Performance Evaluation of Pressurized Anaerobic Digestion (PDA) of Raw Compost Leachate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pressurized Pilot Plant
2.3. PDA Experimental Set-Up
2.4. Analytical Methods
3. Results and Discussion
3.1. Composting Leachate and Activated Sludge Characteristics
3.2. Performance of PAD
3.2.1. COD Removal
3.2.2. Biogas Production and Composition
3.2.3. pH and VFA/Alkalinity
3.2.4. Sulphate (SO42−)
3.2.5. Ammonia Nitrogen (N-NH4+)
3.2.6. Phosphate (P-PO43−)
3.3. Digestate Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Calabrò, V. Biogas Generation through Anaerobic Digestion of Compost Leachate in Semi-Continuous Completely Stirred Tank Reactors. Processes 2019, 7, 635. [Google Scholar] [CrossRef] [Green Version]
- Siciliano, A.; Stillitano, M.A.; Limonti, C. Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H2O2 with Lime and Anaerobic Digestion. Sustainability 2016, 8, 1150. [Google Scholar] [CrossRef] [Green Version]
- Khanal, S. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications; Wiley-Blackwell: Ames, IA, USA, 2008. [Google Scholar]
- Barbera, E.; Menegon, S.; Banzato, D.; D’Alpaos, C.; Bertucco, A. From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context. Renew. Energy 2019, 135, 663–673. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Mehariya, S.; Molino, A.; Calabrò, V. Biofuel Production and Phosphorus Recovery through an Integrated Treatment of Agro-Industrial Waste. Sustainability 2018, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.-H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef] [PubMed]
- Mehariya, S.; Patel, A.K.; Obulisamy, P.K.; Punniyakotti, E.; Wong, J.W. Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresour. Technol. 2018, 265, 519–531. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Siciliano, A.; Stillitano, M.; De Rosa, S. Increase of the anaerobic biodegradability of olive mill wastewaters through a pre-treatment with hydrogen peroxide in alkaline conditions. Desalin. Water Treat. 2014, 55, 1735–1746. [Google Scholar] [CrossRef]
- Monfet, E.; Aubry, G.; Ramirez, A.A. Nutrient removal and recovery from digestate: A review of the technology. Biofuels 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, J.; Wang, Y.; Liu, Q.; Qian, G.; Zhong, L.; Guo, R.; Zhang, P.; Xu, Z.P. Effective bio-treatment of fresh leachate from pretreated municipal solid waste in an expanded granular sludge bed bioreactor. Bioresour. Technol. 2010, 101, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Vinh-Thang, H.; Ramirez, A.A.; Rodrigue, D.; Kaliaguine, S. Membrane gas separation technologies for biogas upgrading. RSC Adv. 2015, 5, 24399–24448. [Google Scholar] [CrossRef]
- Toledo-Cervantes, A.; Estrada, J.M.; Lebrero, R.; Muñoz, R. A comparative analysis of biogas upgrading technologies: Photosynthetic vs physical/chemical processes. Algal Res. 2017, 25, 237–243. [Google Scholar] [CrossRef]
- Demirbaş, A. Biogas Potential of Manure and Straw Mixtures. Energy Sources 2006, 28, 71–78. [Google Scholar] [CrossRef]
- Pellegrini, L.A.; De Guido, G.; Consonni, S.; Bortoluzzi, G.; Gatti, M. From biogas to biomethane: How the biogas source influences the purification costs. Chem. Eng. Trans. 2015, 43, 409–414. [Google Scholar]
- Lemmer, A.; Chen, Y.; Wonneberger, A.-M.; Graf, F.; Reimert, R. Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process. Energies 2015, 8, 2048–2065. [Google Scholar] [CrossRef] [Green Version]
- Niesner, J.; Jecha, D.; Stehlik, P. Biogas upgrading technologies: State of art review in European region. Chem. Eng. Trans. 2013, 35, 517–522. [Google Scholar]
- Köppel, W.; Götz, M.; Graf, F. Biogas upgrading for injection into the gas grid. GWF Gas Erdgas 2009, 150, 26–35. [Google Scholar]
- Leonzio, G. Upgrading of biogas to bio-methane with chemical absorption process: Simulation and environmental impact. J. Clean. Prod. 2016, 131, 364–375. [Google Scholar] [CrossRef]
- Scamardella, D.; De Crescenzo, C.; Marzocchella, A.; Molino, A.; Chianese, S.; Savastano, V.; Tralice, R.; Karatza, D.; Musmarra, D. Simulation and Optimization of Pressurized Anaerobic Digestion and Biogas Upgrading Using Aspen Plus. Chem. Eng. Trans. 2019, 74, 55–60. [Google Scholar]
- Lindeboom, R.E.; Ding, L.; Weijma, J.; Plugge, C.M.; van Lier, J.B. Starch hydrolysis in autogenerative high pressure digestion: Gelatinisation and saccharification as rate limiting steps. Biomass Bioenergy 2014, 71, 256–265. [Google Scholar] [CrossRef]
- Chen, Y.; Rößler, B.; Zielonka, S.; Wonneberger, A.-M.; Lemmer, A. Effects of Organic Loading Rate on the Performance of a Pressurized Anaerobic Filter in Two-Phase Anaerobic Digestion. Energies 2014, 7, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Lemmer, A.; Chen, Y.; Lindner, J.; Wonneberger, A.; Zielonka, S.; Oechsner, H.; Jungbluth, T. Influence of different substrates on the performance of a two-stage high pressure anaerobic digestion system. Bioresour. Technol. 2015, 178, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Lindeboom, R.E.F.; Fermoso, F.; Weijma, J.; Zagt, K.; Van Lier, J.B. Autogenerative high pressure digestion: Anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci. Technol. 2011, 64, 647–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-K.; Chen, G.-J.; Han, G.-H.; Guo, X.-Q.; Guo, T.-M. Experimental study on the solubility of natural gas components in water with or without hydrate inhibitor. Fluid Phase Equilibria 2003, 207, 143–154. [Google Scholar] [CrossRef]
- Merkle, W.; Baer, K.; Lindner, J.; Zielonka, S.; Ortloff, F.; Graf, F.; Kolb, T.; Jungbluth, T.; Lemmer, A. Influence of pressures up to 50 bar on two-stage anaerobic digestion. Bioresour. Technol. 2017, 232, 72–78. [Google Scholar] [CrossRef]
- Merkle, W.; Baer, K.; Haag, N.L.; Zielonka, S.; Ortloff, F.; Graf, F.; Lemmer, A. High-pressure anaerobic digestion up to 100 bar: Influence of initial pressure on production kinetics and specific methane yields. Environ. Technol. 2016, 38, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.; Lamb, J.J.; Hjelme, D.R.; Lien, K.M. Overview of recent progress towards in-situ biogas upgradation techniques. Fuel 2018, 226, 686–697. [Google Scholar] [CrossRef]
- Bär, K.; Merkle, W.; Tuczinski, M.; Saravia, F.; Horn, H.; Ortloff, F.; Graf, F.; Lemmer, A.; Kolb, T. Development of an innovative two-stage fermentation process for high-calorific biogas at elevated pressure. Biomass Bioenergy 2018, 115, 186–194. [Google Scholar] [CrossRef]
- Chen, Y.; Rößler, B.; Zielonka, S.; Lemmer, A.; Wonneberger, A.-M.; Jungbluth, T. The pressure effects on two-phase anaerobic digestion. Appl. Energy 2014, 116, 409–415. [Google Scholar] [CrossRef]
- Latif, M.A.; Mehta, C.M.; Batstone, D.J. Enhancing soluble phosphate concentration in sludge liquor by pressurised anaerobic digestion. Water Res. 2018, 145, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindeboom, R.E.F.; Shin, S.G.; Weijma, J.; van Lier, J.B.; Plugge, C.M. Piezo-tolerant natural gas-producing microbes under accumulating pCO2. Biotechnol. Biofuels 2016, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokhtarani, N.; Bayatfard, A.; Mokhtarani, B. Full scale performance of compost’s leachate treatment by biological anaerobic reactors. Waste Manag. Res. 2012, 30, 524–529. [Google Scholar] [CrossRef]
- Roy, D.; Azaïs, A.; Benkaraache, S.; Drogui, P.; Tyagi, R.D. Composting leachate: Characterization, treatment, and future perspectives. Rev. Environ. Sci. Biotechnol. 2018, 17, 323–349. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association and Water Environment Federation: Washington, DC, USA, 1998.
- Lemmer, A.; Merkle, W.; Baer, K.; Graf, F. Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield. Energy 2017, 138, 659–667. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Yan, F.; Su, D.; Wang, Y.; Zhou, H. High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system. Bioresour. Technol. 2017, 224, 56–62. [Google Scholar] [CrossRef]
- Abe, F.; Horikoshi, K. The biotechnological potential of piezophiles. Trends Biotechnol. 2001, 19, 102–108. [Google Scholar] [CrossRef]
- Calabrò, P.; Fazzino, F.; Limonti, C.; Siciliano, A. Enhancement of Anaerobic Digestion of Waste-Activated Sludge by Conductive Materials under High Volatile Fatty Acids-to-Alkalinity Ratios. Water 2021, 13, 391. [Google Scholar] [CrossRef]
- Kallmeyer, J.; Boetius, A. Effects of Temperature and Pressure on Sulfate Reduction and Anaerobic Oxidation of Methane in Hydrothermal Sediments of Guaymas Basin. Appl. Environ. Microbiol. 2004, 70, 1231–1233. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.; Jørgensen, B.B. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 827–841. [Google Scholar] [CrossRef]
- Hansen, K.H.; Angelidaki, I.; Ahring, B.K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res. 1998, 32, 5–12. [Google Scholar] [CrossRef]
- Siciliano, A.; Stillitano, M.A.; Limonti, C.; Marchio, F. Ammonium Removal from Landfill Leachate by Means of Multiple Recycling of Struvite Residues Obtained through Acid Decomposition. Appl. Sci. 2016, 6, 375. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of CE Marked Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 (COM(2016)0157-C8-0123/2016-2016/0084(COD)); European Parliament: Strasbourg, France, 2019. [Google Scholar]
Parameters | Measure Unit | Compost Leachate | Activated Sludge |
---|---|---|---|
pH | - | 5.35 ± 0.2 | 6.87 ± 0.1 |
Conductivity | mS/cm | 5.62 ± 0.1 | 1.19 ± 0.1 |
TS | g/L | 61.89 ± 2.01 | 10.85 ± 0.08 |
VS | g/L | 38.23 ± 2.11 | 8.91 ± 0.09 |
COD | g/L | 66.50 ± 3.5 | 12.84 ± 0.33 |
CODsol | g/L | 54.28 ± 0.24 | 1.76 ± 0.11 |
Alkalinity | gCaCO3/L | 12.56 ± 0.77 | 0.51 ± 0.04 |
VFA | gCH3COOH/L | 15.23 ± 0.78 | 0.08 ± 0.003 |
TKN | g/L | 1.52 ± 0.14 | 3.05 ± 0.32 |
N-NH4+ | g/L | 0.66 ± 0.05 | 1.40 ± 0.11 |
P-PO43− | g/L | 0.55 ± 0.03 | 0.039 ± 0.003 |
SO42− | g/L | 0.45 ± 0.028 | 0.088 ± 0.002 |
Ca2+ | g/L | 3.55 ± 0.021 | 0.098 ± 0.002 |
Mg2+ | g/L | 0.82 ± 0.036 | 0.039 ± 0.001 |
K+ | mg/L | 0.61 ± 0.017 | <d.l. |
Fe2+ | mg/L | 113.8 ± 4.1 | 0.31 ± 0.01 |
Pb2+ | mg/L | 34.37 ± 1.1 | <d.l.- |
Mn2+ | mg/L | 10.61 ± 0.21 | 0.10 ± 0.005 |
Zn2+ | mg/L | 20.02 ± 0.4 | <d.l.- |
Ni2+ | mg/L | 0.21 ± 0.01 | <d.l.- |
Parameters | OLR (Organic Load Rate) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M.U. | 20 kgCOD/m3d | 30 kgCOD/m3d | |||||||||
Pressure | bar | Atmospheric | 1 | 2 | 3 | 4 | Atmospheric | 1 | 2 | 3 | 4 |
pH | - | 7.98 | 7.68 | 7.44 | 7.31 | 7.14 | 7.42 | 7.36 | 7.17 | 7.02 | 6.86 |
Conductivity | mS/cm | 19.01 | 21.9 | 22.94 | 23.81 | 25.62 | 21.22 | 22.51 | 24.43 | 25.51 | 26.24 |
COD | g/L | 4.82 | 8.61 | 10.64 | 11.53 | 12.92 | 18.81 | 15.53 | 15.91 | 15.94 | 17.32 |
N-NH4+ | mg/L | 1735.06 | 1986.31 | 2043.14 | 2060.03 | 2138.16 | 2106.09 | 2199.12 | 2169.34 | 2185.21 | 2145.11 |
P-PO43− | mg/L | 13.72 | 14.74 | 15.71 | 18.56 | 19.15 | 14.54 | 15.51 | 16.54 | 17.12 | 18.63 |
SO42− | mg/L | 1187.00 | 1110.15 | 1132.24 | 1317.09 | 1295.31 | 1466.19 | 1458.13 | 1484.26 | 1442.27 | 1607.39 |
Ca2+ | mg/L | 249.31 | 348.12 | 299.33 | 314.74 | 364.71 | 302.44 | 409.31 | 376.11 | 342.93 | 415.64 |
Mg2+ | mg/L | 139.03 | 145.12 | 137.19 | 132.03 | 135.14 | 142.23 | 153.41 | 139.17 | 112.09 | 129.13 |
K+ | mg/L | 566.44 | 459.50 | 476.11 | 503.33 | 452.72 | 489.64 | 556.14 | 504.83 | 567.41 | 499.72 |
Fe2+ | mg/L | 19.31 | 19.83 | 17.42 | 18.90 | 21.41 | 26.44 | 19.50 | 18.53 | 22.71 | 21.61 |
Pb2+ | mg/L | 0.47 | 0.34 | 0.39 | 0.46 | 0.51 | 0.31 | 0.48 | 0.31 | 0.33 | 0.42 |
Mn2+ | mg/L | 0.57 | 0.72 | 0.84 | 0.79 | 0.63 | 0.73 | 0.71 | 0.64 | 0.49 | 0.76 |
Zn2+ | mg/L | 0.27 | 0.22 | 0.26 | 0.19 | 0.31 | 0.37 | 0.18 | 0.26 | 0.34 | 0.28 |
Ni2+ | mg/L | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. | <d.l. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciliano, A.; Limonti, C.; Curcio, G.M. Performance Evaluation of Pressurized Anaerobic Digestion (PDA) of Raw Compost Leachate. Fermentation 2022, 8, 15. https://doi.org/10.3390/fermentation8010015
Siciliano A, Limonti C, Curcio GM. Performance Evaluation of Pressurized Anaerobic Digestion (PDA) of Raw Compost Leachate. Fermentation. 2022; 8(1):15. https://doi.org/10.3390/fermentation8010015
Chicago/Turabian StyleSiciliano, Alessio, Carlo Limonti, and Giulia Maria Curcio. 2022. "Performance Evaluation of Pressurized Anaerobic Digestion (PDA) of Raw Compost Leachate" Fermentation 8, no. 1: 15. https://doi.org/10.3390/fermentation8010015
APA StyleSiciliano, A., Limonti, C., & Curcio, G. M. (2022). Performance Evaluation of Pressurized Anaerobic Digestion (PDA) of Raw Compost Leachate. Fermentation, 8(1), 15. https://doi.org/10.3390/fermentation8010015