Revalorization of Cava (Spanish Sparkling Wine) Lees on Sourdough Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Propagation of Sourdoughs
2.2. Viable Counts of Lactic Acid Bacteria (LAB) and Yeasts
2.3. Determination of pH, Fermentation Quotient (FQ) and Organic Acids
2.4. Statistical Analysis
3. Results and Discussion
3.1. Propagation of Sourdoughs
3.1.1. Effect of Cava Lees on Lactic Acid Bacteria
3.1.2. Effect of Cava Lees on Yeasts
3.2. Physicochemical Characterization of Sourdoughs
3.2.1. Monitoring of pH
3.2.2. Fermentation Quotient (FQ) and Organic Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tudela, R.; Gallardo-Chacón, J.J.; Rius, N.; López-Tamames, E.; Buxaderas, S. Ultrastructural changes of sparkling wine lees during long-term aging in real enological conditions. FEMS Yeast Res. 2012, 12, 466–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tudela, R.; Riu-Aumatell, M.; Castellari, M.; Buxaderas, S.; López-Tamames, E. Changes in RNA Catabolites of Sparkling Wines During the Biological Aging. J. Agric. Food Chem. 2013, 61, 6028–6035. [Google Scholar] [CrossRef]
- Gallardo-Chacón, J.J.; Vichi, S.; Urpí, P.; López-Tamames, E.; Buxaderas, S. Antioxidant activity of lees cell surface during sparkling wine sur lie aging. Int. J. Food Microbiol. 2010, 143, 48–53. [Google Scholar] [CrossRef] [PubMed]
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and future strategies for wine yeast lees valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.; Casquete, R.; Córdoba, M.; Ruíz-Moyano, S.; Benito, M.; Pérez-Nevado, F.; Martín, A. Chemical Composition and Functional Properties of Dietary Fibre Concentrates from Winemaking By-Products: Skins, Stems and Lees. Foods 2021, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Riu-Aumatell, M.; Bosch-Fusté, J.; López-Tamames, E.; Buxaderas, S. Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees. Food Chem. 2006, 95, 237–242. [Google Scholar] [CrossRef]
- Tufaile, A.; Snyder, M.; Tufaile, A.P.B. Horocycles of Light in a Ferrocell. Condens. Matter. 2021, 6, 30. [Google Scholar] [CrossRef]
- Hernández-Macias, S.; Ferrer-Bustins, N.; Comas-Basté, O.; Jofré, A.; Latorre-Moratalla, M.; Bover-Cid, S.; Vidal-Carou, M.D.C. Revalorization of Cava Lees to Improve the Safety of Fermented Sausages. Foods 2021, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Rozmierska, J.; Stecka, K.M.; Kotyrba, D.; Piasecka-Jóźwiak, K. Preparation of Sedimented Wine Yeast Derived Products for Potential Application in Food and Feed Industry. Waste Biomass- Valorization 2017, 10, 455–463. [Google Scholar] [CrossRef]
- de Melo, A.N.F.; de Souza, E.L.; Araujo, V.B.D.S.; Magnani, M. Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer’s yeast. LWT 2015, 62, 771–774. [Google Scholar] [CrossRef]
- Kopsahelis, N.; Dimou, C.; Papadaki, A.; Xenopoulos, E.; Kyraleou, M.; Kallithraka, S.; Kotseridis, Y.; Papanikolaou, S.; Koutinas, A.A. Refining of wine lees and cheese whey for the production of microbial oil, polyphenol-rich extracts and value-added co-products. J. Chem. Technol. Biotechnol. 2017, 93, 257–268. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Bademunt, A.; Viñas, I.; Bobo, G.; Villaró, S.; Aguiló-Aguayo, I. Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. J. Food Process. Preserv. 2019, 43, e13861. [Google Scholar] [CrossRef]
- Pancrazio, G.; Cunha, S.C.; de Pinho, P.G.; Loureiro, M.; Meireles, S.; Ferreira, I.M.; Pinho, O. Spent brewer’s yeast extract as an ingredient in cooked hams. Meat Sci. 2016, 121, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Vieira, E.; Teixeira, J.; Ferreira, I.M.P.L.V.O. Valorization of brewers’ spent grain and spent yeast through protein hydrolysates with antioxidant properties. Eur. Food Res. Technol. 2016, 242, 1975–1984. [Google Scholar] [CrossRef]
- Vriesekoop, F.; Haynes, A.; van der Heijden, N.; Liang, H.; Paximada, P.; Zuidberg, A. Incorporation of Fermented Brewers Spent Grain in the Production of Sourdough Bread. Fermentation 2021, 7, 96. [Google Scholar] [CrossRef]
- Worrasinchai, S.; Suphantharika, M.; Pinjai, S.; Jamnong, P. β-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 2006, 20, 68–78. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; Riu-Aumatell, M.; López-Tamames, E. Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. Food Rev. Int. 2021, 1–15. [Google Scholar] [CrossRef]
- Real Decreto 308/2019, de 26 de Abril, Por El Que Se Aprueba La Norma de Calidad Para El Pan. BOE 2019, 113, 50168–50175.
- Di Cagno, R.; Pontonio, E.; Buchin, S.; De Angelis, M.; Lattanzi, A.; Valerio, F.; Gobbetti, M.; Calasso, M. Diversity of the Lactic Acid Bacterium and Yeast Microbiota in the Switch from Firm- to Liquid-Sourdough Fermentation. Appl. Environ. Microbiol. 2014, 80, 3161–3172. [Google Scholar] [CrossRef] [Green Version]
- Lhomme, E.; Orain, S.; Courcoux, P.; Onno, B.; Dousset, X. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics. Int. J. Food Microbiol. 2015, 213, 40–48. [Google Scholar] [CrossRef]
- Aponte, M.; Boscaino, F.; Sorrentino, A.; Coppola, R.; Masi, P.; Romano, A. Volatile compounds and bacterial community dynamics of chestnut-flour-based sourdoughs. Food Chem. 2013, 141, 2394–2404. [Google Scholar] [CrossRef] [PubMed]
- Hüttner, E.K.; Bello, F.D.; Arendt, E.K. Identification of lactic acid bacteria isolated from oat sourdoughs and investigation into their potential for the improvement of oat bread quality. Eur. Food Res. Technol. 2010, 230, 849–857. [Google Scholar] [CrossRef]
- Moroni, A.V.; Arendt, E.K.; Bello, F.D. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol. 2011, 28, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Gómez, B.; Peláez, C.; Martínez-Cuesta, M.C.; Parajó, J.C.; Alonso, J.L.; Requena, T. Emerging prebiotics obtained from lemon and sugar beet byproducts: Evaluation of their in vitro fermentability by probiotic bacteria. LWT 2019, 109, 17–25. [Google Scholar] [CrossRef]
- Sendra, E.; Fayos, P.; Lario, Y.; Fernández-López, J.; Sayas-Barberá, E.; Pérez-Alvarez, J.A. Incorporation of citrus fibers in fermented milk containing probiotic bacteria. Food Microbiol. 2008, 25, 13–21. [Google Scholar] [CrossRef]
- Yuca, B.; Topçu, İ.; Yağcılar-Aydemir, H.; Özer, C.O.; Kılıç, B.; Başyiğit-Kılıç, G. Effects of Beta-Glucan Addition on the Phys-icochemical and Microbiological Characteristics of Fermented Sausage. J. Food Sci. Technol. 2019, 56, 3439–3448. [Google Scholar] [CrossRef]
- Russo, P.; López, P.; Capozzi, V.; De Palencia, P.F.; Dueñas, M.T.; Spano, G.; Fiocco, D. Beta-Glucans Improve Growth, Viability and Colonization of Probiotic Microorganisms. Int. J. Mol. Sci. 2012, 13, 6026–6039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Liu, J.; Yan, Q.; You, X.; Yang, S.; Jiang, Z. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β-d-glucan oligosaccharides in Lactobacillus species. Carbohydr. Polym. 2018, 188, 17–26. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Vrancken, G.; Ravyts, F.; Rimaux, T.; Weckx, S. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 2009, 26, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Galli, V.; Venturi, M.; Pini, N.; Guerrini, S.; Granchi, L.; Vincenzini, M. Liquid and firm sourdough fermentation: Microbial robustness and interactions during consecutive backsloppings. LWT 2019, 105, 9–15. [Google Scholar] [CrossRef]
- Ercolini, D.; Pontonio, E.; De Filippis, F.; Minervini, F.; La Storia, A.; Gobbetti, M.; Di Cagno, R. Microbial Ecology Dynamics during Rye and Wheat Sourdough Preparation. Appl. Environ. Microbiol. 2013, 79, 7827–7836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieuwerts, S.; Bron, P.A.; Smid, E.J. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation. LWT 2018, 90, 201–206. [Google Scholar] [CrossRef]
- Axel, C.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int. J. Food Microbiol. 2016, 239, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Corsetti, A.; Rossi, J. The sourdough microflora. Interactions between lactic acid bacteria and yeasts: Metabolism of carbohydrates. Appl. Microbiol. Biotechnol. 1994, 41, 456–460. [Google Scholar] [CrossRef]
- Fernández-López, J.; Viuda-Martos, M.; Sendra, E.; Sayas-Barberá, E.; Navarro, C.; Pérez-Alvarez, J.A. Orange fibre as potential functional ingredient for dry-cured sausages. Eur. Food Res. Technol. 2006, 226, 1–6. [Google Scholar] [CrossRef]
- Lattanzi, A.; Minervini, F.; Di Cagno, R.; Diviccaro, A.; Antonielli, L.; Cardinali, G.; Cappelle, S.; De Angelis, M.; Gobbetti, M. The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet leavened baked goods. Int. J. Food Microbiol. 2013, 163, 71–79. [Google Scholar] [CrossRef]
- Gobbetti, M. The sourdough microflora: Interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 1998, 9, 267–274. [Google Scholar] [CrossRef]
- Liu, S.-Q. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. J. Food Microbiol. 2002, 83, 115–131. [Google Scholar] [CrossRef]
- Gänzle, M.G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef]
- Gänzle, M. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
Flour 1 | Water | Dough 2 | Cava Lees 3 | |
---|---|---|---|---|
Control | 100 | 100 | 100 | - |
0.5% Lees | 100 | 100 | 100 | 0.5 |
1% Lees | 100 | 100 | 100 | 1 |
2% Lees | 100 | 100 | 100 | 2 |
Wheat Sourdoughs | Control | 0.5% lees | 1% lees | 2% lees |
---|---|---|---|---|
Beginning of fermentation (t = 0 days) | ||||
pH | 5.78 ± 0.04 | 5.72 ± 0.07 | 5.48 ± 0.03 | 5.83 ± 0.04 |
Acetic acid (g/L) | <0.03 | <0.03 | <0.03 | <0.03 |
Lactic acid (g/L) | <0.02 | <0.02 | <0.02 | <0.02 |
Malic acid (g/L) | 0.45 ± 0.07 a | 0.85 ± 0.02 b | 0.95 ± 0.04 b | 1.00 ± 0.05 b |
Citric acid (mg/L) | 22.84 ± 2.42 a | 40.74 ± 8.70 a | 174.17 ± 12.82 b | 359.25 ± 11.34 c |
End of fermentation (t = 8 days) | ||||
pH | 4.38 ± 0.05 a | 3.98 ± 0.04 b | 3.87 ± 0.13 b | 3.88 ± 0.04 b |
Acetic acid (g/L) | 0.14 ± 0.03 a | 0.29 ± 0.08 a | 0.51 ± 0.02 b | 0.66 ± 0.023 b |
Lactic acid (g/L) | 2.58 ± 0.14 a | 3.14 ± 0.34 a | 4.37 ± 0.13 b | 6.35 ± 0.25 c |
Malic acid (g/L) | <0.03 | <0.03 | <0.03 | <0.03 |
Citric acid (mg/L) | <11.00 | <11.00 | <11.00 | <11.00 |
Fermentation Quotient (FQ) | 13.00 ± 0.96 a | 7.40 ± 0.89 b | 6.26 ± 0.44 b | 6.40 ± 0.02 b |
Rye Sourdoughs | Control | 0.5% lees | 1% lees | 2% lees |
Beginning of fermentation (t = 0 days) | ||||
pH | 6.29 ± 0.07 a | 6.01 ± 0.03 b | 5.84 ± 0.06 b | 5.63 ± 0.11 b |
Acetic acid (g/L) | <0.03 | <0.03 | <0.03 | <0.03 |
Lactic acid (g/L) | <0.02 | <0.02 | <0.02 | <0.02 |
Malic acid (g/L) | 0.95 ± 0.03 a | 1.20 ± 0.04 b | 1.550 ± 0.05 b | 2.10 ± 0.02 c |
Citric acid (mg/L) | 116.53 ± 8.73 a | 182.41 ± 12.53 a | 250.32 ± 29.51 a | 638.15 ± 72.51 b |
End of fermentation (t = 8 days) | ||||
pH | 4.06 ± 0.02 a | 3.92 ± 0.05 b | 3.93 ± 0.01 b | 3.66 ± 0.01 c |
Acetic acid (g/L) | 0.18 ± 0.03 a | 0.49 ± 0.07 b | 0.62 ± 0.04 bc | 0.80 ± 0.08 c |
Lactic acid (g/L) | 1.70 ± 0.20 a | 2.55 ± 0.191 b | 3.22 ± 0.18 bc | 3.67 ± 0.18 c |
Malic acid (g/L) | <0.03 | <0.03 | <0.03 | <0.03 |
Citric acid (mg/L) | <11.00 | <11.00 | <11.00 | <11.00 |
Fermentation Quotient (FQ) | 6.48 ± 0.79 a | 3.53 ± 0.20 b | 3.47 ± 0.23 b | 3.06 ± 0.17 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Garcia, A.; Riu-Aumatell, M.; López-Tamames, E. Revalorization of Cava (Spanish Sparkling Wine) Lees on Sourdough Fermentation. Fermentation 2022, 8, 133. https://doi.org/10.3390/fermentation8030133
Martín-Garcia A, Riu-Aumatell M, López-Tamames E. Revalorization of Cava (Spanish Sparkling Wine) Lees on Sourdough Fermentation. Fermentation. 2022; 8(3):133. https://doi.org/10.3390/fermentation8030133
Chicago/Turabian StyleMartín-Garcia, Alba, Montserrat Riu-Aumatell, and Elvira López-Tamames. 2022. "Revalorization of Cava (Spanish Sparkling Wine) Lees on Sourdough Fermentation" Fermentation 8, no. 3: 133. https://doi.org/10.3390/fermentation8030133
APA StyleMartín-Garcia, A., Riu-Aumatell, M., & López-Tamames, E. (2022). Revalorization of Cava (Spanish Sparkling Wine) Lees on Sourdough Fermentation. Fermentation, 8(3), 133. https://doi.org/10.3390/fermentation8030133