Staphylococcal Protein A with Engineered Cysteine: Comparison of Monomeric Content as a Critical Quality Attribute during Intracellular and Extracellular Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, Chemicals, Mediums, and Filters
2.2. Construction of Plasmids and Recombinant Strains
2.3. Protein Expression Studies
2.4. Purification Process
2.5. Qualitative and Quantitative Analysis of Purified Protein
2.5.1. Purity through SDS PAGE
2.5.2. Protein Concentration through BCA
2.6. Size-Exclusion High-Pressure Liquid Chromatography (SE-HPLC)
2.7. Free Cysteine Estimation
2.8. Ligand SPA Immobilization and Coupling Efficiency
2.9. Evaluation of Binding Capacity
2.10. Circular Dichroism (CD) Spectroscopy
2.11. Fluorescence Spectroscopy
3. Results and Discussion
3.1. Expression Studies of SPA and SPA-Cys
3.2. Purification and Qualitative Analysis of SPA for Monomeric Forms Produced by Different Strains
3.3. Quantitative Analysis of SPA-Cys Dimer and Monomer Fraction during Intracellular and Extracellular Production
3.4. Free Cysteine Estimation
3.5. Fluorescence Spectroscopy and Circular Dichroism Spectroscopy
3.6. Protein A Conjugation to Solid Support
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleiner-Grote, G.R.M.; Risse, J.M.; Friehs, K. Secretion of recombinant proteins from E. coli. Eng. Life Sci. 2018, 18, 532–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraswat, V.; Kim, D.Y.; Lee, J.; Park, Y.-H. Effect of specific production rate of recombinant protein on multimerization of plasmid vector and gene expression level. FEMS Microbiol. Lett. 1999, 179, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Khushoo, A.; Pal, Y.; Mukherjee, K.J. Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Appl. Microbiol. Biotechnol. 2005, 68, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Mergulhão, F.; Monteiro, G.; Kelly, A.; Taipa, M.A.; Cabral, J. Recombinant human proinsulin: A new approach in gene assembly and protein expression. J. Microbiol. Biotechnol. 2000, 10, 690–693. [Google Scholar]
- Behere, K.; Cha, B.; Yoon, S. Protein a resin lifetime study: Evaluation of protein a resin performance with a model-based approach in continuous capture. Prep. Biochem. Biotechnol. 2018, 48, 242–256. [Google Scholar] [CrossRef]
- Pabst, T.M.; Palmgren, R.; Forss, A.; Vasic, J.; Fonseca, M.; Thompson, C.; Wang, W.K.; Wang, X.; Hunter, A.K. Engineering of novel Staphylococcal Protein A ligands to enable milder elution pH and high dynamic binding capacity. J. Chromatogr. A 2014, 1362, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.R.; den Boer, M.A.; Strasser, J.; Zwarthoff, S.A.; Beurskens, F.J.; de Haas, C.J.; Aerts, P.C.; Wang, G.; de Jong, R.N.; Bagnoli, F.; et al. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc. Natl. Acad. Sci. USA 2021, 118, e2016772118. [Google Scholar] [CrossRef]
- Falugi, F.; Kim, H.K.; Missiakas, D.M.; Schneewind, O.; Gilmore, M.S. Role of Protein A in the Evasion of Host Adaptive Immune Responses by Staphylococcus aureus. MBio 2013, 4, e00575-13. [Google Scholar] [CrossRef] [Green Version]
- Bolton, G.R.; Mehta, K.K. The role of more than 40 years of improvement in protein A chromatography in the growth of the therapeutic antibody industry. Biotechnol. Prog. 2016, 32, 1193–1202. [Google Scholar] [CrossRef]
- Rigi, G.; Ghaedmohammadi, S.; Ahmadian, G. A comprehensive review on staphylococcal protein A (SpA): Its production and applications. Biotechnol. Appl. Biochem. 2019, 66, 454–464. [Google Scholar] [CrossRef]
- Goding, J.W. Use of staphylococcal protein A as an immunological reagent. J. Immunol. Methods 1978, 20, 241–253. [Google Scholar] [CrossRef]
- Balachandran, M.; Giannone, R.J.; Bemis, D.A.; Kania, S.A. Molecular basis of surface anchored protein A deficiency in the Staphylococcus aureus strain Wood 46. PLoS ONE 2017, 12, e0183913. [Google Scholar] [CrossRef] [Green Version]
- Langone, J.J. Applications of immobilized protein A in immunochemical techniques. J. Immunol. Methods 1982, 55, 277–296. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Zhong, T.; Feng, X. Optimal spacer arm microenvironment for the immobilization of recombinant Protein A on heterofunctional amino-epoxy agarose supports. Process Biochem. 2020, 91, 90–98. [Google Scholar] [CrossRef]
- Wang, H.C.; Yu, C.C.; Liang, C.F.; Huang, L.D.; Hwu, J.R.; Lin, C.C. Site-selective protein immobilization through 2-cyanobenzothiazole-cysteine condensation. Chembiochem A Eur. J. Chem. Biol. 2014, 15, 829–835. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, Y.; Zeng, X. Improved Performance of Recombinant Protein A Immobilized on Agarose Beads by Site-Specific Conjugation. ACS Omega 2017, 2, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Ljungquist, C.; Jansson, B.; Moks, T.; Uhlén, M. Thiol-directed immobilization of recombinant IgG-binding receptors. Eur. J. Biochem. 1989, 186, 557–561. [Google Scholar] [CrossRef]
- Hansen, R.E.; Winther, J.R. An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 2009, 394, 147–158. [Google Scholar] [CrossRef]
- Kim, Y.; Ho, S.O.; Gassman, N.R.; Korlann, Y.; Landorf, E.V.; Collart, F.R.; Weiss, S. Efficient site-specific labeling of proteins via cysteines. Bioconjugate Chem. 2008, 19, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Mateo, C.; Abian, O.; Fernández-Lorente, G.; Pedroche, J.; Fernández-Lafuente, R.; Guisan, J.M.; Tam, A.; Daminati, M. Epoxy sepabeads: A novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol. Prog. 2002, 18, 629–634. [Google Scholar] [CrossRef]
- Henkel, M.; Röckendorf, N.; Frey, A. Selective and Efficient Cysteine Conjugation by Maleimides in the Presence of Phosphine Reductants. Bioconjugate Chem. 2016, 27, 2260–2265. [Google Scholar] [CrossRef]
- Freiherr von Roman, M.; Berensmeier, S. Improving the binding capacities of protein A chromatographic materials by means of ligand polymerization. J. Chromatogr. A 2014, 1347, 80–86. [Google Scholar] [CrossRef]
- Uhlén, M.; Abrahmsén, L. Secretion of recombinant proteins into the culture medium by Escherichia coli and Staphylococcus aureus. Biochem. Soc. Trans. 1989, 17, 340–341. [Google Scholar] [CrossRef] [Green Version]
- He, F. Laemmli-SDS-PAGE. Bio-Protocol 2011, 1, e80. [Google Scholar] [CrossRef]
- Dhayalan, A.; Velramar, B.; Govindasamy, B.; Ramalingam, K.R.; Dilipkumar, A.; Pachiappan, P. Isolation of a bacterial strain from the gut of the fish, Systomus sarana, identification of the isolated strain, optimized production of its protease, the enzyme purification, and partial structural characterization. J. Genet. Eng. Biotechnol. 2022, 20, 24. [Google Scholar] [CrossRef]
- Ahamed, M.; Akhtar, M.J.; Khan, M.A.M.; Alhadlaq, H.A. Enhanced Anticancer Performance of Eco-Friendly-Prepared Mo-ZnO/RGO Nanocomposites: Role of Oxidative Stress and Apoptosis. ACS Omega 2022, 7, 7103–7115. [Google Scholar] [CrossRef]
- Piatkov, K.I.; Vu, T.T.; Hwang, C.S.; Varshavsky, A. Formyl-methionine as a degradation signal at the N-termini of bacterial proteins. Microb. Cell (Graz Austria) 2015, 2, 376–393. [Google Scholar] [CrossRef] [Green Version]
- Bond, M.D.; Panek, M.E.; Zhang, Z.; Wang, D.; Mehndiratta, P.; Zhao, H.; Gunton, K.; Ni, A.; Nedved, M.L.; Burman, S.; et al. Evaluation of a Dual-Wavelength Size Exclusion HPLC Method With Improved Sensitivity to Detect Protein Aggregates and Its Use to Better Characterize Degradation Pathways of an IgG1 Monoclonal Antibody. J. Pharm. Sci. 2010, 99, 2582–2597. [Google Scholar] [CrossRef]
- Mateo, C.; Grazu, V.; Palomo, J.M.; Lopez-Gallego, F.; Fernandez-Lafuente, R.; Guisan, J.M. Immobilization of enzymes on heterofunctional epoxy supports. Nat. Protoc. 2007, 2, 1022–1033. [Google Scholar] [CrossRef]
- Wheatley, J.B.; Schmidt, D.E. Salt-induced immobilization of affinity ligands onto epoxide-activated supports. J. Chromatogr. A 1999, 849, 1–12. [Google Scholar] [CrossRef]
Strain/Plasmid | Characteristics | References |
---|---|---|
Strains | ||
DH5α | supE44 ΔlacU169 (Φ80 lacZ ΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 | Amersham Biosciences, Piscataway, NJ, USA |
BL21(DE3) | F−omp Thsd SB (rB −mB −) gal dcm lon (DE3) | Novagen, Madison, WI, USA |
Plasmids | ||
pET-22b (5493 bp) | 5.4 kb, Amp, T7 promoter, lacO, pelB Signal Sequence | Novagen, Madison, WI, USA |
pET-28b (5369 bp) | 5.4 kb, Kan, T7 promoter, lacO | Novagen, Madison, WI, USA |
Sr. No. | Plasmid | Oligonucleotide Sequence | Restriction Site Inserted |
---|---|---|---|
Strain 1 | pET-28b-SPA | FP: GACATATGGATGAGGCGCAG RP: GAGGATCCTTACTTCGGCGCCTGC | NdeI BamHI |
Strain 2 | pET-22-b-SPA | FP: GCGCCATGGATGAGGCGCCAGCAAAACGCGTTCTAT RP: GAGGATCCTTACTTCGGCGCCTGC | NcoI BamHI |
Strain 3 | pET-28b-SPA-cys | FP: GACATATGGATGAGGCGCAG RP: GAGAATTCTTAGCACTTCGGCGCCTGC | NdeI EcoRI |
Strain 4 | pET-22b-SPA-cys | FP: GCGCCATGGATGAGGCGCCAGCAAAACGCGTTCTAT RP: GAGAATTCTTAGCACTTCGGCGCCTGC | NcoI EcoRI |
Route of Expression | Protein Form | Retention Time (Min) | Peak Area | Peak Area (%) |
---|---|---|---|---|
SPA-cys intracellular | Dimer | 8.83 | 421.97 | 14.87 + 6.61 |
Monomer | 10.28 | 2416.25 | 85.13 + 6.80 | |
SPA-cys extracellular | Dimer | 8.88 | 1551.16 | 51.95 + 1.85 |
Monomer | 10.18 | 1434.80 | 48.05 + 1.85 |
Ligand | Ligand Density (nmol/mL) |
---|---|
SPA (Intracellular) | 100.51 ± 26.12 |
SPA (Extracellular) | 107.66 ± 12.34 |
SPA-cys (Intracellular) | 658.19 ± 40.41 |
SPA-cys (Extracellular) | 313.23 ± 56.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, L.; Shukla, E.; Jena, R.; Yadav, V.; Ahmad, A.; Mishra, R.; Pandey, G. Staphylococcal Protein A with Engineered Cysteine: Comparison of Monomeric Content as a Critical Quality Attribute during Intracellular and Extracellular Expression. Fermentation 2022, 8, 150. https://doi.org/10.3390/fermentation8040150
Choudhury L, Shukla E, Jena R, Yadav V, Ahmad A, Mishra R, Pandey G. Staphylococcal Protein A with Engineered Cysteine: Comparison of Monomeric Content as a Critical Quality Attribute during Intracellular and Extracellular Expression. Fermentation. 2022; 8(4):150. https://doi.org/10.3390/fermentation8040150
Chicago/Turabian StyleChoudhury, Lipsa, Esha Shukla, Rajender Jena, Vishwanath Yadav, Aziz Ahmad, Rajesh Mishra, and Gaurav Pandey. 2022. "Staphylococcal Protein A with Engineered Cysteine: Comparison of Monomeric Content as a Critical Quality Attribute during Intracellular and Extracellular Expression" Fermentation 8, no. 4: 150. https://doi.org/10.3390/fermentation8040150
APA StyleChoudhury, L., Shukla, E., Jena, R., Yadav, V., Ahmad, A., Mishra, R., & Pandey, G. (2022). Staphylococcal Protein A with Engineered Cysteine: Comparison of Monomeric Content as a Critical Quality Attribute during Intracellular and Extracellular Expression. Fermentation, 8(4), 150. https://doi.org/10.3390/fermentation8040150