Kinetics of Lignin Removal from Rice Husk Using Hydrogen Peroxide and Combined Hydrogen Peroxide–Aqueous Ammonia Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.3. Sampling and Lignin Quantification
2.4. Pretreatment Parameters and Kinetics
2.5. Characterization of Rice Husk
2.6. Preparation of Crude Enzyme from Aspergillus niger
2.7. Enzymatic Hydrolysis
3. Results
3.1. Effect of Pretreatment Temperature and Time
3.2. Calculation of Kinetic Parameters
3.3. Scanning Electron Microscopy (SEM)–Energy Dispersive Spectroscopy (EDS)
3.4. Validation of Pretreatment Kinetics Model
3.5. Effects of Hydrolysis Time on Glucose Concentration of CHPA Pretreated Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.F.; Mohammadi, A.A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 2020, 199, 117457. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Qiao, X.; Cao, Y.; Shao, Q. Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel 2017, 205, 184–191. [Google Scholar] [CrossRef]
- Liu, C.G.; Xiao, Y.; Xia, X.X.; Zhao, X.Q.; Peng, L.; Srinophakun, P.; Bai, F.W. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol. Adv. 2019, 37, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Kassaye, S.; Pant, K.K.; Jain, S. Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose. Fuel Process. Technol. 2016, 148, 289–294. [Google Scholar] [CrossRef]
- Qiu, J.; Tian, D.; Shen, F.; Hu, J.; Zeng, Y.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour. Technol. 2018, 268, 355–362. [Google Scholar] [CrossRef]
- Lauberte, L.; Telysheva, G.; Cravotto, G.; Andersone, A.; Janceva, S.; Dizhbite, T.; Arshanitsa, A.; Jurkjane, V.; Vevere, L.; Grillo, G.; et al. Lignin-Derived antioxidants as value-added products obtained under cavitation treatments of the wheat straw processing for sugar production. J. Clean. Prod. 2021, 303, 126369. [Google Scholar] [CrossRef]
- Gan, Y.-Y.; Zhou, S.-L.; Dai, X.; Wu, H.; Xiong, Z.-Y.; Qin, Y.-H.; Ma, J.; Yang, L.; Wu, Z.-K.; Wang, T.-L.; et al. Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis. Bioresour. Technol. 2018, 265, 394–398. [Google Scholar] [CrossRef]
- Yu, N.; Tan, L.; Sun, Z.Y.; Nishimura, H.; Takei, S.; Tang, Y.Q.; Kida, K. Bioethanol from sugarcane bagasse: Focused on optimum of lignin content and reduction of enzyme addition. Waste Manag. 2018, 76, 404–413. [Google Scholar] [CrossRef]
- Wojtusik, M.; Villar, J.C.; Ladero, M.; Garcia-Ochoa, F. Physico-chemical kinetic modelling of hydrolysis of a steam-explosion pretreated corn stover: A two-step approach. Bioresour. Technol. 2018, 268, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Truong, N.P.V.; Kim, T.H. Effective saccharification of corn stover using low-liquid aqueous ammonia pretreatment and enzymatic hydrolysis. Molecules 2018, 23, 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polprasert, S.; Choopakar, O.; Elefsiniotis, P. Bioethanol production from pretreated palm empty fruit bunch (PEFB) using sequential enzymatic hydrolysis and yeast fermentation. Biomass Bioenergy 2021, 149, 106088. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Robak, K.; Balcerek, M. Current state-of-the-art in ethanol production from lignocellulosic feedstocks. Microbiol. Res. 2020, 240, 126534. [Google Scholar] [CrossRef]
- Wirawan, F.; Cheng, C.-L.; Lo, Y.-C.; Chen, C.-Y.; Chang, J.-S.; Leu, S.-Y.; Lee, D.-J. Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process. Appl. Energy 2020, 266, 114871. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, J.; Wu, J.; Zhang, L.; Lyu, X.; Xiao, W.; Gong, Y.; Xu, Y.; Liu, Z. Vacuum-assisted black liquor-recycling enhances the sugar yield of sugarcane bagasse and decreases water and alkali consumption. Bioresour. Technol. 2020, 309, 123349. [Google Scholar] [CrossRef]
- Yang, H.; Shi, Z.; Xu, G.; Qin, Y.; Deng, J.; Yang, J. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour. Technol. 2019, 274, 261–266. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Zhang, X. Alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways. Bioresour. Technol. 2013, 150, 321–327. [Google Scholar] [CrossRef]
- Zhao, C.; Qiao, X.; Shao, Q.; Hassan, M.; Ma, Z.; Yao, L. Synergistic effect of hydrogen peroxide and ammonia on lignin. Ind. Crop. Prod. 2020, 146, 112177. [Google Scholar] [CrossRef]
- Gao, J.; Yang, X.; Wan, J.; He, Y.; Chang, C.; Ma, X.; Bai, J. Delignification Kinetics of Corn Stover with Aqueous Ammonia Soaking Pretreatment. BioResources 2016, 11, 2403–2416. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, M.H.; Liu, X.-M.; Hussain, M.A.; Qureshi, T.; Tabish, A.N.; Lateef, H.U.; Zeb, H.; Farooq, M.; Nawaz, S.; Nawaz, S. Evaluation of physiochemical, thermal and kinetic properties of wheat straw by demineralising with leaching reagents for energy applications. Energy 2022, 238, 122013. [Google Scholar] [CrossRef]
- Bhattarai, S.; Bottenus, D.; Ivory, C.F.; Gao, A.H.; Bule, M.; Garcia-Perez, M.; Chen, S. Simulation of the ozone pretreatment of wheat straw. Bioresour. Technol. 2015, 196, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Zhao, X.; Liu, D. Kinetic modeling of atmospheric formic acid pretreatment of wheat straw with ‘potential degree of reaction’ models. RSC Adv. 2015, 5, 20992–21000. [Google Scholar] [CrossRef]
- Dagnino, E.P.; Felissia, F.E.; Chamorro, E.; Area, M.C. Studies on lignin extraction from rice husk by a soda-ethanol treatment: Kinetics, separation, and characterization of products. Chem. Eng. Res. Des. 2018, 129, 209–216. [Google Scholar] [CrossRef]
- Baksi, S.; Sarkar, U.; Saha, S.; Ball, A.K.; Kuniyal, J.C.; Wentzel, A.; Birgen, C.; Preisig, H.A.; Wittgens, B.; Markussen, S. Studies on delignification and inhibitory enzyme kinetics of alkaline peroxide pretreated pine and deodar saw dust. Chem. Eng. Process. Process Intensif. 2019, 143, 107607. [Google Scholar] [CrossRef]
- Yiin, C.L.; Yusup, S.; Quitain, A.T.; Uemura, Y.; Sasaki, M.; Kida, T. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil. Bioresour. Technol. 2018, 255, 189–197. [Google Scholar] [CrossRef]
- Yiin, C.L.; Yusup, S.; Quitain, A.T.; Uemura, Y.; Sasaki, M.; Kida, T. Delignification kinetics of empty fruit bunch (EFB): A sustainable and green pretreatment approach using malic acid-based solvents. Clean Technol. Environ. Policy 2018, 20, 1987–2000. [Google Scholar] [CrossRef]
- Shamjuddin, A.; Ab Rasid, N.S.; Raissa, M.M.M.; Abu Zarin, M.A.; Omar, W.N.N.W.; Syahrom, A.; Januddi, M.A.F.M.S.; Amin, N.A.S. Kinetic and dynamic analysis of ozonolysis pretreatment of empty fruit bunch in a well-mixed reactor for sugar production. Energy Convers. Manag. 2021, 244, 114526. [Google Scholar] [CrossRef]
- Halder, P.; Patel, S.; Kundu, S.; Hakeem, I.G.; Marzbali, M.H.; Pramanik, B.; Shah, K. Dissolution reaction kinetics and mass transfer during aqueous choline chloride pre-treatment of oak wood. Bioresour. Technol. 2021, 322, 124519. [Google Scholar] [CrossRef]
- Kawamata, Y.; Yoshikawa, T.; Aoki, H.; Koyama, Y.; Nakasaka, Y.; Yoshida, M.; Masuda, T. Kinetic analysis of delignification of cedar wood during organosolv treatment with a two-phase solvent using the unreacted-core model. Chem. Eng. J. 2019, 368, 71–78. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, R.; Liu, D. Evaluation of the mass transfer effects on delignification kinetics of atmospheric acetic acid fractionation of sugarcane bagasse with a shrinking-layer model. Bioresour. Technol. 2018, 261, 52–61. [Google Scholar] [CrossRef]
- Chang, X.; Bai, Y.; Wu, R.; Liu, D.; Zhao, X. Heterogeneity of lignocellulose must be considered for kinetic study: A case on formic acid fractionation of sugarcane bagasse with different pseudo-homogeneous kinetic models. Renew. Energy 2020, 162, 2246–2258. [Google Scholar] [CrossRef]
- Shatalov, A.A.; Pereira, H. Kinetics of organosolv delignification of fibre crop Arundo donax L. Ind. Crop. Prod. 2005, 21, 203–210. [Google Scholar] [CrossRef]
- Huang, G.; Peng, W.; Yang, S.; Yang, C. Delignification kinetic modeling of NH4OH-KOH-AQ pulping for bagasse. Ind. Crop. Prod. 2018, 123, 740–745. [Google Scholar] [CrossRef]
- Banerjee, G.; Car, S.; Scott-Craig, J.S.; Hodge, D.B.; Walton, J.D. Alkaline peroxide pretreatment of corn stover: Effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 2011, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Novia, N.; Said, M.; Jannah, A.M.; Pebriantoni, P.; Bayu, M. Aqueous Ammonia Soaking-Dilute Acid Pretreatment to Produce Bioethanol from Rice Husk. Technol. Rep. Kansai Univ. 2020, 62, 891–900. [Google Scholar]
- Datta, R. Acidogenic fermentation of lignocellulose-acid yield and conversion of components. Biotechnol. Bioeng. 1981, 23, 2167–2170. [Google Scholar] [CrossRef]
- Xing, W.; Xu, G.; Dong, J.; Han, R.; Ni, Y. Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem. Eng. J. 2018, 333, 712–720. [Google Scholar] [CrossRef]
- Nathan, V.K.; Rani, M.E.; Rathinasamy, G.; Dhiraviam, K.N.; Jayavel, S. Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. Springerplus 2014, 3, 92. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Kim, N.J.; Jiang, M.; Kang, J.W.; Chang, H.N. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour. Technol. 2009, 100, 3245–3251. [Google Scholar] [CrossRef]
- Miller, G.L. Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Rapado, P.; Faba, L.; Ordóñez, S. Influence of delignification and reaction conditions in the aqueous phase transformation of lignocellulosic biomass to platform molecules. Bioresour. Technol. 2021, 321, 124500. [Google Scholar] [CrossRef]
- Liu, K.-X.; Li, H.-Q.; Zhang, J.; Zhang, Z.-G.; Xu, J. The effect of non-structural components and lignin on hemicellulose extraction. Bioresour. Technol. 2016, 214, 755–760. [Google Scholar] [CrossRef]
- Betts, W.B.; Dart, R.K.; Ball, A.S.; Pedlar, S.L. Biosynthesis and Structure of Lignocellulose. In Biodegradation; Springer: London, UK, 1991; pp. 139–155. [Google Scholar]
- Kim, T.H.; Taylor, F.; Hicks, K.B. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour. Technol. 2008, 99, 5694–5702. [Google Scholar] [CrossRef]
- Russo, M.; Procentese, A.; Montagnaro, F.; Marzocchella, A. Effect of enzymes adsorption on enzymatic hydrolysis of coffee silverskin: Kinetic characterization and validation. Biochem. Eng. J. 2022, 180, 108364. [Google Scholar] [CrossRef]
- Niglio, S.; Procentese, A.; Russo, M.E.; Piscitelli, A.; Marzocchella, A. Integrated enzymatic pretreatment and hydrolysis of apple pomace in a bubble column bioreactor. Biochem. Eng. J. 2019, 150, 107306. [Google Scholar] [CrossRef]
- Ang, T.N.; Ngoh, G.C.; Chua, A.S.M. Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk. Bioresour. Technol. 2013, 135, 116–119. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Caparanga, A.R.; Ordono, E.E.; Villaflores, O.B.; Pouriman, M. Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Ind. Crop. Prod. 2017, 101, 84–91. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Yagoub, A.E.-G.A.; Chen, L.; Zhou, C. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind. Crop. Prod. 2020, 149, 112357. [Google Scholar] [CrossRef]
- Al-Mardeai, S.; Elnajjar, E.; Hashaikeh, R.; Kruczek, B.; Al-Zuhair, S. Dynamic model of simultaneous enzymatic cellulose hydrolysis and product separation in a membrane bioreactor. Biochem. Eng. J. 2021, 174, 108107. [Google Scholar] [CrossRef]
- Olivieri, G.; Wijffels, R.; Marzocchella, A.; Russo, M. Bioreactor and bioprocess design issues in enzymatic hydrolysis of lignocellulosic biomass. Catalysts 2021, 11, 680. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Song, M.; Topakas, E.; Yu, Q.; Yuan, Z.; Wang, Z.; Guo, Y. Combining Michaelis-Menten theory and enzyme deactivation reactions for the kinetic study of enzymatic hydrolysis by different pretreated sugarcane bagasse. Process Biochem. 2021, 105, 72–78. [Google Scholar] [CrossRef]
- Shen, X.-J.; Wen, J.-L.; Mei, Q.-Q.; Chen, X.; Sun, D.; Yuan, T.-Q.; Sun, R.-C. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization. Green Chem. 2019, 21, 275–283. [Google Scholar] [CrossRef]
Pre-Treatment Time (h) | Temperature (°C) | Solid Yield (%) | Cellulose (wt %) | Hemicellulose (wt %) | Lignin (wt %) |
---|---|---|---|---|---|
Untreated | 22.34 | 2.25 | 39.99 | ||
6 | 30 | 80.11 | 23.11 | 5.16 | 39.07 |
40 | 80.65 | 23.55 | 13.85 | 38.14 | |
50 | 81.68 | 23.72 | 3.96 | 36.69 | |
60 | 81.91 | 24.35 | 22.50 | 36.23 | |
80 | 82.75 | 24.27 | 13.42 | 36.10 | |
24 | 30 | 83.18 | 24.10 | 11.78 | 28.22 |
40 | 83.81 | 24.51 | 0.12 | 25.75 | |
50 | 84.85 | 25.85 | 13.42 | 24.31 | |
60 | 85.72 | 26.12 | 14.91 | 22.26 | |
80 | 85.94 | 26.42 | 17.00 | 22.31 | |
48 | 30 | 86.19 | 26.52 | 8.61 | 24.01 |
40 | 86.18 | 27.25 | 10.85 | 20.66 | |
50 | 87.26 | 28.78 | 9.13 | 18.61 | |
60 | 88.22 | 30.44 | 14.27 | 18.31 | |
80 | 88.72 | 33.69 | 14.82 | 15.10 |
Pre-Treatment Time (h) | Temperature (°C) | Solid Yield (%) | Cellulose (wt %) | Hemicellulose (wt %) | Lignin (wt %) |
---|---|---|---|---|---|
Untreated | 22.34 | 2.25 | 39.99 | ||
6 | 30 | 78.23 | 36.97 | 5.32 | 35.50 |
40 | 78.25 | 41.28 | 5.15 | 34.82 | |
50 | 78.28 | 44.00 | 3.02 | 34.79 | |
60 | 78.30 | 45.11 | 3.67 | 33.87 | |
80 | 78.32 | 48.45 | 2.92 | 32.31 | |
24 | 30 | 78.34 | 48.45 | 9.65 | 19.82 |
40 | 78.40 | 49.21 | 9.47 | 17.97 | |
50 | 78.48 | 50.93 | 6.24 | 17.67 | |
60 | 78.58 | 51.16 | 6.10 | 16.92 | |
80 | 78.64 | 52.98 | 9.23 | 13,81 | |
48 | 30 | 78.79 | 54.23 | 4.50 | 14.10 |
40 | 78.97 | 56.40 | 7.68 | 11.85 | |
50 | 78.99 | 56.40 | 8.59 | 11.01 | |
60 | 79.11 | 58.43 | 8.38 | 10.36 | |
80 | 79.15 | 63.84 | 8.04 | 7.21 |
Temperature | HP Pretreated | CHPA Pretreated | ||||||
---|---|---|---|---|---|---|---|---|
K | Dd (h−1) | Ea (KJ/Mol) | A | K | Dd (h−1) | Ea (KJ/Mol) | A | |
30 | 0.0157 | 0.8979 | 9.9643 | 0.6341 | 0.0296 | 0.9186 | 7.4439 | 0.5285 |
40 | 0.0189 | 0.9136 | 0.0333 | 0.9255 | ||||
50 | 0.0209 | 0.9179 | 0.0364 | 0.9141 | ||||
60 | 0.0216 | 0.9027 | 0.0389 | 0.9061 | ||||
80 | 0.0247 | 0.9386 | 0.0455 | 0.9233 |
Materials | Pretreatment | Activation Energy, Ea (kJ/mol) | Ref. |
---|---|---|---|
Corn stover | Aqueous ammonia | 61.05 | [22] |
Sugarcane bagasse | Formic acid fractionation | 43.50 | [34] |
Empty fruit bunch | Low-transition-temperature mixtures (LTTMs) | 34.49 | [29] |
Pinus roxburghii | Autoclaving, followed by one h probe sonication along with five h alkaline peroxide pretreatment | 14.25 | [27] |
Cedrus deodara | Autoclaving, followed by one h probe sonication along with five h alkaline peroxide pretreatment | 13.05 | [27] |
Rice Husk | CHPA | 7.44 | This study |
Sample Name | Carbon (C) | Oxygen (O) | Silicon (Si) | |||
---|---|---|---|---|---|---|
Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | |
Unpretreated | 56.00 | 47.60 | 40.97 | 46.39 | 3.03 | 6.02 |
HP Pretreated | 64.29 | 57.27 | 35.29 | 41.87 | - | - |
CHPA Pretreated | 78.50 | 73.27 | 21.50 | 26.73 | - | - |
Equations | ||||
---|---|---|---|---|
Temperature | HP | CHPA | HP | CHPA |
30 °C | 92.79 | 95.87 | 93.91 | 97.00 |
40 °C | 94.71 | 96.57 | 95.62 | 97.61 |
50 °C | 95.30 | 94.11 | 95.99 | 97.42 |
60 °C | 95.34 | 92.06 | 95.22 | 97.10 |
80 °C | 98.17 | 95.60 | 97.63 | 98.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novia, N.; Hasanudin, H.; Hermansyah, H.; Fudholi, A. Kinetics of Lignin Removal from Rice Husk Using Hydrogen Peroxide and Combined Hydrogen Peroxide–Aqueous Ammonia Pretreatments. Fermentation 2022, 8, 157. https://doi.org/10.3390/fermentation8040157
Novia N, Hasanudin H, Hermansyah H, Fudholi A. Kinetics of Lignin Removal from Rice Husk Using Hydrogen Peroxide and Combined Hydrogen Peroxide–Aqueous Ammonia Pretreatments. Fermentation. 2022; 8(4):157. https://doi.org/10.3390/fermentation8040157
Chicago/Turabian StyleNovia, Novia, Hasanudin Hasanudin, Hermansyah Hermansyah, and Ahmad Fudholi. 2022. "Kinetics of Lignin Removal from Rice Husk Using Hydrogen Peroxide and Combined Hydrogen Peroxide–Aqueous Ammonia Pretreatments" Fermentation 8, no. 4: 157. https://doi.org/10.3390/fermentation8040157
APA StyleNovia, N., Hasanudin, H., Hermansyah, H., & Fudholi, A. (2022). Kinetics of Lignin Removal from Rice Husk Using Hydrogen Peroxide and Combined Hydrogen Peroxide–Aqueous Ammonia Pretreatments. Fermentation, 8(4), 157. https://doi.org/10.3390/fermentation8040157