- Krogerus, K.; Eerikäinen, R.; Aisala, H.; Gibson, B. Repurposing Brewery Contaminant Yeast as Production Strains for Low-Alcohol Beer Fermentation. Yeast 2021, 39, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Matraxia, M.; Alfonzo, A.; Prestianni, R.; Francesca, N.; Gaglio, R.; Todaro, A.; Alfeo, V.; Perretti, G.; Columba, P.; Settanni, L. Non-conventional Yeasts from Fermented Honey By-Products: Focus On Hanseniaspora Uvarum Strains for Craft Beer Production. Food Microbiol. 2021, 99, 103806. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Hall, S.R.; Turchetti, B.; Buzzini, P.; Branda, E.; Boekhout, T.; Theelen, B.; Watson, K. Cold-Adapted Yeasts from Antarctica and the Italian Alps—Description of Three Novel Species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 2010, 14, 47–59. [Google Scholar] [CrossRef]
- Coghe, S.; Benoot, K.; Delvaux, F.; Vanderhaegen, B.; Delvaux, F.R. Ferulic Acid Release and 4-Vinylguaiacol Formation during Brewing and Fermentation: Indications for Feruloyl Esterase Activity in Saccharomyces Cerevisiae. J. Agr. Food Chem. 2004, 52, 602–608. [Google Scholar] [CrossRef]
- Scholtes, C.; Nizet, S.; Collin, S. Guaiacol and 4-Methylphenol as Specific Markers of Torrefied Malts. Fate of Volatile Phenols in Special Beers through Aging. J. Agr. Food Chem. 2014, 62, 9522–9528. [Google Scholar] [CrossRef]
- Bellut, K.; Arendt, E.K. Chance and Challenge: Non-saccharomyces Yeasts in Nonalcoholic and Low Alcohol Beer Brewing–A Review. J. Am. Soc. Brew. Chem. 2019, 77, 77–91. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, W. Method for Manufacturing Alcohol-Free Beer through Candida Shehatae. China Patent CN102220198, 6 May 2011. [Google Scholar]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Methner, F.J.; Wagner, R.S.; Hutzler, M. Pure Non-Saccharomyces Starter Cultures for Beer Fermentation with a Focus on Secondary Metabolites and Practical Applications. J. Inst. Brewing 2016, 122, 569–587. [Google Scholar] [CrossRef]
- Estela-Escalante, W.; Rosales-Mendoza, S.; Moscosa-Santillán, M.; González-Ramírez, J. Evaluation of the Fermentative Potential of Candida Zemplinina Yeasts for Craft Beer Fermentation. J. Inst. Brewing 2016, 122, 530–535. [Google Scholar] [CrossRef]
- Estela-Escalante, W.D.; Moscosa-Santillán, M.; González-Ramírez, J.E.; Rosales-Mendoza, S. Evaluation of the Potential Production of Ethanol by Candida Zemplinina Yeast with Regard to Beer Fermentation. J. Am. Soc. Brew. Chem. 2017, 75, 130–135. [Google Scholar]
- van Rijswijck, I.M.; Wolkers–Rooijackers, J.C.; Abee, T.; Smid, E.J. Performance of Non-Conventional Yeasts in Co-Culture with Brewers’ Yeast for Steering Ethanol and Aroma Production. Microb. Biotechnol. 2017, 10, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Lentz, M.; Putzke, T.; Hessler, R.; Luman, E. Genetic and Physiological Characterization of Yeast Isolated from Ripe Fruit and Analysis of Fermentation and Brewing Potential. J. Inst. Brewing 2014, 120, 559–564. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The Yeasts: A Taxonomic Study; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Liu, Y.; Li, H.; Du, J. Non-alcoholic Beer Production by Saccharomycodes Ludwigii. Food Sci. 2011, 32, 186–190. [Google Scholar]
- Mohammadi, A.; Razavi, S.H.; Mousavi, S.M.; Rezaei, K. A Comparison between Sugar Consumption and Ethanol Production in Wort by Immobilized Saccharomyces Cerevisiae, Saccharomyces Ludwigii and Saccharomyces Rouxii on Brewer’s Spent Grain. Braz. J. Microbiol. 2011, 42, 605–615. [Google Scholar] [CrossRef]
- Haehn, H.; Glaubitz, M. Beer Manufacture. Patent US1898047 A, 1933. [Google Scholar]
- Huige, N.J.; Sanchez, G.W.; Leidig, A.R. Process for Preparing a Nonalcoholic (Less the 0.5 Volume Percent Alcohol) Malt Beverage. Patent US4970082A, 13 November 1990. [Google Scholar]
- Durga Prasad, C.G.; Vidyalakshmi, R.; Baskaran, N.; Tito Anand, M. Hansunela Polymorpha: A Novel Yeast Strain for Low-Alcoholic Beer Production. Pharma Innov. J. 2021, 10, 1314–1317. [Google Scholar]
- Narziss, L.; Miedaner, H.; Kern, E.; Leibhard, M. Technoloy and Composition of Non-alcoholic Beer. Processes Using Arrested Fermentation. Brauwelt Int. 1992, 4, 396–398. [Google Scholar]
- Michel, M.; Kopecká, J.; Meier-Dörnberg, T.; Zarnkow, M.; Jacob, F.; Hutzler, M. Screening for New Brewing Yeasts in the Non-Saccharomyces Sector with Torulaspora Delbrueckii as Model. Yeast 2016, 33, 129–144. [Google Scholar] [CrossRef]
- Mortazavian, A.M.; Razavi, S.H.; Mousavi, S.M.; Malganji, S.; Sohrabvandi, S. The Effect of Saccharomyces Strain and Fermentation Conditions on Quality Prameters of Non-alcoholic Beer. Arch. Adv. Biosci. 2014, 5, 2. [Google Scholar]
- Pozippe, T.; Portugal, C.; Poleto, L.; Bortoletto, A.; Alcarde, A. Non-saccharomyces for Improving the Sensorial Richness in Speciality Beers. VII Simpósio de Microbiologia Aplicada. 2015. Available online: https://www.researchgate.net/publication/276921644_Non-Saccharomyces_for_improving_the_sensorial_richness_in_specialty_beers (accessed on 1 March 2022).
- Fermentis. The Ideal Yeast for Low- and No-Alcohol Beers-SafBrew™ LA-01. Available online: https://fermentis.com/en/product/safbrew-la-01/ (accessed on 14 February 2022).
- Tsuji, M.; Kudoh, S.; Hoshino, T. Ethanol Productivity of Cryophilic Basidiomycetous Yeast Mrakia Spp. Correlates with Ethanol Tolerance. Mycoscience 2016, 57, 42–50. [Google Scholar] [CrossRef]
- Beltran, G.; Novo, M.; Leberre, V.; Sokol, S.; Labourdette, D.; Guillamon, J.-M.; Mas, A.; François, J.; Rozes, N. Integration of Transcriptomic and Metabolic Analyses for Understanding the Global Responses of Low-Temperature Winemaking Fermentations. FEMS Yeast Res. 2006, 6, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Chiva, R.; López-Malo, M.; Salvadó, Z.; Mas, A.; Guillamón, J.M. Analysis of Low Temperature-Induced Genes (LTIG) in Wine Yeast during Alcoholic Fermentation. FEMS Yeast Res. 2012, 12, 831–843. [Google Scholar] [CrossRef]
- Basso, R.F.; Alcarde, A.R.; Portugal, C.B. Could Non-Saccharomyces Yeasts Contribute on Innovative Brewing Fermentations? Food Res. Int. 2016, 86, 112–120. [Google Scholar] [CrossRef]
- Portugal, C.; Pinto, L.; Ribeiro, M.; Tenorio, C.; Igrejas, G.; Ruiz-Larrea, F. Potential Spoilage Yeasts in Winery Environments: Characterization and Proteomic Analysis of Trigonopsis Cantarellii. Int. J. Food Microbiol. 2015, 210, 113–120. [Google Scholar] [CrossRef]
- Dias, L.; Dias, S.; Sancho, T.; Stender, H.; Querol, A.; Malfeito-Ferreira, M.; Loureiro, V. Identification of Yeasts Isolated from Wine-Related Environments and Capable of Producing 4-Ethylphenol. Food Microbiol. 2003, 20, 567–574. [Google Scholar] [CrossRef]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A. Food Fermentations: Microorganisms with Technological Beneficial Use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef]
- Panel, E.B. Update of the List of QPS-rEcommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 14: Suitability of Taxonomic Units Notified to EFSA until March 2021. EFSA J. 2021, 19, e06689. [Google Scholar]
- Guilherme, B.; Juliana, J.; Lima, T.P.J.P.; Guimarães, P.G.A. De Novo Assembly of Candida sojae and Candida boidinii Genomes, Unexplored Xylose-Consuming Yeasts with Potential for Renewable Biochemical Production. Microbiol. Resour. Announc. 2016, 4, e01551-15. [Google Scholar]
- Lebeau, T.; Jouenne, T.; Junter, G.-A. Long-Term Incomplete Xylose Fermentation, after Glucose Exhaustion, with Candida Shehatae Co-immobilized with Saccharomyces Cerevisiae. Microbiol. Res. 2007, 162, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Kot, A.M.; Bzducha-Wróbel, A.; BŁażejak, S.; Gientka, I.; Kurcz, A. Biotechnological Use of Candida Yeasts in the Food Industry: A Review. Fungal Biol. Rev. 2017, 31, 185–198. [Google Scholar] [CrossRef]
- Duarte, F.; Pimentel, N.; Teixeira, A.; Fonseca, A. Saccharomyces Bacillaris Is Not a Synonym of Candida Stellata: Reinstatement as Starmerella bacillaris comb. nov. Antonie Van Leeuwenhoek 2012, 102, 653–658. [Google Scholar] [CrossRef]
- Raymond Eder, M.L.; Rosa, A.L. Genetic, Physiological, and Industrial Aspects of the Fructophilic Non-Saccharomyces Yeast Species, Starmerella bacillaris. Fermentation 2021, 7, 87. [Google Scholar] [CrossRef]
- Sipiczki, M. Candida zemplinina sp. nov., an Osmotolerant and Psychrotolerant Yeast That Ferments Sweet Botrytized Wines. Int. J. Syst. Evol. Microbiol. 2003, 53, 2079–2083. [Google Scholar] [CrossRef] [PubMed]
- Capece, A.; De Fusco, D.; Pietrafesa, R.; Siesto, G.; Romano, P. Performance of Wild Non-conventional Yeasts in Fermentation of Wort Based on Different Malt Extracts to Select Novel Starters for Low-Alcohol Beers. Appl. Sci. 2021, 11, 801. [Google Scholar] [CrossRef]
- Junior, W.J.L.; Binati, R.L.; Felis, G.E.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Volatile Organic Compounds from Starmerella Bacillaris to Control Gray Mold on Apples and Modulate Cider Aroma Profile. Food Microbiol. 2020, 89, 103446. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.M. Pichia Anomala: Cell Physiology and Biotechnology Relative to Other Yeasts. Antonie Van Leeuwenhoek 2011, 99, 25–34. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Choi, Y.-R.; Lee, S.-Y.; Park, J.-T.; Shim, J.-H.; Park, K.-H.; Kim, J.-W. Screening Wild Yeast Strains for Alcohol Fermentation from Various Fruits. Mycobiology 2011, 39, 33–39. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Conventional and Non-conventional Yeasts in Beer Production. Fermentation 2018, 4, 38. [Google Scholar] [CrossRef]
- Osburn, K.; Amaral, J.; Metcalf, S.R.; Nickens, D.M.; Rogers, C.M.; Sausen, C.; Caputo, R.; Miller, J.; Li, H.; Tennessen, J.M. Primary Souring: A Novel Bacteria-Free Method for Sour Beer Production. Food Microbiol. 2018, 70, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Canonico, L.; Galli, E.; Ciani, E.; Comitini, F.; Ciani, M. Exploitation of Three Non-conventional Yeast Species in the Brewing Process. Microorganisms 2019, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.M.-H.; Boss, P.K.; Walker, M.E.; Sumby, K.M.; Jiranek, V. Influence of Kazachstania spp. on the Chemical and Sensory Profile of Red Wines. Int. J. Food Microbiol. 2022, 362, 109496. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.M.-H.; Boss, P.K.; Walker, M.E.; Sumby, K.M.; Grbin, P.R.; Jiranek, V. Evaluation of Indigenous Non-saccharomyces Yeasts Isolated from a South Australian Vineyard for Their Potential as Wine Starter Cultures. Int. J. Food Microbiol. 2020, 312, 108373. [Google Scholar] [CrossRef]
- Morio, F.; O’Brien, C.E.; Butler, G. Draft Genome Sequence of the Yeast Kazachstania telluris CBS 16338 Isolated from Forest Soil in Ireland. Mycopathologia 2020, 185, 587–590. [Google Scholar] [CrossRef]
- Vanbeneden, N.; Gils, F.; Delvaux, F.; Delvaux, F.R. Formation of 4-Vinyl and 4-Ethyl Derivatives from Hydroxycinnamic Acids: Occurrence of Volatile Phenolic Flavour Compounds in Beer and Distribution of Pad1-Activity among Brewing Yeasts. Food Chem. 2008, 107, 221–230. [Google Scholar] [CrossRef]
- Li, N.; Wang, Q.-Q.; Xu, Y.-H.; Li, A.-H.; Tao, Y.-S. Increased Glycosidase Activities Improved the Production of Wine Varietal Odorants in Mixed Fermentation of P. Fermentans and High Antagonistic S. Cerevisiae. Food Chem. 2020, 332, 127426. [Google Scholar] [CrossRef]
- Amaya-Delgado, L.; Herrera-López, E.; Arrizon, J.; Arellano-Plaza, M.; Gschaedler, A. Performance Evaluation of Pichia kluyveri, Kluyveromyces marxianus and Saccharomyces Cerevisiae in Industrial Tequila Fermentation. World J. Microbiol. Biotechnol. 2013, 29, 875–881. [Google Scholar] [CrossRef]
- Anfang, N.; Brajkovich, M.; Goddard, M.R. Co-fermentation with Pichia kluyveri Increases Varietal Thiol Concentrations in Sauvignon Blanc. Aust. J. Grape Wine Res. 2009, 15, 1–8. [Google Scholar] [CrossRef]
- Saerens, S.; Swiegers, J.H. Production of Low-Alcohol or Alcohol-Free Beer with Pichia Kluyveri Yeast Strains. WO2014135673A2, 12 September 2014. [Google Scholar]
- Choi, D.-H.; Park, E.-H.; Kim, M.-D. Isolation of Thermotolerant Yeast Pichia Kudriavzevii from Nuruk. Food Sci. Biotechnol. 2017, 26, 1357–1362. [Google Scholar] [CrossRef]
- dos Santos, S.T.; da Paz, M.F.; Altemio, Â.D.C. Evaluation of Two Brazilian Native Yeast Strains (Pichia Kudriavzevii) In Craft Beer. Res. Soc. Dev. 2022, 11, e17311124783. [Google Scholar] [CrossRef]
- Ghosh, S.; De Mandal, S.; Nath, N.; Kaipeng, D.L.; Rahaman, L.; Nachimuthu, S.K.; Sharma, B.K. Isolation and Partial Evaluation of a Potential Indigenous Yeast Strain Pichia kudriavzevii from a Traditional Rice Beer—“Gora” Prepared by the Koloi Tribes of Tripura. Adv. Microbiol. 2019, 9, 824–841. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Hui Quek, A.Y. Evaluation of Beer Fermentation with a Novel Yeast Williopsis Saturnus. Food Technol. Biotech. 2016, 54, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Roullier-Gall, C.; Verdier, F.; Martin, A.; Schmitt-Kopplin, P.; Alexandre, H.; Grandvalet, C.; Tourdot-Maréchal, R. Microbial Interactions in Kombucha through the Lens of Metabolomics. Metabolites 2022, 12, 235. [Google Scholar] [CrossRef]
- Mas, P.; Tran, T.; Verdier, F.; Martin, A.; Alexandre, H.; Grandvalet, C.; Tourdot-Maréchal, R. Evolution in Composition of Kombucha Consortia over Three Consecutive Years in Production Context. Foods 2022, 11, 614. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, D.; Duan, C.; Yan, G. Synergistic Effect Enhances 2-Phenylethyl Acetate Production in the Mixed Fermentation of Hanseniaspora Vineae and Saccharomyces Cerevisiae. Process Biochem. 2020, 90, 44–49. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Xue, J.; Tang, C.; Duan, C.; Yan, G. Use of Torulaspora Delbrueckii and Hanseniaspora Vineae Co-fermentation with Saccharomyces Cerevisiae to Improve Aroma Profiles and Safety Quality of Petit Manseng Wines. LWT 2022, 161, 113360. [Google Scholar] [CrossRef]
- Martin, V.; Valera, M.J.; Medina, K.; Dellacassa, E.; Schneider, R.; Boido, E.; Carrau, F. Application of Hanseniaspora Vineae to Improve White Wine Quality. In White Wine Technology; Academic Press: London, UK, 2022; pp. 99–115. [Google Scholar]
- Kurtzman, C.P. Torulaspora Lindner (1904). In The Yeasts; Elsevier: Amsterdam, The Netherlands, 2011; pp. 867–874. [Google Scholar]
- Alves-Araújo, C.; Pacheco, A.; Almeida, M.; Spencer-Martins, I.; Leão, C.; Sousa, M. Sugar Utilization Patterns and Respiro-Fermentative Metabolism in the Baker’s Yeast Torulaspora Delbrueckii. Microbiology 2007, 153, 898–904. [Google Scholar] [CrossRef]
- Benito, S. the Impact of Torulaspora Delbrueckii Yeast in Winemaking. Appl. Microbiol. Biot. 2018, 102, 3081–3094. [Google Scholar] [CrossRef]
- Canonico, L.; Agarbati, A.; Comitini, F.; Ciani, M. Torulaspora Delbrueckii in the Brewing Process: A New Approach to Enhance Bioflavour and to Reduce Ethanol Content. Food Microbiol. 2016, 56, 45–51. [Google Scholar] [CrossRef]
- King, A.; Richard Dickinson, J. Biotransformation of Monoterpene Alcohols by Saccharomyces Cerevisiae, Torulaspora Delbrueckii and Kluyveromyces Lactis. Yeast 2000, 16, 499–506. [Google Scholar] [CrossRef]
- Tataridis, P.; Kanelis, A.; Logotetis, S.; Nerancis, E. Use of Non-saccharomyces Torulaspora Delbrueckii Yeast Strains in Winemaking and Brewing. Zbornik Matice Srpske Za Prirodne Nauke 2013, 124, 415–426. [Google Scholar] [CrossRef]
- Blanco, C.A.; Andrés-Iglesias, C.; Montero, O. Low-Alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 2016, 56, 1379–1388. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J.; Basehoar-Powers, E. Zygosaccharomyces Kombuchaensis, a New Ascosporogenous Yeast from ‘Kombucha Tea’. FEMS Yeast Res. 2001, 1, 133–138. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-Active Volatile Compounds in Beer: Production, Regulation and Control. J. Inst. Brewing 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Sohrabvandi, S.; Razavi, S.H.; Mousavı, S.M.; Mortazavian, A.M. Characteristics of Different Brewer’s Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars. Iran. J. Biotechnol. 2010, 8, 178–185. [Google Scholar]
- Sohrabvandi, S.; Razavi, S.H.; Mousavi, S.M.; Mortazavian, A.; Rezaei, K. Application of Saccharomyces Rouxii for the Production of Non-alcoholic Beer. Food Sci. Biotechnol. 2009, 18, 1132–1137. [Google Scholar]
- Struyf, N.; Vandewiele, H.; Herrera-Malaver, B.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Kluyveromyces Marxianus Yeast Enables the Production of Low FODMAP Whole Wheat Breads. Food Microbiol. 2018, 76, 135–145. [Google Scholar] [CrossRef]
- Wittmann, C.; Hans, M.; Bluemke, W. Metabolic Physiology of Aroma-Producing Kluyveromyces marxianus. Yeast 2002, 19, 1351–1363. [Google Scholar] [CrossRef]
- Rollero, S.; Bloem, A.; Ortiz-Julien, A.; Camarasa, C.; Divol, B. Altered Fermentation Performances, Growth, and Metabolic Footprints Reveal Competition for Nutrients between Yeast Species Inoculated in Synthetic Grape Juice-like Medium. Front. Microbiol. 2018, 9, 196. [Google Scholar] [CrossRef]
- Rollero, S.; Bloem, A.; Brand, J.; Ortiz-Julien, A.; Camarasa, C.; Divol, B. Nitrogen Metabolism in Three Non-conventional Wine Yeast Species: A Tool to Modulate Wine Aroma Profiles. Food Microbiol. 2021, 94, 103650. [Google Scholar] [CrossRef] [PubMed]
- Crauwels, S.; Steensels, J.; Aerts, G.; Willems, K.; Verstrepen, K.; Lievens, B. Brettanomyces Bruxellensis, Essential Contributor in Spontaneous Beer Fermentations Providing Novel Opportunities for the Brewing Industry. BrewingScience 2015, 68, 110–121. [Google Scholar]
- Van Oevelen, D.; Spaepen, M.; Timmermans, P.; Verachtert, H. Microbiological Aspects of Spontaneous Wort Fermentation in the Production of Lambic and Gueuze. J. Inst. Brewing 1977, 83, 356–360. [Google Scholar] [CrossRef]
- Steensels, J.; Daenen, L.; Malcorps, P.; Derdelinckx, G.; Verachtert, H.; Verstrepen, K.J. Brettanomyces Yeasts—from Spoilage Organisms to Valuable Contributors to Industrial Fermentations. Int. J. Food Microbiol. 2015, 206, 24–38. [Google Scholar] [CrossRef]
- Institute, W. Brettanomyces bruxellensis CBS 74. Available online: https://wi.knaw.nl/details/80/10 (accessed on 15 February 2022).
- Tyrawa, C.; Preiss, R.; Armstrong, M.; van der Merwe, G. The Temperature Dependent Functionality of Brettanomyces Bruxellensis Strains in Wort Fermentations. J. Inst. Brewing 2019, 125, 315–325. [Google Scholar] [CrossRef]
- Caruso, M.; Fiore, C.; Contursi, M.; Salzano, G.; Paparella, A.; Romano, P. Formation of Biogenic Amines as Criteria for the Selection of Wine Yeasts. World J. Microbiol. Biotechnol. 2002, 18, 159–163. [Google Scholar] [CrossRef]
- Iattici, F.; Catallo, M.; Solieri, L. Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. Beverages 2020, 6, 3. [Google Scholar] [CrossRef]
- Petruzzi, L.; Rosaria Corbo, M.; Sinigaglia, M.; Bevilacqua, A. Brewer’s Yeast in Controlled and Uncontrolled Fermentations, with a Focus on Novel, Nonconventional, and Superior Strains. Food Rev. Int. 2016, 32, 341–363. [Google Scholar] [CrossRef]
- Laulund, S.; Wind, A.; Derkx, P.M.; Zuliani, V. Regulatory and Safety Requirements for Food Cultures. Microorganisms 2017, 5, 28. [Google Scholar] [CrossRef]
- Wıngard, J.R.; Merz, W.G.; Saral, R. Candida Tropicalis: A Major Pathogen in Immunocompromised Patients. Ann. Intern. Med. 1979, 91, 539–543. [Google Scholar] [CrossRef]
- Binati, R.L.; Salvetti, E.; Bzducha-Wróbel, A.; Bašinskienė, L.; Čižeikienė, D.; Bolzonella, D.; Felis, G.E. Non-conventional Yeasts for Food and Additives Production in a Circular Economy Perspective. FEMS Yeast Res. 2021, 21, foab052. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Generally Recognized as Safe (GRAS) Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List). Available online: https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list (accessed on 1 March 2022).
- Bourdichon, F.; Alper, I.; Bibiloni, R.; Dubois, A.; Laulund, S.; Miks, M.; Morelli, L.; Zuliani, V.; Yao, S. Inventory of Microbial Food Cultures with Safety Demonstration in Fermented Food Products. Bull. Int. Dairy Federat 2018, 495, 5–71. [Google Scholar]
Species | Maltose | Glucose | Fructose | Sucrose | POF | Flocculation (%) | References |
---|---|---|---|---|---|---|---|
Saccharomycodes ludwigi | - | + | + | + | - | 27.1–60 | * |
Saccharomyces cerevisiae ERS1 | - | + | + | + | + | 18.5 | [87] |
Mrakia gelida | - | + | + | + | U | U | [36] |
Trigonopsis cantarellii P-69 | - | U | + | U | U | U | [92] **** |
Candida sojae T-39 | - | U | + | U | U | U | [92] **** |
Candida shehatae | V | + | U | + | U | U | [97,98,99] |
Candida zemplinina | - | U | U | U | U | U | [100,101] |
Wickerhamomyces anomalus P-2.4 | W | U | + | U | U | U | [92] **** |
Kazachstania servazzi VTT C-191027 | - | U | U | U | U | 4 | [6] |
Pichia fermentans VTT C-191032 | - | U | U | U | U | 0 | [6] |
Pichia kluvyeri CBS 188 | - | + | U | - | U | U | [99] |
Pichia kudriavzevii | V *** | + | U | U | U | U | [102] |
Cyberlindnera subsufficiens strain C6.1 CBS 5763 ** | - | + | U | + | - | 32 ± 1 51 ± 4 | [5] |
Cyberlindnera misumaiensis 837 A | - | + | U | - | - | 78 ± 3 | [5] |
Hanseniaspora valbyensis KBI 22.1 | - | + | + | + | - | 11 ± 8 | [10] |
Hanseniaspora vineae KBI 7.1 | - | + | + | - | - | 41 ± 4 | [10] |
Torulaspora delbrueckii EGT1 KBI 22.2 | - | + | + | + | - | 96.2 17 ± 0 | [87] [10] |
Zygosaccharomyces bailii KBI 25.2 | - | + | + | + | - | 45 ± 0 | [10] |
Zygosaccharomyces kombuchaensis KBI 5.4 | - | + | + | - | - | 44 ± 3 | [10] |
Zygosaccharomyces rouxii DVBPG 4084, 6187, 6424, 6463, 6921 | +/W | + | V | - | U | U | [89] |
Zygosaccharomyces rouxi CBS 732 | W | + | U | V | U | U | [99] |
Brettanomyces bruxellensis BC02, BC07, BC11 | - | + | U | - | + | U | [103] |
Brettanomyces bruxellensis | V | + | U | + | + | U | [99,104] |
Strain | Alcohol by Volume | pH | Volatile Compounds Evaluation | Sensory Notes | References |
---|---|---|---|---|---|
C181010 | 0.43% ± 0.00 | 4.84 | High-branched-chain aldehydes noticed. | “Worty” but also desirable fruity aromas were observed in fermented worts. | [92] |
VTT C-181010 | 0.68% | 4.78 | Overproduction of 2-phenylethyl acetate than its flavour threshold. | Predominantly cereal, DMS, and sweet taste descriptors were reported, but also malty and bready tastes were found. Body described as higher than in other samples. Apple notes were reported on the nose. | [6] |
TUM SL 17 | 0.50% ± 0.01 | 5.67 | 0.80/21.05 (E/Ha mg/L) | Described as worty, honey, bread-like, or sweet | [10] |
WSL17 | 1.23% ± 0.02 | 4.60 | 9.35/42.23 (E/Ha mg/L) | Described as having yellow colour and a good clearance but with a weak foam head. Had apricot fruit with hop, cereal, malt, and caramel notes. | [36] |
DBVPG 3010 | 0.51% | U | 14.91/43.31 (E/Ha mg/L) DBVPG 3010 had the highest diacetyl among the other S. ludwigis in the study (15.77 μg/L (still below the threshold)). With its low ethanol production and appreciable higher-ester alcohol production, DBVPG 3010 was identified to be a worthwhile yeast strain for NABLAB production. | U | [89] |
DBVPG3304 | 0.73% | U | 1.56/53.85 (E/Ha mg/L) Did not find properly due to low pleasant volatile compounds production. | U | [89] |
DBVPG 3398 | 0.72% | U | 1.21/47.66 (E/Ha mg/L) Did not find properly due to low pleasant volatile compounds production. | U | [89] |
DBVPG 3931 | 1.24% | U | 2.35/62.34 (E/Ha mg/L) This strain produces a high amount of higher alcohols but also the alcohol amount is higher than other S. ludwigis. | U | [89] |
DBVPG 4116 | 1.36% | U | 4.15/76.62 (E/Ha mg/L) This strain produces a high amount of higher alcohols but also alcohol production is higher than other S. ludwigis. | U | [89] |
DBVPG 3054 | 0.70% | U | 2.06/42.99 (E/Ha mg/L) Did not find properly due to low pleasant volatile compounds production. | U | [89] |
U | 0.68% | 1.82/45.30 (E/Ha mg/L) Diacetyl 140 (μg/L) | U | [110] | |
CSIR-NCL 3261 | 1.2% ± 0.02 | 5.04 | U | U | [109] |
U | 0.47% | 1.9/39 (E/Ha mg/L) concentrations were found low | U | [97,105] | |
DSM 3447 | 1.7% ± 0.06 | 3.47 | U | U | [106] |
DSM 3447 | 0.15–1.20% | U | U | The treatments with S. ludwigii in 24 °C produced lactic acid and showed lactic sour attributes. In 4 °C and 12 °C it had an undesirable sweet and immature flavour. | [112] |
Species | Alcohol by Volume | pH | Volatile Compounds Evaluation | Sensory Notes | References |
---|---|---|---|---|---|
Saccharomyces cerevisiae ERS1 EYS4 | 1.28–1.29% | 4.58–4.60 | ERS1′s acetaldehyde amount was reported to be close to its flavour threshold. Ester production was reported higher in all Ecuadorian strains. (ERS1, EYS4) compared to reference strains. | U | [87] |
Mrakia gelida Re-fermented DBVPG 5952 | 1.40% ± 0.12 | 4.71 | 3.516/27.7 (E/Ha mg/L) | Reported as being fruity with apricot, grape, and litchi descriptors, but also with hop, cereal, malt, and caramel notes. A better fruity olfactive intensity, compared to the beer made with S. ludwigii. In visual assessment, the beer was defined as having poor head foam, yellow colour, and good clarity. | [36] |
Trigonopsis cantarellii P-69 | 0.14% ± 0.00 | 4.81 | Reported to contain high amounts of the desired monoterpene alcohol and trans-geraniol, and low amounts of aldehydes. | The lowest aldehyde levels (off-flavour) were reported in beer fermented with T. cantarellii. Additionally, its performance was found comparable to a commercial S. ludwigii reference strain. | [92] |
Candida sojae T-39 | 0.22% ± 0.01 | 4.72 | Reported to contain notably higher amounts of the trans-cis geraniol, which has a desirable rose note. | Notes of diacetyl were reported on the sensory panel in C. sojae beer. However, its performance was found comparable to a commercial S. ludwigii reference strain. | [92] |
Candida shehatae CICC 1766 | 0.37–0.47% | U | Reported that the beer produced contains a high amount of ester and a low amount of diacetyl (below 0.05 mg/L). | Reported that the produced non-alcoholic beer does not have the typical worty and sweet taste seen in non-alcoholic beers produced with limited fermentation. Had a flavour similar to regular alcoholic beer. | [97,98] |
Candida zemplinina Y.01667 Y.01670 | 1.5% | 4.8 | U | In mixed fermentation trials with S. cerevisiae (in all fermentation media tested), C. zemplinina was reported as the most successful starter for non-alcoholic beer production with desired sensory properties. | [100,101] |
Wickerhamomyces anomalus P-2.4 | 0.60% ± 0.00 | 4.64 | W. anomalus beer was reported as having the highest volatile ester concentrations. | Reported that W. anomalus beer was not liked because solvent-like tones were detected in smell and taste. It has been reported that this is due to ethyl acetate, typically produced at higher levels by W. anomalus. | [92] |
Kazachstania servazzi VTT C-191027 | 0.73% | 4.78 | Production of 2-phenyl ethyl acetate at concentrations above the flavour threshold has been reported. | Reported that the descriptors of cereal, DMS, and sweet were dominant in sensory analysis, but pear and apple notes were also detected. It has been noted that K. servazzii beer is characterised by a sweet aroma typical for low-alcohol beers. | [6] |
Pichia fermentans VTT C-191032 | 0.52% | 4.79 | A higher amount of 2-phenylethanol production (2.77 mg/L) and a lower amount of acetaldehyde (2.34 mg/L) than other studied yeast strains (K. servazzii and S. Ludwigi). | Stated that the beer had a cinnamon- and clove-like spicy/phenolic flavour reminiscent of Belgian and German beers fermented by “POF+” yeasts. The taste has been described as original and pleasant. In addition to these, it has been reported that P. fermentans beer has lower DMS and cereal values than other samples, and contains notes of banana and melon. | [6] |
Pichia kluvyeri PK-KR1 | 0.1% | U | 25/20 (E/Ha) | Reported that its flavour is very close to a beer with alcohol content at least 4% (v/v). Sensory examination has reported higher amounts of desired esters, such as phenylethyl acetate and isoamyl acetate, and lower amounts of undesired acids, such as decanoic and octanoic acids, in beer. | [97,110] |
Pichia kudriavzevii Pk129 | 0.5–0.8% | U | 50/50 (E/Ha mg/L) P. kudriavzevii found as producing relatively more desired volatiles in a balance. | U | [102] |
Cyberlindnera subsufficiens C6.1 | 0.36% ± 0.00 | 4.45 | 12.8/9.8 (E/Ha mg/L) | Described as pleasantly fruity (banana, pear, maracuja, and mango) and has also been reported to have a bit of a worty-like character in sensory examination. | [5] |
Hanseniaspora valbyensis KBI 22.1 | 0.35% ± 0.01 | 4.84 | 0.9/23.3 (E/Ha mg/L) For isoamyl alcohol values it was exhibiting the highest (16.5 mg/L) in study. Unwanted diacetyl levels were above the flavor threshold in light beers. | Reported to have a “cereal-like” character and the diacetyl flavour was felt by half of the panellists. | [10] |
Hanseniaspora vineae KBI 7.1 | 0.34% ± 0.02 | 4.78 | 6/20.2 (E/Ha mg/L) | Defined as sweet, must-like, and honey-like, with black tea and caramel tones. | [10] |
Torulaspora delbrueckii EGT1 | 1.32% ± 0.01 | 4.65 | High ester production. Had the best E:HA ratio in studied yeast strains (S. cerevisiae ERS1 and EYS4). | U | [87] |
Torulaspora delbrueckii VTT C-191036 | 0.8–1.0% | 4.60–4.75 | T. delbruecki strains have been reported to be effective reductants, reducing branched-chain aldehydes by more than 90% compared to wort. | U | [6] |
Torulaspora delbrueckii KBI 22.2 | 0.5% ± 0.01 | 4.69 | 0.77/18.1 (E/Ha mg/L) It was reported that non-alcoholic beer produced with T. delbrueckii KBI 22.2 contained the least amount of isoamyl alcohol (10.4 mg/L) among other samples in the study. | Described as cereal-like honey-like, wort-like, and bread-like by all panellists. Half of the panellists detected the unpleasant diacetyl flavour. | [10] |
Zygosaccharomyces bailii KBI 25.2 | 0.42% ± 0.07 | 4.71 | 1/23.1 (E/Ha mg/L) | Reported that it has the best potential among the yeasts studied in brewing non-alcoholic beer with its improved sensorial character. | [10] |
Zygosaccharomyces kombuchaensi s KBI 5.4 | 0.48% ± 0.01 | 4.61 | 1/22 (E/Ha mg/L) Unwanted diacetyl levels were above the flavour threshold in light beers. | Described as honey-like, wort-like, and bread-like. Unwanted diacetyl notes detected by the half of the panellists. | [10] |
Brettanomyces bruxellensis LTQB6 | 4% | U | According to study, produced a higher acetaldehyde concentration than threshold value. | U | [113] |
Zygosaccharomyces rouxii DVBPG 4084, 6921, 6187 | 0.93–1.63% | U | Reported that Z. rouxii strains produced the highest amount of volatile compounds, especially higher alcohols as well as diacetyl and acetaldehyde, because it produces ethanol at high levels (more than 33.78/92.07 (E/Ha mg/L). DVBPG 6187 has the highest diacetyl with 851.40 (μg/L). | U | [89] |
Compound | S. ludwigii VTT-C181010 | S. ludwigii WSL17 | T. cantarellii P-69 | C. sojae T-39 | Cyberlindnera subsufficiens C6.1 | H. valbyensis KBI 22.1 | H. vineae KBI 7.1 | Z. bailii KBI 25.2 | Mrakia gelida DBVPG 5952 |
---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | 4.9 | 0.92 ±0. 1 | 3.7 | 2.25 | 10.55 | 3.3 ± 0.4 | 4.1 ± 0.4 a | 4.9 ± 1.3 | 2.30 ± 0.18 |
n-Propanol | 2.35 | 2.6 ± 0.0 | 3.4 | 1.95 | 2.20 | 2.1 ± 0.1 a | 2.2 ± 0.0 | 0.56 ± 0.03 | 5.7 ± 0.4 |
Isobutanol | 6.1 | 13.03 ± 1.1 | 2.3 | 7.2 | 3.60 | 4.8 ± 0.1 | 4.6 ± 0.3 | 5.7 ± 0.1 | 9.8 ± 0.2 |
3-Methyl-1-butanol | U | 14.3 ± 0.8 | U | U | U | U | U | U | 6.0 ± 0.3 |
3-Methyl-2-butanol | U | 14.40 | U | U | U | U | U | U | U |
2-Methyl-1-butanol | U | 5.5 ± 0.2 | U | U | U | U | U | U | 1.4 ± 0.1 |
Furfuryl alcohol | U | U | U | U | U | U | U | U | U |
2-Phenylethanol (Phenyl alcohol) | 8.1 | 6.8 ± 0.7 | 0.75 | 1.85 | U | U | U | U | 2.6 ± 0.1 |
Isoamyl alcohol (3-methylbutanol) | 14.65 | U | 1.4 | 13.25 | 4.00 | 16.5 ± 1.1 | 13.4 ± 0.1 | 14.8 ± 0.2 | U |
Ethyl acetate | 1.5 | 9.3 ± 0.3 | <0.59 | <0.59 | 12.00 | 0.90 ± 0.05 | 6.00 ± 0.14 | 1.00 ± 0.00 | 0.6 ± 0.1 |
Isobutyl acetate | <0.06 | U | <0.06 | <0.06 | U | U | U | U | U |
Isoamyl acetate | <0.14 | 0.03 ± 0.00 | <0.14 | <0.14 | 0.80 | <0.1 | <0.1 | <0.1 | ND |
Phenyl ethyl acetate | <0.4 | U | <0.4 | <0.4 | U | U | U | U | U |
Ethyl hexanoate | <0.02 | 0.011 ± 0.002 | <0.02 | <0.02 | U | U | U | U | 0.009 ± 0.001 |
Ethyl octanoate | <0.4 | 0.009 ± 0.002 | <0.4 | <0.4 | U | U | U | U | 0.006 ± 0.001 |
Ethyl formate | U | U | U | U | U | 0.78 ± 0.06 | 0.76 ± 0.03 | 0.56 ± 0.03 | U |
Furfural | U | 0.01 ±0.0 | U | U | U | U | U | U | 0.007 ± 0.00 |
Methional | U | 0.006 ± 0.3 | U | U | U | U | U | U | 0.009 ± 0.00 |
2-Methylbutanal | U | 0.002 ± 0.0 | U | U | U | U | U | U | 0.001 ± 0.00 |
3-Methylbutanal | U | 0.006 ± 0.0 | U | U | U | U | U | U | 0.007 ± 0.00 |
Hexanal | U | 0.0007 ± 0.0 | U | U | U | U | U | U | 0.001 ± 0.00 |
Phenylacetaldehyde | U | 0.01 ± 0.0 | U | U | U | U | U | U | 0.009 ± 0.00 |
Diacetyl (2,3-Butanedione) | U | 0.008 ± 0.0 | U | U | <0.01 | 0.21 ± 0.03 | 0.05 ± 0.01 | 0.03 ± 0.00 | 0.008 ± 0.00 |
2,3-Pentanedione | U | U | U | U | <0.01 | U | U | U | U |
Notes and references | 30 L scale [92] | 25 L [36] | 30 L scale [92] | 30 L scale [92] | 60 L Scale [5] | 2 L Scale [10] | 2 L Scale [10] | 2 L Scale [10] | 25 L [36] |
Compound | S. cerevisiae ERS1 | T. delbruckii T10/T13 | K. servazzi C-191027 | P. fermentans VTT C-191032 | H. uvarum VTT C-191029 | W. anomalus DiSVA2 *** |
---|---|---|---|---|---|---|
Acetaldehyde | 16.04± 1.60 | U | 3.76 ± 0.08 | 2.34 ± 0.00 | 1.8± 0.1 | 49.3 ± 2.8 |
n-Propanol | 6.68 ± 0.16 | 3.03/4.13 | 2.14 ± 0.06 | 0.27 ± 0.01 | 0.7 ± 0.0 | 22.5 ± 0.9 |
Isobutanol | U | 2.36/3.56 | U | U | U | 10.8 ± 1.3 |
Isoamyl alcohol (3-methylbutanol) | 33.63 ± 1.11 | 25.26/29.10 ** | 17.01 ± 0.3 | 8.65± 0.02 | 16.3 ± 0.4 | 51.6 ± 4.1 |
2-Phenylethanol (β-Phenyl ethanol) | 5.78 ± 0.31 | 15.83/13.9 | ND | 2.77 ± 0.09 | 5.1 ± 0.1 | 0.00 ± 0.00 |
Ethyl butyrate | U | U | U | U | U | 0.040 ± 0.042 |
Ethyl acetate | 4.76 ± 0,26 | 2.23/5.33 | 0.83 ± 0.03 | ND | 1.0 ± 0.1 | 1.7 ± 0.7 |
Isoamyl acetate | U | U | U | ND | U | 0.051 ± 0.049 |
Phenylethyl acetate | 0.20 ± 0.01 | U | 7.39 ± 0.19 | ND | ND | 0.061 ± 0.035 |
3-Methylbutylacetate | 0.67 ± 0.06 | U | 0.02 ± 0.002 | 0.27± 0.01 | 0.01 ±0.00 | U |
Ethyl hexanoate (ethyl caproate) | 0.18 ± 0.03 | U | ND | ND | ND | 0.056 ± 0.014 |
Ethyl octanoate (Ethyl caprylate) | 0.27 ± 0.09 | U | ND | ND | ND | U |
Ethyl decanoate | 0.06 ± 0.01 | U | ND | ND | ND | U |
Diacetyl | U | 0.13/0.1 | U | U | U | U |
Ethyl formate | U | U | U | U | U | U |
4-Vinylguaiacol | U | U | U | U | U | U |
2-Methylbutanol | 11.01± 0.36 | U | 4.07 ± 0.08 | 2.10 ± 0.02 | 4.5 ± 0.1 | U |
2-Methylpropanol | 15.28± 0.30 | U | 7.46 ± 0.2 | 4.87 ± 0.08 | 15.0 ± 0.4 | U |
Linalool | U | U | U | U | U | 0.110 ± 0.010 a |
α-Terpineol | U | U | U | U | U | 0.022 ± 0.001 |
Hexanoic acid | U | 0.16/0.20 | U | U | U | U |
Octanoic acid | U | 0.36/0.57 | U | U | U | U |
Decanoic acid | U | 0.67/1.13 | U | U | U | U |
Notes and references | Volatiles-in-beer data was obtained from the Supplementary Materials of the article [87]. It can have a potential use in certain special beer production due to its POF(+) character. | * Bavarian wheat beer or special beer production [111](2 L). | Lager-type yeast (10 L scale) due to clean aroma and cold tolerance (authors’ suggestion) [6]. | Wheat beer-type (10 L scale) due to clove-like aroma of 4-vinyl guaiacol (Belgian–German ale type) [6]. | The distinctive clove-like aroma of 4-vinylguaiacol was reported (Belgian–German ale type) (2 L scale) [6]. | * 500 mL scale [135]. **** Sour beer production. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yabaci Karaoglan, S.; Jung, R.; Gauthier, M.; Kinčl, T.; Dostálek, P. Maltose-Negative Yeast in Non-Alcoholic and Low-Alcoholic Beer Production. Fermentation 2022, 8, 273. https://doi.org/10.3390/fermentation8060273
Yabaci Karaoglan S, Jung R, Gauthier M, Kinčl T, Dostálek P. Maltose-Negative Yeast in Non-Alcoholic and Low-Alcoholic Beer Production. Fermentation. 2022; 8(6):273. https://doi.org/10.3390/fermentation8060273
Chicago/Turabian StyleYabaci Karaoglan, Selin, Rudolf Jung, Matthew Gauthier, Tomáš Kinčl, and Pavel Dostálek. 2022. "Maltose-Negative Yeast in Non-Alcoholic and Low-Alcoholic Beer Production" Fermentation 8, no. 6: 273. https://doi.org/10.3390/fermentation8060273
APA StyleYabaci Karaoglan, S., Jung, R., Gauthier, M., Kinčl, T., & Dostálek, P. (2022). Maltose-Negative Yeast in Non-Alcoholic and Low-Alcoholic Beer Production. Fermentation, 8(6), 273. https://doi.org/10.3390/fermentation8060273