Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dried Kratom Leaves
2.2. Location, Animals, Experimental Design, and Diets
2.3. Feed and Fecal Sampling Procedures
2.4. Urine Sampling Procedures
2.5. Rumen Fluid Sampling Procedures
2.6. Blood Sampling Procedures and Hematological and Serum Biochemical Analysis
2.7. Primers and Real-Time Polymerase Chain Reaction (Real-Time PCR)
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition of DKTL
3.2. Effects of DKTL on Nutrient Intake and Apparent Digestibility of Nutrients in Goats
3.3. Effects of DKTL on Ruminal Fermentation and Blood Metabolites in Goats
3.4. Effects of DKTL on Lipid Profile in Goats
3.5. Effects of DKTL on Red Blood Profile (Complete Blood Count) in Goats
3.6. Effects of DKTL on White Blood Profile and Liver Function in Goats
3.7. Effects of DKTL on Ruminal Microorganism Population
3.8. Effects of DKTL on N Metabolism and Utilization
3.9. Effects of DKTL on Volatile Fatty Acid and Methane Production
4. Discussion
4.1. Chemical Composition of DKTL
4.2. Effects of DKTL on Nutrient Intake and Apparent Digestibility of Nutrients in Goats
4.3. Effects of DKTL on Ruminal Fermentation and Blood Metabolites in Goats
4.4. Effects of DKTL on Lipid Profile in Goats
4.5. Effects of DKTL on Red Blood Profile in Goats
4.6. Effects of DKTL on White Blood Profile and Liver Function in Goats
4.7. Effects of DKTL on Ruminal Microorganism Population
4.8. Effects of DKTL on N Metabolism and Utilization
4.9. Effects of DKTL on Volatile Fatty Acid and Methane Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abou-Elkhair, R.; Ahmed, H.A.; Selim, S. Effects of black pepper (Piper nigrum), turmeric powder (Curcuma longa) and coriander seeds (Coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens. Asian-Australas. J. Anim. Sci. 2014, 27, 847–854. [Google Scholar] [CrossRef]
- Goh, Y.S.; Karunakaran, T.; Murugaiyah, V.; Santhanam, R.; Abu Bakar, M.H.; Ramanathan, S. Accelerated Solvent Extractions (ASE) of Mitragyna speciosa Korth. (Kratom) Leaves: Evaluation of its cytotoxicity and antinociceptive activity. Molecules 2021, 26, 3704. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Silanikove, N.; Perevolotsky, A.; Provenza, F.D. Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed. Sci. Technol. 2001, 91, 69–81. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G. The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. [Google Scholar] [CrossRef] [PubMed]
- Barry, T.N.; McNeill, D.M.; McNabb, W.C. Plant secondary compounds; their impact on forage nutritive value and upon animal production. In Proceedings of the XIX International Grassland Congress, Sao Paulo, Brazil, 11–21 February 2001; FEALQ: Piracicaba, SP, Brazil, 2001. [Google Scholar]
- Cheeke, P.R. Actual and Potential Applications of Yucca Schidigera and Quillaja Saponaria Saponins in Human and Animal Nutrition BT-Saponins in Food, Feedstuffs and Medicinal Plants; Oleszek, W., Marston, A., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 241–254. ISBN 978-94-015-9339-7. [Google Scholar]
- Matra, D.D.; Fathoni, M.A.N.; Majiidu, M.; Wicaksono, H.; Sriyono, A.; Gunawan, G.; Susanti, H.; Sari, R.; Fitmawati, F.; Siregar, I.Z.; et al. The genetic variation and relationship among the natural hybrids of + Kosterm. Sci. Rep. 2021, 11, 19766. [Google Scholar] [CrossRef] [PubMed]
- Leong Bin Abdullah, M.F.I.; Ahmad Yusof, H.; Mohd Shariff, N.; Hami, R.; Nisman, N.F.; Law, K.S. Depression and anxiety in the Malaysian urban population and their association with demographic characteristics, quality of life, and the emergence of the COVID-19 pandemic. Curr. Psychol. 2021, 40, 6259–6270. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 1989, 15, 1795–1810. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemist (AOAC). The Official Methods of Analysis of the Association of Official Analytical Chemist, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1998. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Jamil, M.F.A.; Subki, M.F.M.; Lan, T.M.; Majid, M.I.A.; Adenan, M.I. The effect of mitragynine on cAMP formation and mRNA expression of mu-opioid receptors mediated by chronic morphine treatment in SK-N-SH neuroblastoma cell. J. Ethnopharmacol. 2013, 148, 135–143. [Google Scholar] [CrossRef]
- Wanapat, M.; Poungchompu, O. Method for Estimation of Tannin by Vanillin-HCL Method (A Modified Method of Burns, 1971); Department of Animal Science, Khon Kaen University: Khon Kaen, Thailand, 2001. [Google Scholar]
- Samuel, M.; Sagathewan, J.; Thomas, G.M. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 1997, 69, 805–807. [Google Scholar]
- Yu, Y.; Lee, C.; Hwang, S. Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci. Technol. 2005, 52, 85–91. [Google Scholar] [CrossRef]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Mitragyna speciosa korth leaves supplementation on feed utilization, rumen fermentation efficiency, microbial population, and methane production in vitro. Fermentation 2022, 8, 8. [Google Scholar] [CrossRef]
- Kikura-Hanajiri, R.; Kawamura, M.; Maruyama, T.; Kitajima, M.; Takayama, H.; Goda, Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol. 2009, 27, 67–74. [Google Scholar] [CrossRef]
- Chittrakarn, S.; Radenahmad, N.; Kaewsara, S.; Udomuksorn, W.; Keawpradub, N.; Phukpattaranont, P. Gastroprotective effects of methanolic extract of kratom leaves on gastric ulcer and reflux esophagitis in rats. Songklanakarin J. Sci. Technol. 2020, 40, 258–263. [Google Scholar]
- Chanjula, P.; Ngampongsai, W.; Wanapat, M. Effects of replacing ground corn with cassava chip in concentrate on feed intake, nutrient utilization, rumen fermentation characteristics and microbial populations in goats. Asian-Australas. J. Anim. Sci. 2007, 20, 1557–1566. [Google Scholar] [CrossRef]
- Vicknasingam, B.; Narayanan, S.; Beng, G.T.; Mansor, S.M. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int. J. Drug Policy 2010, 21, 283–288. [Google Scholar] [CrossRef]
- Babu, K.M.; McCurdy, C.R.; Boyer, E.W. Opioid receptors and legal highs: Salvia divinorum and Kratom. Clin. Toxicol. 2008, 46, 146–152. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Jivan, J.K.; Andurkar, S.V. Pharmacology of kratom: An emerging botanical agent with stimulant, analgesic and opioid-like effects. J. Am. Osteopath. Assoc. 2012, 112, 792–799. [Google Scholar]
- White, C.M. Pharmacologic and clinical assessment of kratom: An update. Am. J. Health-Syst. Pharm. 2019, 76, 1915–1925. [Google Scholar] [CrossRef]
- Arndt, T.; Claussen, U.; Güssregen, B.; Schröfel, S.; Stürzer, B.; Werle, A.; Wolf, G. Kratom alkaloids and O-desmethyltramadol in urine of a “Krypton” herbal mixture consumer. Forensic Sci. Int. 2011, 208, 47–52. [Google Scholar] [CrossRef]
- Sultana, N.; Alimon, A.; Huque, K.; Sazili, A.; Yaakub, H.; Hossain, M.B. The feeding value of moringa (Moringa oleifera) foliage as replacement to conventional concentrate diet in Bengal goats. Adv. Anim. Vet. Sci. 2015, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Chen, X. Current Status and Potential of Moringa oleifera Leaf as an Alternative Protein Source for Animal Feeds. Front. Vet. Sci. 2020, 7, 53. [Google Scholar] [CrossRef]
- Cieślak, P.; Zmora, A.; Matkowski, I.; Nawrot-Hadzik, E.; Pers-kamczyc, M.; El-Sherbiny, M.; Bryszak, M.S.S. Tannins from Sanguisorba officinalis affect in vitro rumen methane production and fermentation. J. Anim. Plant Sci. 2016, 26, 54–62. [Google Scholar]
- Gerlach, K.; Pries, M.; Tholen, E.; Schmithausen, A.J.; Büscher, W.; Südekum, K.-H. Effect of condensed tannins in rations of lactating dairy cows on production variables and nitrogen use efficiency. Animal 2018, 12, 1847–1855. [Google Scholar] [CrossRef]
- García, E.M.; López, A.; Zimerman, M.; Hernández, O.; Arroquy, J.I.; Nazareno, M.A. Enhanced oxidative stability of meat by including tannin-rich leaves of woody plants in goat diet. Asian-Australas. J. Anim. Sci. 2019, 32, 1439. [Google Scholar] [CrossRef] [Green Version]
- Jayanegara, A.; Yogianto, Y.; Wina, E.; Sudarman, A.; Kondo, M.; Obitsu, T.; Kreuzer, M. Combination Effects of Plant Extracts Rich in Tannins and Saponins as Feed Additives for Mitigating in Vitro Ruminal Methane and Ammonia Formation. Animals 2020, 10, 1531. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Appl. Microbiol. Biotechnol. 2014, 98, 897–905. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.I.; Piccolo, G.; Bovera, F.; Zicarelli, F.; Gazaneo, M.P.; Infascelli, F. In vitro fermentation kinetics of fresh and dried silage. Anim. Feed. Sci. Technol. 2005, 123–124, 129–137. [Google Scholar] [CrossRef]
- Zicarelli, F.; Grassi, C.; Gazaneo, M.P.; Masiello, I.; Vecchio, D.; Campanile, G. Starter protein concentration and weaning of buffalo calf. Ital. J. Anim. Sci. 2007, 6, 515–517. [Google Scholar] [CrossRef]
- Phesatcha, K.; Wanapat, M. Tropical legume supplementation influences microbial protein synthesis and rumen ecology. J. Anim. Physiol. Anim. Nutr. 2017, 101, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Gunun, P.; Anantasook, N.; Kang, S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural Products as Manipulators of Rumen Fermentation. Asian-Australas. J. Anim. Sci. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Cherdthong, A.; Wanapat, M.; Wachirapakorn, C. Effects of urea–calcium mixture in concentrate containing high cassava chip on feed intake, rumen fermentation and performance of lactating dairy cows fed on rice straw. Livest. Sci. 2011, 136, 76–84. [Google Scholar] [CrossRef]
- Kalkan, N.A.; Aksoy, S.; Aksoy, E.A.; Hasirci, N. Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci. 2012, 123, 707–716. [Google Scholar] [CrossRef]
- Paula, E.M.; Broderick, G.A.; Faciola, A.P. Effects of replacing soybean meal with canola meal for lactating dairy cows fed 3 different ratios of alfalfa to corn silage. J. Dairy Sci. 2020, 103, 1463–1471. [Google Scholar] [CrossRef]
- Grummer, R.R.; Winkler, J.C.; Bertics, S.J.; Studer, V.A. Effect of propylene glycol dosage during feed restriction on metabolites in blood of prepartum Holstein heifers. J. Dairy Sci. 1994, 77, 3618–3623. [Google Scholar] [CrossRef]
- Lee, J.S.; Chang, P.-Y.; Zhang, Y.; Kizer, J.R.; Best, L.G.; Howard, B.V. Triglyceride and HDL-C Dyslipidemia and Risks of Coronary Heart Disease and Ischemic Stroke by Glycemic Dysregulation Status: The Strong Heart Study. Diabetes Care 2017, 40, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Müller, C.P.; Murugaiyah, V.; Hamid, S.B.S.; Vicknasingam, B.K.; Avery, B.; Chear, N.J.Y.; Mansor, S.M. Evaluating the hematological and clinical-chemistry parameters of kratom (Mitragyna speciosa) users in Malaysia. J. Ethnopharmacol. 2018, 214, 197–206. [Google Scholar] [CrossRef]
- La-up, A.; Saengow, U.; Aramrattana, A. High serum high-density lipoprotein and low serum triglycerides in Kratom users: A study of Kratom users in Thailand. Heliyon 2021, 7, e06931. [Google Scholar] [CrossRef]
- Kuamsub, S.; Singthong, P.; Chanthasri, W.; Chobngam, N.; Sangkaew, W.; Hemdecho, S.; Kaewmanee, T.; Chusri, S. Improved Lipid Profile Associated with Daily Consumption of Tri-Sura-Phon in Healthy Overweight Volunteers: An Open-Label, Randomized Controlled Trial. Evid.-Based Complementary Altern. Med. 2017, 2017, 2687173. [Google Scholar] [CrossRef]
- Rouhi-Boroujeni, H.; Rouhi-Boroujeni, H.; Heidarian, E.; Mohammadizadeh, F.; Rafieian-Kopaei, M. Herbs with anti-lipid effects and their interactions with statins as a chemical anti-hyperlipidemia group drugs: A systematic review. ARYA Atheroscler. 2015, 11, 244–251. [Google Scholar]
- Li, X.; Zhang, L.; Ahammed, G.J.; Li, Z.-X.; Wei, J.-P.; Shen, C.; Yan, P.; Zhang, L.-P.; Han, W.-Y. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L. Sci. Rep. 2017, 7, 7937. [Google Scholar] [CrossRef]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Ellis, W.E.; Dumas, T.M.; Forbes, L.M. Physically isolated but socially connected: Psychological adjustment and stress among adolescents during the initial COVID-19 crisis. Can. J. Behav. Sci. 2020, 52, 177–187. [Google Scholar] [CrossRef]
- Yu, B.; Zhao, S.; Peng, D.; Huo, Y.; Hu, L. A comparison of non-HDL and LDL cholesterol goal attainment in the CHILLAS trial. Int. J. Cardiol. 2013, 168, 4340–4342. [Google Scholar] [CrossRef]
- Gupta, R.; Khasa, Y.P.; Kuhad, R.C. Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr. Polym. 2011, 84, 1103–1109. [Google Scholar] [CrossRef]
- Juhaimi, F.A.; Uslu, N.; Babiker, E.E.; Ghafoor, K.; Ahmed, I.A.M.; Özcan, M.M. The effect of different solvent types and extraction methods on oil yields and fatty acid composition of safflower seed. J. Oleo Sci. 2019, 68, 1099–1104. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Gouda, G.A.; Olafadehan, O.A.; Abdo, M.M. Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal 2018, 12, 964–972. [Google Scholar] [CrossRef]
- Wang, S.P.; Wang, W.J. Effects of dietary supplementation of Chinese herb medicine mixture on rumen fermentation, nutrient digestion and blood profile in goats. S. Afr. J. Anim. Sci. 2016, 46, 247–260. [Google Scholar] [CrossRef]
- Khattab, H.A.-R.H.; Yousef, F.M.A.; Sindi, H.A.A. Effectiveness of moringa oleifera L. leaves extract against methotrexate-induced acute hepatotoxicity in male rats. Int. J. Pharmacol. 2018, 14, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Hamed, H.S. Ameliorative effects of Spirulina platensis on deltamethrin-induced biochemical alterations and oxidative stress in the African catfish; Clarias gariepinus. Open J. Mar. Sci. 2016, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Gole, M.K.; Dasgupta, S. Role of plant metabolites in toxic liver injury. Asia Pac. J. Clin. Nutr. 2002, 11, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Rira, M.; Morgavi, D.P.; Archimède, H.; Marie-Magdeleine, C.; Popova, M.; Bousseboua, H.; Doreau, M. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep. J. Anim. Sci. 2015, 93, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Polyorach, S.; Wanapat, M.; Cherdthong, A.; Kang, S. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows. Trop. Anim. Health Prod. 2016, 48, 593–601. [Google Scholar] [CrossRef]
- Singh, B.; Chaudhary, L.C.; Agarwal, N.; Kamra, D.N. Effect of feeding Ficus infectoria leaves on rumen microbial profile and nutrient utilization in goats. Asian-Australas. J. Anim. Sci. 2011, 24, 810–817. [Google Scholar] [CrossRef]
- Baah, J.; Ivan, M.; Hristov, A.N.; Koenig, K.M.; Rode, L.M.; McAllister, T.A. Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers. Anim. Feed. Sci. Technol. 2007, 137, 126–137. [Google Scholar] [CrossRef]
- Poungchompu, O.; Wanapat, M.; Wachirapakorn, C.; Wanapat, S.; Cherdthong, A. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 2009, 63, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Hess, H.D.; Monsalve, L.M.; Lascano, C.E.; Carulla, J.E.; Díaz, T.E.; Kreuzer, M. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust. J. Agric. Res. 2003, 54, 703–713. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Viennasay, B.; Wanapat, M.; Phesatcha, K.; Phesatcha, B.; Ampapon, T. Replacement of rice straw with cassava-top silage on rumen ecology, fermentation and nutrient digestibilities in dairy steers. Anim. Prod. Sci. 2019, 59, 906–913. [Google Scholar] [CrossRef]
- Chanjula, P.; Petcharat, V.; Cherdthong, A. Effects of fungal (Lentinussajor-caju) treated oil palm frond on performance and carcass characteristics in finishing goats. Asian-Australas. J. Anim. Sci. 2017, 30, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Puchala, R.; Min, B.R.; Goetsch, A.L.; Sahlu, T. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 2005, 83, 182–186. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A.; Seankamsorn, A.; Khonkhaeng, B.; Wanapat, M.; Uriyapongson, S.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. In vitro fermentation, digestibility and methane production as influenced by Delonix regia seed meal containing tannins and saponins. J. Anim. Feed. Sci. 2017, 26, 123–130. [Google Scholar] [CrossRef]
- Gunun, P.; Gunun, N.; Wanapat, M.; Cherdthong, A.; Polyorach, S.; Kang, S. In vitro rumen fermentation and methane production as affected by rambutan peel powder. J. Appl. Anim. Res. 2018, 46, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Hünerberg, M.; McGinn, S.M.; Beauchemin, K.A.; Okine, E.K.; Harstad, O.M.; McAllister, T.A. Effect of dried distillers’ grains with solubles on enteric methane emissions and nitrogen excretion from finishing beef cattle. Can. J. Anim. Sci. 2013, 93, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.Z.; Oba, M.; McAllister, T.A. Quality and precision processing of barley grain affected intake and digestibility of dry matter in feedlot steers. Can. J. Anim. Sci. 2013, 93, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Effect of plants containing secondary compounds with palm oil on feed Intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas. J. Anim. Sci. 2013, 26, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Anantasook, N.; Wanapat, M.; Cherdthong, A.; Gunun, P. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian-Australas. J. Anim. Sci. 2013, 26, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Wanapat, M. Cherdthong, A. Effect of banana flower powder supplementation as a rumen buffer on rumen fermentation efficiency and nutrient digestibility in dairy steers fed on high concentrate diet. Anim. Feed. Sci. Technol. 2014, 196, 32–41. [Google Scholar] [CrossRef]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef]
- Thao, N.T.; Wanapat, M.; Kang, S.; Cherdthong, A. Effects of supplementation of Eucalyptus (E. Camaldulensis) leaf meal on feed intake and rumen fermentation efficiency in Swamp buffaloes. Asian-Australas. J. Anim. Sci. 2015, 28, 951–957. [Google Scholar] [CrossRef] [Green Version]
Item (% of DM) | TMR 1 | |
---|---|---|
Concentrate Diet | Roughage Source | |
Pangola grass hay (PGH) | - | 30 |
Ground corn | 36.2 | - |
Soybean meal | 22.7 | - |
Fish meal | 0.5 | - |
Leucaena leaf meal | 4.0 | - |
Molasses | 5.0 | - |
Dicalcium phosphate | 0.3 | - |
Salt | 0.3 | - |
Mineral and vitamin mix 2 | 1.0 | - |
Chemical composition, % | ||
Dry matter | 91.69 | 94.26 |
% of DM | ||
Crude protein | 16.46 | 3.18 |
Ash | 5.92 | 5.65 |
Organic matter | 94.08 | 94.35 |
Ether extract | 3 | 1.99 |
Non-fibrous carbohydrate 3 | 31.92 | 14.77 |
Neutral detergent fiber | 42.7 | 74.41 |
Acid detergent fiber | 19.6 | 41.6 |
Acid detergent lignin | 5.4 | 6.07 |
Gross energy, Mcal/kg DM | 4.09 | 3.91 |
TDN, % 4 | 76.06 | 55.6 |
Metabolizable energy, Mcal/kg DM 5 | 2.75 | 2.01 |
Parameters | DKTL 1 |
---|---|
Dry matter 2 (%) | 25.45 |
Chemical composition (% of DM) | |
Dry matter | 95.24 |
Crude protein | 20.10 |
Ash | 4.11 |
Organic matter | 95.89 |
Ether extract | 1.71 |
Neutral detergent fiber | 44.49 |
Acid detergent fiber | 27.31 |
Acid detergent lignin | 8.25 |
Gross energy, Mcal/kg DM | 4.63 |
Alkaloid profile (%) | |
Mitragynine | 4.14 |
Paynantheine | 0.59 |
Speciogynine | 0.26 |
Total condensed tannin content (%) | 8.28 |
Total saponin content (%) | 5.21 |
Flavonoids (%) | 11.24 |
Phenolic acids (%) | 4.10 |
Antioxidant activity | |
DPPH 4 (IC50 (mg/mL) | 1.04 |
FRAP 5 (%) | 3.98 |
Mineral profile 3 | |
Ca, % | 0.84 |
P, % | 0.20 |
K, % | 1.53 |
Mg, % | 0.30 |
S, % | 1.26 |
Na, % | 0.01 |
Fe, ppm | 80.67 |
Cu, ppm | 11.54 |
Mn, ppm | 1862.30 |
Zn, ppm | 32.14 |
B, ppm | 69.71 |
Cr, ppm | 3.23 |
Se, ppm | ND |
Microorganism | F/R | Primer Sequence (Sequence 5′–3′) | Amplicon (Base Pairs) (pb) | Annealing Temperature (°C) |
---|---|---|---|---|
Total bacteria | F | CGGCAACGAGCGCAACCC | 130 | 55 |
R | CCATTGTAGCACGTGTGTAGCC | |||
Total protozoa | F | CTTGCCCTCYAATCGTWCT | 223 | 55 |
R | GCTTTCGWTGGTAGTGTATT | |||
Total fungi | F | GAGGAAGTAAAAGTCGTAACAAGGTTTC | 120 | |
R | CAAATTCACAAAGGGTAGGATGATT | |||
Fibrobacter succinogen | F | GTTCGGAATTACTGGGCGTAAA | 121 | 55 |
R | CGCCTGCCCCTGAACTATC | |||
Ruminococcus albus | F | CCCTAAAAGCAGTCTTAGTTCG | 175 | 55 |
R | CCTCCTTGCGGTTAGAACA | |||
Ruminococcus flavefaciens | F | CGAACGGAGATAATTTGAGTTTACTTAGG | 132 | 55 |
R | CGGTCTCTGTATGTTATGAGGTATTACC |
Item | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
DMI, kg/d | |||||||
Total DMI, kg/d | 0.903 | 0.982 | 0.964 | 0.855 | 0.02 | 0.40 | 0.04 |
DMI, %BW | 3.13 | 3.47 | 3.39 | 2.94 | 0.13 | 0.44 | 0.05 |
DMI, g/kg W0.75 | 72.45 | 79.87 | 78.12 | 68.23 | 2.57 | 0.34 | 0.02 |
OMI, kg/d | 0.860 | 0.905 | 0.885 | 0.818 | >0.03 | 0.43 | 0.19 |
CPI, kg/d | 0.153 | 0.158 | 0.155 | 0.143 | 0.01 | 0.35 | 0.26 |
EEI, kg/d | 0.028 | 0.030 | 0.030 | 0.028 | 0.001 | 1.00 | 0.18 |
NDFI, kg/d | 0.471 | 0.496 | 0.484 | 0.447 | 0.01 | 0.41 | 0.19 |
ADFI, kg/d | 0.185 | 0.195 | 0.190 | 0.175 | 0.01 | 0.40 | 0.18 |
Apparent digestibility, % | |||||||
DM | 60.82 | 66.27 | 66.60 | 55.30 | 1.37 | 0.19 | 0.01 |
OM | 62.72 | 67.91 | 68.34 | 56.99 | 1.39 | 0.18 | 0.01 |
CP | 58.50 | 63.86 | 64.24 | 51.92 | 1.59 | 0.28 | 0.04 |
EE | 69.93 | 69.68 | 72.08 | 60.81 | 3.63 | 0.27 | 0.29 |
NDF | 53.06 | 58.46 | 58.51 | 43.20 | 2.37 | 0.03 | 0.01 |
ADF | 29.01 | 39.26 | 38.62 | 23.63 | 2.03 | 0.22 | 0.01 |
Estimated energy intake 4 | |||||||
ME Mcal/d | 2.06 | 2.33 | 2.29 | 1.79 | 0.09 | 0.28 | 0.03 |
ME Mcal/kg DM | 2.24 | 2.42 | 2.44 | 2.03 | 0.04 | 0.19 | 0.01 |
Item | Supplement Levels (g/d) of DKTL 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
Temperature, °C | |||||||
0 h post feeding | 39.1 | 39.3 | 39.4 | 39.2 | 0.33 | 0.91 | 0.54 |
4 | 39.8 | 39.7 | 39.5 | 39.4 | 0.23 | 0.52 | 0.32 |
Mean | 39.4 | 39.5 | 39.4 | 39.3 | 0.16 | 0.83 | 0.23 |
Ruminal pH | |||||||
0 h post feeding | 6.76 | 6.85 | 6.92 | 6.85 | 0.11 | 0.50 | 0.47 |
4 | 6.35 | 6.46 | 6.52 | 6.47 | 0.36 | 0.41 | 0.27 |
Mean | 6.55 | 6.65 | 6.72 | 6.66 | 0.06 | 0.11 | 0.97 |
NH3-N, mg/dL | |||||||
0 h post feeding | 14.63 | 11.77 | 9.72 | 10.01 | 1.25 | 0.03 | 0.25 |
4 | 18.55 | 16.05 | 13.21 | 14.61 | 0.91 | <0.01 | 0.08 |
Mean | 16.59 | 13.91 | 11.46 | 12.31 | 1.00 | 0.01 | 0.12 |
BUN, mg/dL | |||||||
0 h post feeding | 21.76 | 16.44 | 16.98 | 16.48 | 0.73 | <0.01 | 0.02 |
4 | 21.40 | 18.34 | 18.75 | 18.25 | 0.79 | 0.02 | 0.13 |
Mean | 21.58 | 17.39 | 17.87 | 17.37 | 0.34 | <0.01 | <0.01 |
GLU, mg/dL | |||||||
0 h post feeding | 63.00 | 67.75 | 67.75 | 65.00 | 1.96 | 0.50 | 0.08 |
4 | 61.75 | 73.00 | 74.50 | 67.25 | 1.47 | 0.20 | 0.01 |
Mean | 62.38 | 70.38 | 71.13 | 66.13 | 1.17 | 0.21 | 0.01 |
PCV, % | |||||||
0 h post feeding | 27.00 | 28.75 | 29.00 | 28.75 | 0.65 | 0.64 | 0.71 |
4 | 26.00 | 27.50 | 28.00 | 26.75 | 0.72 | 0.78 | 0.54 |
Mean | 26.50 | 28.13 | 28.50 | 27.75 | 0.61 | 0.70 | 0.62 |
Cr, mg/dL | |||||||
0 h post feeding | 1.19 | 1.29 | 1.14 | 1.17 | 0.06 | 0.70 | 0.78 |
4 | 1.26 | 1.22 | 1.23 | 1.16 | 0.02 | 0.57 | 0.90 |
Mean | 1.23 | 1.25 | 1.18 | 1.16 | 0.04 | 0.62 | 0.84 |
Mitragynine, ng/ml | |||||||
0 h post feeding | 0.00 | 0.54 | 0.51 | 0.62 | 0.17 | 0.04 | 0.24 |
4 | 0.00 | 0.81 | 1.06 | 1.21 | 0.10 | <0.01 | 0.01 |
Mean | 0.00 | 0.86 | 0.94 | 1.02 | 0.04 | <0.01 | 0.01 |
Item | Supplement Levels (g/d) of DKTL 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
CHOL, mg% | |||||||
0 h post feeding | 62.75 | 41.75 | 46.50 | 43.50 | 2.75 | 0.05 | 0.14 |
4 | 60.75 | 40.00 | 45.25 | 42.00 | 2.78 | 0.05 | 0.13 |
Mean | 61.75 | 40.87 | 45.87 | 42.75 | 2.76 | 0.05 | 0.19 |
HDL-Chol, mg% | |||||||
0 h post feeding | 31.25 | 35.75 | 36.75 | 32.25 | 1.16 | 0.72 | 0.09 |
4 | 27.75 | 34.75 | 36.50 | 32.50 | 2.35 | 0.30 | 0.11 |
Mean | 29.50 | 35.25 | 36.63 | 32.38 | 1.74 | 0.44 | 0.10 |
LDL-Chol, mg% | |||||||
0 h post feeding | 32.15 | 16.72 | 24.00 | 19.25 | 2.04 | 0.01 | 0.04 |
4 | 29.95 | 15.35 | 21.87 | 17.30 | 1.79 | 0.01 | 0.06 |
Mean | 31.05 | 16.03 | 22.93 | 18.22 | 1.90 | 0.01 | 0.06 |
TG, mg% | |||||||
0 h post feeding | 35.50 | 21.50 | 25.25 | 25.00 | 3.69 | 0.13 | 0.10 |
4 | 30.75 | 18.75 | 22.50 | 24.00 | 3.13 | 0.30 | 0.07 |
Mean | 33.12 | 20.25 | 23.87 | 24.50 | 3.39 | 0.19 | 0.08 |
Item | Supplement Levels (g/d) of DKTL 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
RBC, 106/µL | |||||||
0 h post feeding | 3.52 | 3.63 | 3.82 | 3.38 | 0.23 | 0.91 | 0.53 |
4 | 3.33 | 3.49 | 3.58 | 3.08 | 0.24 | 0.71 | 0.42 |
Mean | 3.42 | 3.56 | 3.70 | 3.23 | 0.23 | 0.82 | 0.47 |
Hb, g/dL | |||||||
0 h post feeding | 9.65 | 10.23 | 10.50 | 10.23 | 0.26 | 0.68 | 0.69 |
4 | 9.28 | 9.90 | 9.93 | 9.50 | 0.17 | 0.87 | 0.59 |
Mean | 9.46 | 10.06 | 10.21 | 9.86 | 0.20 | 0.77 | 0.64 |
MCV, fL | |||||||
0 h post feeding | 78.65 | 79.68 | 77.45 | 87.03 | 4.44 | 0.38 | 0.46 |
4 | 80.55 | 79.55 | 79.35 | 89.45 | 4.92 | 0.34 | 0.37 |
Mean | 79.60 | 79.61 | 78.40 | 88.24 | 4.62 | 0.36 | 0.41 |
MCH, pg | |||||||
0 h post feeding | 27.83 | 28.30 | 28.00 | 30.85 | 1.50 | 0.35 | 0.56 |
4 | 28.48 | 28.55 | 28.15 | 31.55 | 1.62 | 0.38 | 0.45 |
Mean | 28.15 | 28.43 | 28.08 | 31.20 | 1.55 | 0.36 | 0.50 |
Plt, 103/uL | |||||||
0 h post feeding | 709.00 | 940.00 | 895.00 | 867.00 | 93.89 | 0.39 | 0.25 |
4 | 791.00 | 792.00 | 813.00 | 868.00 | 120.16 | 0.58 | 0.79 |
Mean | 750.00 | 866.00 | 854.00 | 867.50 | 96.86 | 0.44 | 0.60 |
RDW, % | |||||||
0 h post feeding | 27.40 | 28.53 | 28.45 | 28.10 | 0.67 | 0.67 | 0.50 |
4 | 26.88 | 28.13 | 28.00 | 27.38 | 0.71 | 0.77 | 0.38 |
Mean | 27.14 | 28.33 | 28.23 | 27.74 | 0.68 | 0.72 | 0.44 |
MCHC, g/dL | |||||||
0 h post feeding | 35.45 | 35.40 | 36.28 | 35.45 | 0.51 | 0.85 | 0.70 |
4 | 35.48 | 35.83 | 35.45 | 35.35 | 0.39 | 0.87 | 0.83 |
Mean | 35.46 | 35.61 | 35.86 | 35.40 | 0.31 | 0.99 | 0.76 |
TP, g% | |||||||
0 h post feeding | 6.63 | 6.42 | 6.36 | 6.48 | 0.20 | 0.68 | 0.55 |
4 | 6.48 | 6.16 | 6.21 | 6.20 | 0.13 | 0.40 | 0.47 |
Mean | 6.55 | 6.29 | 6.29 | 6.34 | 0.16 | 0.54 | 0.50 |
ALB, g% | |||||||
0 h post feeding | 3.52 | 3.26 | 3.43 | 3.44 | 0.20 | 0.96 | 0.64 |
4 | 3.70 | 3.24 | 3.37 | 3.13 | 0.17 | 0.20 | 0.68 |
Mean | 3.61 | 3.25 | 3.40 | 3.29 | 0.15 | 0.48 | 0.64 |
GLB, g% | |||||||
0 h post feeding | 3.11 | 3.16 | 2.93 | 3.04 | 0.18 | 0.71 | 0.91 |
4 | 2.78 | 2.92 | 2.84 | 3.07 | 0.10 | 0.39 | 0.83 |
Mean | 2.94 | 3.04 | 2.88 | 3.05 | 0.10 | 0.86 | 0.86 |
A:G ratio, g% | |||||||
0 h post feeding | 1.16 | 1.06 | 1.23 | 1.16 | 0.10 | 0.77 | 0.90 |
4 | 1.35 | 1.14 | 1.22 | 1.05 | 0.09 | 0.24 | 0.91 |
Mean | 1.25 | 1.10 | 1.23 | 1.11 | 0.06 | 0.62 | 0.90 |
Item 4 | Supplement Levels (g/d) of DKTL 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
WBC, 103/µL | |||||||
0 h post feeding | 11.58 | 9.40 | 10.39 | 12.25 | 1.36 | 0.68 | 0.22 |
4 | 11.63 | 9.35 | 11.02 | 11.86 | 1.21 | 0.72 | 0.31 |
Mean | 11.61 | 9.37 | 10.71 | 12.05 | 1.27 | 0.70 | 0.26 |
NEU, % | |||||||
0 h post feeding | 49.00 | 46.00 | 42.75 | 46.75 | 3.45 | 0.55 | 0.36 |
4 | 56.75 | 44.75 | 46.75 | 51.25 | 1.87 | 0.48 | 0.09 |
Mean | 52.88 | 45.38 | 44.75 | 49.00 | 1.89 | 0.42 | 0.10 |
LYMP, % | |||||||
0 h post feeding | 38.00 | 49.50 | 51.25 | 44.50 | 3.69 | 0.35 | 0.09 |
4 | 35.75 | 51.50 | 49.75 | 40.50 | 3.26 | 0.62 | 0.04 |
Mean | 36.88 | 50.50 | 50.50 | 42.50 | 2.93 | 0.43 | 0.04 |
MONO, % | |||||||
0 h post feeding | 3.25 | 2.75 | 2.75 | 2.50 | 0.70 | 0.54 | 0.88 |
4 | 0.25 | 1.75 | 1.25 | 4.00 | 0.28 | <0.01 | 0.24 |
Mean | 1.75 | 2.25 | 2.00 | 3.25 | 0.31 | 0.08 | 0.47 |
EOSIN, % | |||||||
0 h post feeding | 9.75 | 1.75 | 3.25 | 6.25 | 3.96 | 0.68 | 0.27 |
4 | 7.25 | 2.00 | 2.25 | 4.25 | 2.59 | 0.55 | 0.28 |
Mean | 8.50 | 1.88 | 2.75 | 5.25 | 3.26 | 0.63 | 0.27 |
AST, U/L | |||||||
0 h post feeding | 108.00 | 111.75 | 97.75 | 99.00 | 10.44 | 0.45 | 0.92 |
4 | 104.25 | 103.75 | 99.25 | 95.75 | 10.33 | 0.55 | 0.89 |
Mean | 106.13 | 107.75 | 98.50 | 97.38 | 10.11 | 0.49 | 0.90 |
ALT, U/L | |||||||
0 h post feeding | 27.75 | 23.00 | 25.25 | 27.25 | 3.16 | 0.70 | 0.24 |
4 | 28.25 | 21.50 | 27.25 | 20.75 | 2.19 | 0.40 | 0.18 |
Mean | 28.00 | 22.25 | 26.25 | 24.00 | 1.15 | 0.66 | 0.04 |
ALP, U/L | |||||||
0 h post feeding | 323.25 | 212.75 | 321.00 | 271.00 | 60.30 | 0.84 | 0.57 |
4 | 348.75 | 222.25 | 305.25 | 233.00 | 55.43 | 0.22 | 0.56 |
Mean | 336.00 | 217.50 | 313.13 | 252.00 | 56.49 | 0.47 | 0.55 |
Item | Supplement Levels (g/d) of DKTL 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
Bacteria (×1012) | |||||||
0 h post feeding | 3.11 | 4.19 | 3.17 | 2.65 | 0.32 | 0.12 | 0.03 |
4 | 1.01 | 2.26 | 1.70 | 1.62 | 0.26 | 0.29 | 0.02 |
Mean | 2.06 | 3.22 | 2.44 | 2.13 | 0.25 | 0.62 | 0.01 |
Fungi (×108) | |||||||
0 h post feeding | 6.33 | 9.67 | 6.96 | 6.47 | 1.18 | 0.67 | 0.13 |
4 | 3.85 | 5.25 | 3.41 | 3.37 | 0.49 | 0.16 | 0.16 |
Mean | 5.09 | 7.46 | 5.19 | 4.92 | 0.78 | 0.44 | 0.12 |
Protozoa (×109) | |||||||
0 h post feeding | 7.32 | 3.90 | 2.37 | 1.95 | 0.72 | <0.01 | 0.06 |
4 | 2.28 | 1.17 | 1.38 | 1.43 | 0.31 | 0.12 | 0.08 |
Mean | 4.80 | 2.53 | 1.88 | 1.69 | 0.42 | <0.01 | 0.03 |
Ruminococcus albus (×1010) | |||||||
0 h post feeding | 1.73 | 2.59 | 3.18 | 3.26 | 0.69 | 0.06 | 0.50 |
4 | 1.91 | 2.29 | 3.21 | 2.62 | 0.47 | 0.17 | 0.32 |
Mean | 1.82 | 2.44 | 3.20 | 2.94 | 0.50 | 0.09 | 0.40 |
Ruminococcus flavefaciens (×109) | |||||||
0 h post feeding | 2.11 | 4.02 | 2.59 | 2.37 | 0.32 | 0.66 | <0.01 |
4 | 2.13 | 2.59 | 2.49 | 2.54 | 0.10 | 0.03 | 0.04 |
Mean | 2.12 | 3.30 | 2.54 | 2.46 | 0.18 | 0.75 | <0.01 |
Fibrobacter succinogen (×109) | |||||||
0 h post feeding | 2.84 | 4.85 | 5.57 | 4.36 | 0.62 | 0.08 | 0.02 |
4 | 3.58 | 4.40 | 4.39 | 4.23 | 0.49 | 0.40 | 0.34 |
Mean | 3.21 | 4.62 | 4.98 | 4.29 | 0.20 | <0.01 | <0.01 |
Item | Supplement Levels (g/d) of DKTL 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
N balance g/d | |||||||
Total N intake | 23.05 | 25.01 | 24.36 | 23.21 | 0.48 | 0.97 | 0.10 |
N excretion g/d | |||||||
Fecal N | 9.84 | 9.14 | 9.59 | 10.77 | 0.47 | 0.22 | 0.11 |
Urinary N | 6.43 | 7.11 | 7.16 | 8.12 | 0.65 | 0.29 | 0.89 |
Total N excretion | 16.28 | 16.25 | 16.75 | 18.89 | 0.74 | 0.21 | 0.45 |
Absorbed N | 13.21 | 15.87 | 14.77 | 12.44 | 0.41 | 0.60 | 0.09 |
Retained N | 6.77 | 8.76 | 7.61 | 4.32 | 0.63 | 0.39 | 0.08 |
N output (% of N intake) | |||||||
Absorbed | 56.78 | 63.18 | 60.53 | 52.89 | 1.55 | 0.40 | 0.07 |
Retained | 28.51 | 34.20 | 30.64 | 17.48 | 2.57 | 0.33 | 0.08 |
Total N loss | 71.49 | 65.80 | 69.36 | 82.52 | 2.62 | 1.08 | 1.46 |
Item | Supplement Levels (g/d) of DKTL 1 | SEM 2 | Contrast p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | Linear | Quadratic | ||
Total VFA, mmol/L | |||||||
0 h post feeding | 67.63 | 72.06 | 74.01 | 70.42 | 8.13 | 0.83 | 0.72 |
4 | 66.01 | 68.22 | 87.63 | 80.69 | 6.14 | 0.10 | 0.58 |
Mean | 66.82 | 70.14 | 80.82 | 75.56 | 4.38 | 0.18 | 0.49 |
Proportion of individual VFA, % | |||||||
Acetate (C2) | |||||||
0 h post feeding | 65.49 | 63.13 | 60.89 | 56.75 | 4.52 | 0.09 | 0.75 |
4 | 66.94 | 64.02 | 57.79 | 60.42 | 1.75 | 0.10 | 0.34 |
Mean | 66.22 | 63.58 | 59.34 | 58.59 | 2.53 | 0.04 | 0.64 |
Propionate (C3) | |||||||
0 h post feeding | 19.09 | 21.15 | 22.3 | 28.55 | 3.43 | 0.08 | 0.47 |
4 | 18.99 | 21.23 | 27.36 | 27.45 | 2.11 | 0.03 | 0.71 |
Mean | 19.04 | 21.19 | 24.83 | 28.00 | 1.61 | 0.01 | 0.64 |
Butyrate (C4) | |||||||
0 h post feeding | 12.53 | 12.63 | 13.68 | 11.59 | 2.18 | 0.86 | 0.50 |
4 | 11.99 | 11.97 | 12.97 | 10.00 | 1.06 | 0.59 | 0.47 |
Mean | 12.26 | 12.30 | 13.33 | 10.80 | 1.21 | 0.69 | 0.37 |
Other VFA 4 | |||||||
0 h post feeding | 2.43 | 2.43 | 2.61 | 3.42 | 0.58 | 0.27 | 0.51 |
4 | 2.07 | 2.74 | 1.79 | 2.12 | 0.39 | 0.71 | 0.71 |
Mean | 2.25 | 2.59 | 2.20 | 2.77 | 0.49 | 0.43 | 0.69 |
Acetate:propionate ratio | |||||||
0 h post feeding | 3.43 | 3.27 | 3.24 | 2.19 | 0.53 | 0.15 | 0.47 |
4 | 3.56 | 3.03 | 2.32 | 2.32 | 0.18 | 0.01 | 0.31 |
Mean | 3.50 | 3.15 | 2.78 | 2.26 | 0.20 | 0.03 | 0.50 |
Methane, mol % | |||||||
0 h post feeding | 29.32 | 27.73 | 26.91 | 22.61 | 2.60 | 0.09 | 0.67 |
4 | 29.69 | 27.75 | 23.67 | 23.64 | 1.50 | 0.03 | 0.66 |
Mean | 29.51 | 27.74 | 25.29 | 23.13 | 1.25 | 0.01 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanjula, P.; Wungsintaweekul, J.; Chiarawipa, R.; Rugkong, A.; Khonkhaeng, B.; Suntara, C.; Cherdthong, A. Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats. Fermentation 2022, 8, 131. https://doi.org/10.3390/fermentation8030131
Chanjula P, Wungsintaweekul J, Chiarawipa R, Rugkong A, Khonkhaeng B, Suntara C, Cherdthong A. Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats. Fermentation. 2022; 8(3):131. https://doi.org/10.3390/fermentation8030131
Chicago/Turabian StyleChanjula, Pin, Juraithip Wungsintaweekul, Rawee Chiarawipa, Adirek Rugkong, Benjamad Khonkhaeng, Chanon Suntara, and Anusorn Cherdthong. 2022. "Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats" Fermentation 8, no. 3: 131. https://doi.org/10.3390/fermentation8030131
APA StyleChanjula, P., Wungsintaweekul, J., Chiarawipa, R., Rugkong, A., Khonkhaeng, B., Suntara, C., & Cherdthong, A. (2022). Effect of Feed Supplement Containing Dried Kratom Leaves on Apparent Digestibility, Rumen Fermentation, Serum Antioxidants, Hematology, and Nitrogen Balance in Goats. Fermentation, 8(3), 131. https://doi.org/10.3390/fermentation8030131