Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Microorganism
2.3. Experimental Setup
2.4. Chemicals
2.5. Protein, Moisture, Ash and Lignin Determinations
2.6. Alcohol-Insoluble Residues (AIR)
2.7. Sugar Analysis
2.8. Alcohols Determination
3. Results and Discussion
3.1. Protein, Moisture, Ash and Lignin
3.2. Cell Wall Insoluble and Soluble Sugars
3.3. Ethanol and Glycerol Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferracane, A.; Tropea, A.; Salafia, F. Production and maturation of soaps with non-edible fermented olive oil and comparison with classic olive oil soaps. Fermentation 2021, 7, 245. [Google Scholar] [CrossRef]
- Goula, A.M.; Lazarides, H.N. Integrated processes can turn industrial foodwaste into valuable food by-products and/or ingredients: The cases of olive milland pomegranate wastes. J. Food Eng. 2015, 167, 45–50. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of fruit industrial by-products—A case study on circular economy approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rand, R.; Di Bella, G. Aquafeed production from fermented fish waste and lemon peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Roda, A.; de Faveri, D.M.; Giacosa, S.; Dordori, R.; Lambri, M. Effect of pretreatments on the saccharification of pineapple waste as a potential source for vinegar production. J. Clean. Prod. 2016, 112, 4477–4484. [Google Scholar] [CrossRef]
- Lo Turco, V.; Potortì, A.G.; Tropea, A.; Dugo, G.; Di Bella, G. Element analysis of dried figs (Ficus carica L.) from the Mediterranean areas. J. Food Compos. Anal. 2020, 90, 103503. [Google Scholar] [CrossRef]
- Jarunglumlert, T.; Bampenrat, A.; Sukkathanyawat, H.; Prommuak, C. Enhanced energy recovery from food waste by co-production 2 of bioethanol and biomethane process. Fermentation 2021, 7, 265. [Google Scholar] [CrossRef]
- Pandit, S.; Savla, N.; Sonawane, J.M.; Sani, A.M.; Gupta, P.K.; Mathuriya, A.S.; Rai, A.K.; Jadhav, D.A.; Jung, S.P.; Prasad, R. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation 2021, 7, 169. [Google Scholar] [CrossRef]
- Abdullah, M.B.; Mat, H. Characterisation of solid and liquid pineapple waste. Reaktor 2008, 12, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Busairi, M.A. Conversion of pineapple juice waste into lactic acid in batch and fed—Batch fermentation systems. Reaktor 2008, 12, 98–101. [Google Scholar] [CrossRef]
- Jamal, P.; Fahrurrazi, T.M.; Zahangir, A.M. Optimization of media composition for the production of bioprotein from pineapple skins by liquid-state bioconversion. J. Appl. Sci. 2009, 9, 3104–3109. [Google Scholar] [CrossRef] [Green Version]
- Raji, Y.O.; Jibril, M.; Misau, I.M.; Danjuma, B.Y. Production of vinegar from pineapple peel. Int. J. Adv. Sci. Res. Technol. 2012, 3, 656–666. [Google Scholar]
- Imandi, S.B.; Bandaru, V.V.R.; Somalanka, S.R.; Bandaru, S.R.; Garapati, H.R. Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste. Bioresour. Technol. 2008, 99, 4445–4450. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.S.; Maupoey, P.F. An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J. Clean. Prod. 2018, 172, 1224–1231. [Google Scholar] [CrossRef]
- Beigbeder, J.-B.; de Medeiros Dantas, J.M.; Lavoie, J.-M. Optimization of yeast, sugar and nutrient concentrations for high ethanol production rate using industrial sugar beet molasses and response surface methodology. Fermentation 2021, 7, 86. [Google Scholar] [CrossRef]
- Asimakopoulou, G.; Karnaouri, A.; Staikos, S.; Stefanidis, S.D.; Kalogiannis, K.G.; Lappas, A.A.; Topakas, E. Production of omega-3 fatty acids from the microalga Crypthecodinium cohnii by utilizing both pentose and hexose sugars from agricultural residues. Fermentation 2021, 7, 219. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef] [Green Version]
- Galbe, M.; Zacchi, G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 2007, 108, 41–65. [Google Scholar] [CrossRef]
- Prasad, R.K.; Chatterjee, S.; Mazumder, P.B.; Gupta, S.K.; Sharma, S.; Vairale, M.G.; Datta, S.; Dwivedi, S.K.; Gupta, D.K. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere 2019, 231, 588–606. [Google Scholar] [CrossRef]
- Pereira, F.B.; Guimaraes, P.M.; Teixeira, J.A.; Domingues, L. Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations. J. Biosci. Bioeng. 2011, 112, 130–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussatto, S.I.; Dragone, G.; Guimarães, P.M.R.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Vicente, A.; Domingue, L.; Teixeira, J.A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 2010, 28, 817–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tropea, A.; Wilson, D.; Cicero, N.; Potortì, A.G.; La Torre, G.L.; Dugo, G.; Richardson, D.; Waldron, K.W. Development of minimal fermentation media supplementation for ethanol production using two Saccharomyces cerevisiae strains. Nat. Prod. Res. 2016, 30, 1009–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahnum, D.; Tasum, S.O.; Triwahyuni, E.; Nurdin, M.; Abimanyu, H. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia 2015, 68, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Tropea, A.; Wilson, D.; Lo Curto, R.B.; Dugo, G.; Saugman, P.; Troy-Davies, P.; Waldron, K.W. Simultaneous saccharification and fermentation of lignocellulosic waste material for second generation ethanol production. J. Biol. Res. 2015, 88, 142–143. [Google Scholar]
- Chintagunta, A.D.; Ray, S.; Banerjee, R. An integrated bioprocess for bioethanol and biomanure production from pineapple leaf waste. J. Clean. Prod. 2017, 165, 1508–1516. [Google Scholar] [CrossRef]
- Tengborg, C.; Galbe, M.; Zacchi, G. Reduced inhibition of enzymatic hydrolysis of steam pretreated softwood. Enzym. Microb. Technol. 2001, 28, 835–844. [Google Scholar] [CrossRef]
- Tropea, A.; Ferracane, A.; Albergamo, A.; Potortì, A.G.; Lo Turco, V.; Di Bella, G. Single cell protein production through multi food-waste substrate fermentation. Fermentation 2022, 8, 91. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists Arlington: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Carrier, M.; Loppinet Serani, A.; Denux, D.; Lasnier, J.; Ham Pichavant, F.; Cansell, F.; Aymonier, C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 2011, 35, 298–307. [Google Scholar] [CrossRef]
- Waldron, K.W.; Selvendran, R.R. Composition of the cell walls of different asparagus (Asparagus officinalis) tissues. Physiol. Plant. 1990, 80, 568–575. [Google Scholar] [CrossRef]
- Mandalari, G.; Faulds, C.B.; Sancho, A.I.; Saija, A.; Bisignano, G.; Lo Curto, R.; Waldron, K.W. Fractionation and characterisation of arabinoxylans from brewers spent grain and wheat bran. J. Cereal Sci. 2005, 42, 205–212. [Google Scholar] [CrossRef]
- Blakeney, A.B.; Harris, P.J.; Henry, R.J.; Stone, B.A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 1983, 113, 291–299. [Google Scholar] [CrossRef]
- Bastos, R.; Coelho, E.; Coimbra, M.A. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process. Carbohydr. Polym. 2015, 124, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Rae, A.L.; Harris, P.J.; Bacic, A.; Clarke, A.E. Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes. Planta 1985, 166, 128–133. [Google Scholar] [CrossRef]
- Eliston, A.; Collins, A.; Wilson, D.; Robert, N.; Waldron, K.W. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresour. Technol. 2013, 134, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Aruna, T.E.; Aworh, O.C.; Raji, A.O.; Olagunju, A.I. Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Ann. Agric. Sci. 2017, 62, 33–37. [Google Scholar] [CrossRef]
- Aruna, T.E. Production of value-added product from pineapple peels using solid state fermentation. Innov. Food Sci. Emerg. Technol. 2019, 57, 102193. [Google Scholar] [CrossRef]
- Alexandre, H.; Guilloux-Benatier, M. Yeast autolysis in sparkling wine. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Schiavone, M.; Sieczkowski, N.; Castex, M.; Dague, E.; François, J.M. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts. FEMS Yeast Res. 2015, 15, fou012. [Google Scholar] [CrossRef] [Green Version]
- Filippov, M.P.; Shkolenko, G.A.; Kohn, R. Determination of the esterification degree of the pectin of different origin and composition by the method of infrared spectroscopy. Chem. Zvesti. 1978, 32, 218–222. [Google Scholar]
- Zaldivar, J.; Nielsen, J.; Olsson, L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 2001, 56, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Forssell, P.; Kontkanen, H.; Schols, H.A.; Hinz, S.; Eijsink, V.G.H.; Treimo, J.; Robertson, J.A.; Waldron, K.W.; Faulds, C.B.; Buchert, J. Hydrolysis of brewers’ spent grain by carbohydrate degrading enzymes. J. Inst. Brew. 2008, 4, 114–120. [Google Scholar] [CrossRef]
- Araya-Cloutier, C.; Rojas-Garbanzo, C.; Velàzquez-Carrillo, C. Effect of initial sugar concentration on the production of L(+) lactic acid by simultaneous enzymatic hydrolysis and fermentation of an agro-industrial waste product of pineapple (Ananas comosus) using Lactobacillus casei subspeies rhamnosus. Int. J. Biotechnol. Wellness Ind. 2012, 1, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Chow, C.J.; Fang, Y.J. Preparation and physicochemical properties of fiber-rich fraction from pineapple peels as a potential ingredient. J. Food Drug Anal. 2011, 19, 318–323. [Google Scholar] [CrossRef]
- Van Maris, A.J.A.; Abbott, D.A.; Bellissimi, E.; van den Brink, J.; Kuyper, M.; Luttik, M.A.H.; Wisselink, H.W.; Scheffers, W.A.; van Dijken, J.P.; Pronk, J.T. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status. Antonie Van Leeuwenhoek 2006, 90, 391–418. [Google Scholar] [CrossRef]
- Treimo, J.; Westereng, B.; Horn, S.J.; Forssell, P.; Robertson, J.A.; Faulds, C.B.; Waldron, K.W.; Buchert, J.; Eijsink, V.G.H. Enzymatic solubilization of brewers’ spent grain by combined action of carbohydrases and peptidases. J. Agric. Food Chem. 2009, 57, 3316–3324. [Google Scholar] [CrossRef]
- Smith, B.G.; Harris, P.J. Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls. Phytochemistry 2001, 56, 513–519. [Google Scholar] [CrossRef]
- Bhatia, L.; Johri, S. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077. Indian J. Exp. Biol. 2015, 53, 819–827. [Google Scholar]
- Choonut, A.; Saejong, M.; Sangkharak, K. The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 2014, 52, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Casabar, J.T.; Unpaprom, Y.; Ramaraj, R. Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Convers. Biorefinery 2019, 9, 761–765. [Google Scholar] [CrossRef]
- Choi, W.J. Glycerol-based biorefinery for fuels and chemicals. Recent Pat. Biotechnol. 2008, 2, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.P.; Mack, M.; Contiero, J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.W.; Anderson, W.A.; Moo-Young, M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 2008, 26, 89–105. [Google Scholar] [CrossRef]
- Nissen, T.L.; Kielland-Brandt, M.C.; Nielsen, J.; Villadsen, J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab. Eng. 2000, 2, 69–77. [Google Scholar] [CrossRef]
- Nissen, T.L.; Hamann, C.W.; Kielland-Brandt, M.C.; Nielsen, J.; Villadsen, J. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 2000, 16, 463–474. [Google Scholar] [CrossRef]
- Hou, J.; Lages, N.F.; Oldiges, M.; Vemuri, G.N. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab. Eng. 2009, 11, 253–261. [Google Scholar] [CrossRef]
- Guadalupe, M.V.; Almering, M.J.; van Maris, A.J.; Pronk, J.T. Elimination of glycerol production in anaerobic culture sofa Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl. Environ. Microbiol. 2010, 76, 190–195. [Google Scholar] [CrossRef] [Green Version]
Starting Material | Fermented Material | |
---|---|---|
Soluble sugar | 32.12 ± 2.05 | 28.7 ± 0.80 |
Insoluble sugar | 26.33 ± 1.83 | 9.36 ± 0.39 |
Protein | 4.45 ± 0.6 | 20.1 ± 2.5 |
Lignin | 3.89 ± 0.3 | 6.54 ± 0.1 |
Ash | 0.56 ± 0.01 | 0.58 ± 0.01 |
Dry matter | 9 ± 0.5 | 2.5 ± 0.4 |
Hours | Residue | Totals | Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | UA |
---|---|---|---|---|---|---|---|---|---|---|
0 | 3.7 | 26.33 ± 1.83 | 0.06 ± 0.01 | 0.06 ± 0.01 | 2.46 ± 0.18 | 8.16 ± 0.64 | 0.99 ± 0.02 | 1.58 ± 0.12 | 9.84 ± 1.07 | 3.18 ± 0.17 |
3 | 2.5 | 21.43 ± 0.62 | 0.07 ± 0.01 | 0.03 ± 0.01 | 1.88 ± 0.07 | 7.63 ± 0.66 | 0.68 ± 0.05 | 1.51 ± 0.15 | 7.30 ± 1.14 | 2.33 ± 0.14 |
6 | 1.9 | 20.25 ± 1.11 | 0.07 ± 0.01 | 0.03 ± 0.01 | 2.21 ± 0.20 | 6.48 ± 0.76 | 0.59 ± 0.08 | 1.29 ± 0.07 | 6.71 ± 0.71 | 2.85 ± 0.25 |
9 | 1.5 | 16.04 ± 0.95 | 0.04 ± 0.01 | 0.02 ± 0.01 | 1.19 ± 0.02 | 6.59 ± 1.42 | 0.35 ± 0.03 | 0.74 ± 0.07 | 5.98 ± 0.85 | 1.12 ± 0.36 |
12 | 1.4 | 16.58 ± 1.89 | 0.04 ± 0.01 | 0.03 ± 0.01 | 1.49 ± 0.19 | 6.71 ± 1.94 | 0.39 ± 0.02 | 0.80 ± 0.14 | 6.00 ± 0.23 | 1.13 ± 0.33 |
15 | 1.3 | 13.48 ± 1.50 | 0.04 ± 0.01 | 0.02 ± 0.0 | 1.25 ± 0.11 | 5.45 ± 1.11 | 0.39 ± 0.01 | 0.69 ± 0.04 | 4.80 ± 0.57 | 0.82 ± 0.03 |
18 | 1.0 | 11.13 ± 1.08 | 0.03 ± 0.0 | 0.02 ± 0.0 | 0.69 ± 0.09 | 5.00 ± 0.68 | 0.48 ± 0.01 | 0.55 ± 0.02 | 3.43 ± 0.42 | 0.94 ± 0.10 |
21 | 0.9 | 11.41 ± 0.27 | 0.03 ± 0.0 | 0.02 ± 0.0 | 0.89 ± 0.02 | 4.45 ± 0.47 | 0.55 ± 0.03 | 0.52 ± 0.04 | 3.73 ± 0.25 | 1.22 ± 0.41 |
24 | 0.8 | 11.00 ± 1.60 | 0.03 ± 0.01 | 0.01 ± 0.0 | 1.25 ± 0.08 | 3.91 ± 0.94 | 0.52 ± 0.01 | 0.61 ± 0.07 | 3.47 ± 0.33 | 1.19 ± 0.21 |
26 | 0.8 | 9.51 ± 0.17 | 0.04 ± 0.01 | 0.02 ± 0.01 | 1.09 ± 0.09 | 3.23 ± 0.58 | 0.58 ± 0.01 | 0.67 ± 0.12 | 2.83 ± 0.39 | 1.05 ± 0.09 |
30 | 0.8 | 9.36 ± 0.39 | 0.04 ± 0.01 | 0.02 ± 0.0 | 0.99 ± 0.10 | 3.19 ± 0.72 | 0.57 ± 0.02 | 0.66 ± 0.11 | 2.80 ± 0.29 | 1.09 ± 0.15 |
Hours | Totals | Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | UA |
---|---|---|---|---|---|---|---|---|---|
0 | 32.12 ± 2.05 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.03 ± 0.01 | 4.36 ± 0.24 | 0.19 ± 0.00 | 26.63 ± 1.80 | 0.84 ± 0.03 |
3 | 44.05 ± 3.48 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.57 ± 0.02 | 1.96 ± 0.08 | 5.61 ± 0.18 | 0.40 ± 0.02 | 34.06 ± 3.06 | 1.43 ± 0.31 |
6 | 52.39 ± 2.10 | 0.01 ± 0.00 | 0.03 ± 0.00 | 1.46 ± 0.08 | 5.57 ± 0.52 | 4.35 ± 0.48 | 0.77 ± 0.08 | 37.07 ± 2.14 | 3.13 ± 0.41 |
9 | 59.94 ± 4.05 | 0.02 ± 0.00 | 0.04 ± 0.01 | 2.22 ± 0.25 | 9.15 ± 0.88 | 2.89 ± 0.18 | 1.26 ± 0.08 | 40.91 ± 2.07 | 3.45 ± 0.77 |
12 | 4962 ± 2.26 | 0.02 ± 0.00 | 0.04 ± 0.00 | 2.86 ± 0.45 | 10.88 ± 0.34 | 2.91 ± 0.51 | 2.33 ± 0.29 | 26.30 ± 1.90 | 4.29 ± 0.37 |
15 | 36.98 ± 1.35 | 0.01 ± 0.01 | 0.10 ± 0.02 | 3.38 ± 0.81 | 10.40 ± 1.62 | 1.31 ± 0.57 | 0.81 ± 0.17 | 16.58 ± 0.79 | 4.39 ± 0.76 |
18 | 29.91 ± 2.50 | 0.04 ± 0.00 | 0.02 ± 0.00 | 3.23 ± 0.82 | 12.58 ± 0.81 | 0.96 ± 0.27 | 0.53 ± 0.09 | 8.31 ± 1.39 | 4.24 ± 0.85 |
21 | 26.50 ± 2.55 | 0.03 ± 0.01 | 0.07 ± 0.01 | 3.59 ± 0.32 | 12.71 ± 1.50 | 0.47 ± 0.14 | 0.95 ± 0.19 | 3.73 ± 0.41 | 4.95 ± 0.81 |
24 | 29.45 ± 0.63 | 0.04 ± 0.00 | 0.09 ± 0.01 | 3.94 ± 0.05 | 15.25 ± 1.26 | 0.57 ± 0.09 | 0.86 ± 0.13 | 3.68 ± 0.38 | 5.02 ± 0.88 |
26 | 29.30 ± 2.10 | 0.03 ± 0.00 | 0.07 ± 0.01 | 3.97 ± 0.55 | 15.56 ± 1.04 | 0.64 ± 0.26 | 1.08 ± 0.21 | 2.94 ± 0.66 | 5.01 ± 0.74 |
30 | 28.70 ± 0.80 | 0.03 ± 0.00 | 0.07 ± 0.01 | 3.89 ± 0.35 | 15.16 ± 0.80 | 0.61 ± 0.21 | 1.05 ± 0.18 | 2.92 ± 0.43 | 4.97 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salafia, F.; Ferracane, A.; Tropea, A. Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production. Fermentation 2022, 8, 100. https://doi.org/10.3390/fermentation8030100
Salafia F, Ferracane A, Tropea A. Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production. Fermentation. 2022; 8(3):100. https://doi.org/10.3390/fermentation8030100
Chicago/Turabian StyleSalafia, Fabio, Antonio Ferracane, and Alessia Tropea. 2022. "Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production" Fermentation 8, no. 3: 100. https://doi.org/10.3390/fermentation8030100
APA StyleSalafia, F., Ferracane, A., & Tropea, A. (2022). Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production. Fermentation, 8(3), 100. https://doi.org/10.3390/fermentation8030100