Regionality of Australian Apple Cider: A Sensory, Chemical and Climate Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cider Making
2.2. Sensory Analysis
2.3. Juice and Base Cider Analysis
2.4. Climate Data
2.5. Statistical Analysis
3. Results
3.1. Sensory
3.2. Analytical Assessment of Ciders
3.3. Climate
4. Discussion
4.1. Sensory
4.2. Base Cider Chemistry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidtke, L.; Antalick, G.; Šuklje, K.; Blackman, J.; Boccard, J.; Deloire, A. Cultivar, site or harvest date: The gordian knot of wine terroir. Metabolomics 2020, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.G.; Taylor, G.; de Savigny, C. Defining Niagara terroir by chemical and sensory analysis of Chardonnay wines from various soil textures and vine sizes. Am. J. Enol. Vitic. 2013, 64, 180–194. [Google Scholar] [CrossRef]
- Kontkanen, D.; Reynolds, A.G.; Cliff, M.A.; King, M. Canadian terroir: Sensory characterization of Bordeaux-style red wine varieties in the Niagara Peninsula. Food Res. Int. 2005, 38, 417–425. [Google Scholar] [CrossRef]
- Cadot, Y.; Caillé, S.; Samson, A.; Barbeau, G.; Cheynier, V. Sensory dimension of wine typicality related to a terroir by Quantitative Descriptive Analysis, Just About Right analysis and typicality assessment. Anal. Chim. Acta 2010, 660, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Vareda, J.; Pereira, R.; Silva, C.; Câmara, J.S.; Perestrelo, R. Geographical differentiation of apple ciders based on volatile fingerprint. Food Res. Int. 2020, 137, 109550. [Google Scholar] [CrossRef] [PubMed]
- Ubalde, J.M.; Sort, X.; Zayas, A.; Poch, R.M. Effects of soil and climatic conditions on grape ripening and wine quality of Cabernet Sauvignon. J. Wine Res. 2010, 21, 1–17. [Google Scholar] [CrossRef]
- Alexander, T.R.; King, J.; Zimmerman, A.; Miles, C.A. Regional variation in juice quality characteristics of four cider apple (Malus× domestica Borkh.) cultivars in northwest and central Washington. HortScience 2016, 51, 1498–1502. [Google Scholar] [CrossRef]
- Way, M.L.; Jones, J.E.; Swarts, N.D.; Dambergs, R.G. Phenolic content of apple juice for cider making as influenced by common pre-fermentation processes using two analytical methods. Beverages 2019, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Picinelli Lobo, A.; Fernández Tascón, N.; Rodríguez Madrera, R.; Suárez Valles, B. Sensory and foaming properties of sparkling cider. J. Agric. Food Chem. 2005, 53, 10051–10056. [Google Scholar] [CrossRef] [PubMed]
- Riekstina-Dolge, R.; Kruma, Z.; Dimins, F.; Straumite, E.; Karklina, D. Phenolic composition and sensory properties of ciders produced from Latvian apples. Rural Sustain. Res. 2014, 31, 39–45. [Google Scholar] [CrossRef]
- Chapman, K.; Lawless, H.; Boor, K. Quantitative descriptive analysis and principal component analysis for sensory characterization of ultrapasteurized milk. J. Dairy Sci. 2001, 84, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2. [Google Scholar]
- Murray, J.; Delahunty, C.; Baxter, I. Descriptive sensory analysis: Past, present and future. Food Res. Int. 2001, 34, 461–471. [Google Scholar] [CrossRef]
- Qin, Z.; Petersen, M.A.; Bredie, W.L. Flavor profiling of apple ciders from the UK and Scandinavian region. Food Res. Int. 2018, 105, 713–723. [Google Scholar] [CrossRef]
- Riekstina-Dolge, R.; Kruma, Z.; Straumite, E.; Karklina, D. The effect of blending on sensory characterictics of apple cider. Int. Proc. Chem. Biol. Environ. Eng. (IPCBEE) 2013, 53, 39–43. [Google Scholar]
- James, P.; Middleton, S. Apple Cultivar and Rootstock Performance at Lenswood, South Australia. VII Int. Symp. Orchard. Plant. Syst. 2000, 557, 69–76. [Google Scholar] [CrossRef]
- Way, M.L.; Jones, J.E.; Nichols, D.S.; Dambergs, R.G.; Swarts, N.D. A Comparison of Laboratory Analysis Methods for Total Phenolic Content of Cider. Beverages 2020, 6, 55. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Antalick, G.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Volatile and sensory profiling of Shiraz wine in response to alcohol management: Comparison of harvest timing versus technological approaches. Food Res. Int. 2018, 109, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Meteorology, B.O. Climate Data Online. Available online: http://www.bom.gov.au/climate/data/ (accessed on 2 June 2020).
- Sadras, V.O.; Petrie, P.R.; Moran, M.A. Effects of elevated temperature in grapevine. II juice pH, titratable acidity and wine sensory attributes. Aust. J. Grape Wine Res. 2013, 19, 107–115. [Google Scholar] [CrossRef]
- Schlosser, J.; Reynolds, A.G.; King, M.; Cliff, M. Canadian terroir: Sensory characterization of Chardonnay in the Niagara Peninsula. Food Res. Int. 2005, 38, 11–18. [Google Scholar] [CrossRef]
- Chapman, D.M.; Roby, G.; Ebeler, S.E.; Guinard, J.X.; Matthews, M.A. Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aust. J. Grape Wine Res. 2005, 11, 339–347. [Google Scholar] [CrossRef]
- Rezaei, J.H.; Reynolds, A.G. Impact of vine water status on sensory attributes of Cabernet Franc wines in the Niagara Peninsula of Ontario. OENO One 2010, 44, 61–75. [Google Scholar] [CrossRef]
- Lorenzini, M.; Simonato, B.; Slaghenaufi, D.; Ugliano, M.; Zapparoli, G. Assessment of yeasts for apple juice fermentation and production of cider volatile compounds. LWT 2019, 99, 224–230. [Google Scholar] [CrossRef]
- Way, M.L.; Jones, J.E.; Longo, R.; Dambergs, R.G.; Swarts, N.D. A Preliminary Study of Yeast Strain Influence on Chemical and Sensory Characteristics of Apple Cider. Fermentation 2022, 8, 455. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. Adv. Appl. Microbiol. 2005, 57, 131–175. [Google Scholar] [PubMed]
- He, W.; Liu, S.; Heponiemi, P.; Heinonen, M.; Marsol-Vall, A.; Ma, X.; Yang, B.; Laaksonen, O. Effect of Saccharomyces cerevisiae and Schizosaccharomyces pombe strains on chemical composition and sensory quality of ciders made from Finnish apple cultivars. Food Chem. 2021, 345, 128833. [Google Scholar] [CrossRef] [PubMed]
- Girschik, L.; Jones, J.E.; Kerslake, F.L.; Robertson, M.; Dambergs, R.G.; Swarts, N.D. Apple variety and maturity profiling of base ciders using UV spectroscopy. Food Chem. 2017, 228, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Guyot, S.; Marnet, N.; Sanoner, P.; Drilleau, J.-F. Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J. Agric. Food Chem. 2003, 51, 6240–6247. [Google Scholar] [CrossRef]
- Riekstina-Dolge, R.; Kruma, Z.; Karklina, D. Aroma composition and polyphenol content of ciders available in Latvian market. World Acad. Sci. Eng. Technol. 2012, 6, 1063–1067. [Google Scholar]
- Laaksonen, O.; Kuldjärv, R.; Paalme, T.; Virkki, M.; Yang, B. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem. 2017, 233, 29–37. [Google Scholar] [CrossRef]
- Symoneaux, R.; Baron, A.; Marnet, N.; Bauduin, R.; Chollet, S. Impact of apple procyanidins on sensory perception in model cider (part 1): Polymerisation degree and concentration. LWT-Food Sci. Technol. 2014, 57, 22–27. [Google Scholar] [CrossRef]
- De Orduna, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Calugar, P.C.; Coldea, T.E.; Salanță, L.C.; Pop, C.R.; Pasqualone, A.; Burja-Udrea, C.; Zhao, H.; Mudura, E. An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes 2021, 9, 502. [Google Scholar] [CrossRef]
- Fuleki, T.; Pelayo, E.; Palabay, R.B. Sugar composition of varietal juices produced from fresh and stored apples. J. Agric. Food Chem. 1994, 42, 1266–1275. [Google Scholar] [CrossRef]
- Lee, C.Y.; Mattick, L.R. Composition and Nutritive Value of Apple Products. In Processed Apple Products; Springer: Berlin/Heidelberg, Germany, 1989; pp. 303–322. [Google Scholar]
- Liu, S.Q.; Pilone, G.J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol. 2000, 35, 49–61. [Google Scholar] [CrossRef]
- Ackermann, J.; Fischer, M.; Amado, R. Changes in sugars, acids, and amino acids during ripening and storage of apples (cv. Glockenapfel). J. Agric. Food Chem. 1992, 40, 1131–1134. [Google Scholar] [CrossRef]
- Serrano, M.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Yue, T.; Yuan, Y. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef] [PubMed]
- Bat, K.B.; Vodopivec, B.M.; Eler, K.; Ogrinc, N.; Mulič, I.; Masuero, D.; Vrhovšek, U. Primary and secondary metabolites as a tool for differentiation of apple juice according to cultivar and geographical origin. LWT 2018, 90, 238–245. [Google Scholar] [CrossRef]
- Alonso, R.; Berli, F.J.; Fontana, A.; Piccoli, P.; Bottini, R. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid. Plant Physiol. Biochem. 2016, 109, 84–90. [Google Scholar] [CrossRef]
- Goodwin, I.; McClymont, L.; Turpin, S.; Darbyshire, R. Effectiveness of netting in decreasing fruit surface temperature and sunburn damage of red-blushed pear. N. Z. J. Crop Hortic. Sci. 2018, 46, 334–345. [Google Scholar] [CrossRef]
Apple Growing Region | State | Coordinates | Closest Weather Station | Elevation (m) |
---|---|---|---|---|
Huon Valley | Tasmania | 43.0295° S, 147.0580° E | Grove (Research Station) | 65 m |
Batlow | New South Wales | 35.5167° S, 148.1500° E | Tumbarumba Post Office | 645 m |
Stanthorpe | Queensland | 28.6600° S, 151.9376° E | Applethorpe | 872 m |
Attribute | Reference Standard a |
---|---|
Odor | |
Floral | 120 mL elderflower juice |
Fresh apple | 1 chopped fresh apple, 50 mL apple juice |
Cooked apple | 1 chopped fresh apple in boiling water for 5 min |
Pear | 1 chopped fresh pear, 50 mL pear juice |
Citrus | 50 mL juice and half of one chopped fresh grapefruit and one half of one chopped lemon |
Tropical fruit | 1 cup of fresh chopped pineapple, 1/2 cup of chopped melon |
Earthy | 1 chopped large potato, 4 chopped cup mushrooms |
Yeasty | 1.5 g of commercial yeast (Lalvin EC1118) |
Taste | |
Sweet | 15 g sugar |
Sour | 50 mL apple cider vinegar |
Astringent | 20 mL commercial winemaking tannin |
Alcoholic | 10 mL of 95% ethanol |
Huon Valley | Batlow | Stanthorpe | ||||
---|---|---|---|---|---|---|
Fresh Apple | 4.03 | ±0.68 | 3.33 | ±0.55 | 2.93 | ±0.72 |
Citrus | 1.26 | ±0.40 | 1.34 | ±0.34 | 1.06 | ±0.29 |
Tropical Fruit | 1.88 | ±0.53 | 1.58 | ±0.63 | 1.59 | ±0.55 |
Cooked Apple | 2.01 | ±0.60 | 1.98 | ±0.37 | 2.67 | ±0.72 |
Floral | 1.89 | ±0.55 | 1.94 | ±0.30 | 2.17 | ±0.52 |
Earthy | 1.14 | ±0.29 | 1.56 | ±0.32 | 1.82 | ±0.78 |
Yeasty | 0.62 | ±0.739 a | 1.39 | ±0.24 b | 1.09 | ±0.58 ab |
Pear | 2.10 | ±0.50 | 1.91 | ±0.19 | 2.17 | ±0.44 |
Sour | 3.58 | ±0.34 | 2.88 | ±0.49 | 3.26 | ±0.26 |
Astringent | 3.06 | ±0.37 | 3.09 | ±0.35 | 3.49 | ±0.43 |
Alcoholic | 3.08 | ±0.41 a | 3.96 | ±0.38 b | 5.04 | ±0.55 c |
Sweet | 2.28 | ±0.48 | 2.71 | ±0.49 | 2.53 | ±0.32 |
TPC | pH | TA | TSS | ABV | ||||
---|---|---|---|---|---|---|---|---|
Juice | Cider | Juice | Cider | Juice | Cider | Juice | Cider | |
Huon Valley | 15.93 ± 3.69 b | 8.55 ±0.45 a | 3.83 ± 0.07 | 3.62 ± 0.48 | 2.72 ± 0.59 | 3.44 ±0.49 a | 12.67 ± 3.25 ab | 7 ± 1.19 a |
Batlow | 5.15 ± 2.01 a | 7.75 ± 0.69 a | 3.80 ± 0.11 | 3.97 ± 0.08 | 2.54 ± 0.27 | 4.04 ± 0.55 ab | 12.47 ± 1.43 a | 8.14 ± 0.39 a |
Stanthorpe | 11.35 ± 1.08 b | 11.6 ± 0.43 b | 3.87 ± 0.13 | 4.08 ± 0.02 | 2.34 ± 0.48 | 4.50 ±0.27 b | 17.37 ± 1.97 b | 9.98 ± 0.93 b |
Significance | *** | *** | NS | NS | NS | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Way, M.L.; Jones, J.E.; Longo, R.; Dambergs, R.G.; Swarts, N.D. Regionality of Australian Apple Cider: A Sensory, Chemical and Climate Study. Fermentation 2022, 8, 687. https://doi.org/10.3390/fermentation8120687
Way ML, Jones JE, Longo R, Dambergs RG, Swarts ND. Regionality of Australian Apple Cider: A Sensory, Chemical and Climate Study. Fermentation. 2022; 8(12):687. https://doi.org/10.3390/fermentation8120687
Chicago/Turabian StyleWay, Madeleine L., Joanna E. Jones, Rocco Longo, Robert G. Dambergs, and Nigel D. Swarts. 2022. "Regionality of Australian Apple Cider: A Sensory, Chemical and Climate Study" Fermentation 8, no. 12: 687. https://doi.org/10.3390/fermentation8120687
APA StyleWay, M. L., Jones, J. E., Longo, R., Dambergs, R. G., & Swarts, N. D. (2022). Regionality of Australian Apple Cider: A Sensory, Chemical and Climate Study. Fermentation, 8(12), 687. https://doi.org/10.3390/fermentation8120687