Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review
Abstract
:1. Introduction
- What type of sensitivity analysis and what method were addressed?
- What models of anaerobic digestion were used?
- How have sensitivity analysis methods been applied to resolve a particular problem?
2. Research Methodology and Design: Scoping Review
2.1. Review Procedure
- As seen in Section 1, three research questions were defined.
- Several trial-and-error searches were performed using scientific databases (Web of Science, Scopus, and ScienceDirect) to begin the search. Each database’s search strings are listed below.Web of Science: ALL = ((anaerobic AND digestion) OR adm1 OR bsm2) AND sensitiv*Scopus: TITLE-ABS-KEY ((anaerobic AND digestion) OR adm1 OR bsm2) AND sensitiv*ScienceDirect: ((anaerobic AND digestion) OR adm1 OR bsm2) AND sensitivity.In the initial search, titles, abstracts, and keywords were searched with no limit throughout all databases. As a result, 1071, 1011, and 89 studies (in all categories) were listed in Web of Science, Scopus, and ScienceDirect, respectively. Asterisks can often be used to increase a search’s search results by indicating terms with a similar first letter [21]. For example, sensitiv* can find sensitive, sensitivity, sensitivities, etc. According to the limited number of studies at this stage (with no limitation), although there is considerable interest in studying anaerobic digestion, few studies have addressed sensitivity analysis.
- In order to obtain more precise results at this stage, the search was limited to just the tile. Therefore, the remaining articles dropped to 18, 21, and 11 for WoS, Scopus, and ScienceDirect. The limited number of studies at this stage (with no limitation) reveals that, although there is considerable interest in studying anaerobic digestion, few studies have addressed sensitivity analysis.
- Due to the reason above, no limit was applied on the year of publication, and all studies until September 2022 were considered.
- The language of the studies was also limited to English. Despite this, there was no language other than English, and the number of studies remained the same.
- The list contained many duplicates. Therefore, after trimming the list and removing duplicates using Microsoft Excel® v2016 (Microsoft, Redmond, WA, USA), only 23 remained.
- By screening the titles and full text of the studies, eligibility was assessed at two stages. During the title screening stage, one document was considered non-relevant, and two articles were eliminated during the full-text screening stage. At this stage, 19 publications were included in the list.
2.2. Limitations
3. Results and Discussion
3.1. Classification Based on the Publication Year
3.2. Classification Based on the Publication Country
3.3. Classification Based on Document Type
3.4. Anaerobic Digestion Models
3.5. Sensitivity Analysis Approaches
3.6. Local Approaches
3.6.1. Local Sensitivity Analysis
3.6.2. Parametric Sensitivity Analysis
3.6.3. Local Relative Sensitivity Analysis
3.6.4. Dynamic Sensitivity Analysis
3.7. Global Approaches
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boutoute, A.; Di Miceli Raimondi, N.; Guilet, R.; Cabassud, M.; Amodeo, C.; Benbelkacem, H.; Buffiere, P.; Teixeira Franco, R.; Hattou, S. Development of a Sensitivity Analysis Method to Highlight Key Parameters of a Dry Anaerobic Digestion Reactor Model. Biochem. Eng. J. 2021, 173, 108085. [Google Scholar] [CrossRef]
- Kil, H.; Xi, Y.; Li, D. A New Waste Characterization Method for the Anaerobic Digestion Based on ADM1. Chem. Eng. Commun. 2017, 204, 1428–1444. [Google Scholar] [CrossRef]
- Taherdanak, M.; Zilouei, H. Biogas Production From Agricultural Residues: A Review. Curr. Biochem. Eng. (Discontin.) 2016, 3, 188–199. [Google Scholar] [CrossRef]
- Emebu, S.; Pecha, J.; Janáčová, D. Review on Anaerobic Digestion Models: Model Classification & Elaboration of Process Phenomena. Renew. Sustain. Energy Rev. 2022, 160, 112288. [Google Scholar] [CrossRef]
- Eastman, J.A.; Ferguson, J.F. Solubilization of Particulate Organic Carbon during the Acid Phase of Anaerobic Digestion. J. Water Pollut. Control Fed. 1981, 53, 352–366. [Google Scholar]
- Trucchia, A.; Frunzo, L. Surrogate Based Global Sensitivity Analysis of ADM1-Based Anaerobic Digestion Model. J. Environ. Manag. 2021, 282, 111456. [Google Scholar] [CrossRef]
- Panaro, D.B.; Frunzo, L.; Mattei, M.R.; Luongo, V.; Esposito, G. Calibration, Validation and Sensitivity Analysis of a Surface-Based ADM1 Model. Ecol. Model. 2021, 460, 109726. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Sadrimajd, P.; Mannion, P.; Howley, E.; Lens, P.N.L. PyADM1: A Python Implementation of Anaerobic Digestion Model No. 1; bioRexiv: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Parker, W. Application of the ADM1 Model to Advanced Anaerobic Digestion. Bioresour. Technol. 2005, 96, 1832–1842. [Google Scholar] [CrossRef]
- Ramírez, I. ADM1 Applications for a Hybrid Up-Flow Anaerobic Sludge-Filter Bed Reactor Performance and for a Batch Thermophilic Anaerobic Digestion of Thermally Pretreated Waste Activated Sludge. Rev. Fac. De Ing. Univ. De Antioq. 2012, 65, 167–179. [Google Scholar]
- Barahmand, Z. Comprehensive Local Sensitivity Analysis of the ADM1-Based Anaerobic Digestion Process; WIT Press: Southampton, UK, 2022; pp. 235–246. [Google Scholar] [CrossRef]
- Tassew, F.A.; Bergland, W.H.; Dinamarca, C.; Bakke, R. Influences of Temperature and Substrate Particle Content on Granular Sludge Bed Anaerobic Digestion. Appl. Sci. 2019, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Fezzani, B.; Cheikh, R.B. Implementation of IWA Anaerobic Digestion Model No. 1 (ADM1) for Simulating the Thermophilic Anaerobic Co-Digestion of Olive Mill Wastewater with Olive Mill Solid Waste in a Semi-Continuous Tubular Digester. Chem. Eng. J. 2008, 141, 75–88. [Google Scholar] [CrossRef]
- Jeppsson, U.; Rosen, C. Aspects on ADM1 Implementation within the BSM2 Framework; Department of the Industrial Electrical Engineering and Automation, Lund Institute of Technology: Lund, Sweden, 2006. [Google Scholar]
- Henze, M.; Gujer, W.; Mino, T.; van Loosedrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2006. [Google Scholar]
- Rajendran, K.; Kankanala, H.R.; Lundin, M.; Taherzadeh, M.J. A Novel Process Simulation Model (PSM) for Anaerobic Digestion Using Aspen Plus. Bioresour. Technol. 2014, 168, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barahmand, Z.; Jayarathna, C.; Ratnayake, C. Sensitivity and Uncertainty Analysis in a Circulating Fluidized Bed Reactor Modeling. In Proceedings of the First SIMS EUROSIM Conference on Modelling and Simulation, Online, 21–23 September 2021; Linköping University Press: Linköping, Finland, 2021. [Google Scholar] [CrossRef]
- Barahmand, Z. Design of an Industrial Chlorination Reactor Using CPFD Simulations. Master’s Thesis, University of South-Eastern Norway, Porsgrunn, Norway, 2021. [Google Scholar]
- Tartakovsky, B.; Mu, S.J.; Zeng, Y.; Lou, S.J.; Guiot, S.R.; Wu, P. Anaerobic Digestion Model No. 1-Based Distributed Parameter Model of an Anaerobic Reactor: II. Model Validation. Bioresour. Technol. 2008, 99, 3676–3684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barahmand, Z.; Eikeland, M.S. A Scoping Review on Environmental, Economic, and Social Impacts of the Gasification Processes. Environments 2022, 9, 92. [Google Scholar] [CrossRef]
- Zi, Z. Sensitivity Analysis Approaches Applied to Systems Biology Models. IET Syst. Biol. 2011, 5, 336–346. [Google Scholar] [CrossRef]
- Barahmand, Z.; Eikeland, M.S. Life Cycle Assessment under Uncertainty: A Scoping Review. World 2022, 3, 692–717. [Google Scholar] [CrossRef]
- Barahmand, Z.; Eikeland, M.S. Techno-Economic and Life Cycle Cost Analysis through the Lens of Uncertainty: A Scoping Review. Sustainability 2022, 14, 12191. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, H.; Lin, H. Global Sensitivity Analysis. In Encyclopedia of GIS; Shekhar, S., Xiong, H., Eds.; Springer: Boston, MA, USA, 2008; pp. 408–409. ISBN 978-0-387-35973-1. [Google Scholar]
- Tian, W. A Review of Sensitivity Analysis Methods in Building Energy Analysis. Renew. Sustain. Energy Rev. 2013, 20, 411–419. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Balesdent, M.; Brevaul, L.; Lacaze, S.; Missoum, S.; Morio, J. 8—Methods for High-Dimensional and Computationally Intensive Models. In Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems; Morio, J., Balesdent, M., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 109–136. ISBN 978-0-08-100091-5. [Google Scholar]
- Saltelli, A.; Ratto, M.; Tarantola, S.; Campolongo, F. Sensitivity Analysis for Chemical Models. Chem. Rev. 2005, 105, 2811–2828. [Google Scholar] [CrossRef] [PubMed]
- Jaxa-Rozen, M.; Pratiwi, A.S.; Trutnevyte, E. Variance-Based Global Sensitivity Analysis and beyond in Life Cycle Assessment: An Application to Geothermal Heating Networks. Int. J. Life Cycle Assess 2021, 26, 1008–1026. [Google Scholar] [CrossRef]
- Sobester, A.; Forrester, A.; Keane, A. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-0-470-77079-5. [Google Scholar]
- Tricco, A.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; Blunt, H.; Brigham, T.; Chang, S.; et al. PRISMA-S: An Extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to Properly Use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Selçuk, A.A. A Guide for Systematic Reviews: PRISMA. Turk. Arch. Otorhinolaryngol. 2019, 57, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; Association for Computing Machinery: New York, NY, USA; pp. 1–10. [Google Scholar]
- Streeton, R.; Cooke, M.; Campbell, J. Researching the Researchers: Using a Snowballing Technique. Nurse Res. 2004, 12, 35–47. [Google Scholar] [CrossRef]
- Ramin, E.; Flores, X.; Sin, G.; Gernaey, K.V.; Jeppsson, U.; Steen Mikkelsen, P.; Plósz, B.G. Relative Importance of Secondary Settling Tank Models in WWTP Simulations—A Global Sensitivity Analysis Using BSM2. In Proceedings of the Sixth Biannial Meeting of the International Environmental Modelling and Software Society, Leipzig, Germany, 1–5 July 2012; pp. 588–595. [Google Scholar]
- Benedetti, L.; Batstone, D.J.; De Baets, B.; Nopens, I.; Vanrolleghem, P.A. Global Sensitivity Analysis of Biochemical, Design and Operational Parameters of the Benchmark Simulation Model No. 2; International Environmental Modelling and Software Society: Viganello, Switzerland, 2008; Volume 2, pp. 1322–1330. [Google Scholar]
- Vavilin, V.A.; Rytov, S.V.; Pavlostathis, S.G.; Jokela, J.; Rintala, J. A Distributed Model of Solid Waste Anaerobic Digestion: Sensitivity Analysis. Water Sci. Technol. 2003, 48, 147–154. [Google Scholar] [CrossRef]
- Iancu, E.; Petre, E. Control Strategy Based on Sensitivity Analysis. Application for Anaerobic Digestion Bioprocess. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 29–31 May 2016; pp. 84–89. [Google Scholar]
- Xu, Z. ADM1 Parameter Calibration Method Based on Partial Least Squares Regression Framework for Industrial-Scale Anaerobic Digestion Modelling. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2019. [Google Scholar]
- Fatolahi, Z.; Arab, G.; Razaviarani, V. Calibration of the Anaerobic Digestion Model No. 1 for Anaerobic Digestion of Organic Fraction of Municipal Solid Waste under Mesophilic Condition. Biomass Bioenergy 2020, 139, 105661. [Google Scholar] [CrossRef]
- Fortela, D.L.B.; Sharp, W.W.; Revellame, E.D.; Hernandez, R.; Gang, D.; Zappi, M.E. Computational Evaluation for Effects of Feedstock Variations on the Sensitivities of Biochemical Mechanism Parameters in Anaerobic Digestion Kinetic Models. Biochem. Eng. J. 2019, 143, 212–223. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Wang, X.; Huo, C.; Hu, Z.; Xiao, B.; Hu, M. Application of ADM1 for Modeling of Biogas Production from Anaerobic Digestion of Hydrilla Verticillata. Bioresour. Technol. 2016, 211, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Benbelkacem, H.; Bollon, J.; Gourdon, R.; Buffière, P. Dry Anaerobic Digestion Modelling: Parameter Sensitivity. Can. J. Chem. Eng. 2015, 93, 386–390. [Google Scholar] [CrossRef]
- Barrera, E.L.; Spanjers, H.; Solon, K.; Amerlinck, Y.; Nopens, I.; Dewulf, J. Modeling the Anaerobic Digestion of Cane-Molasses Vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with Sulfate Reduction for a Very High Strength and Sulfate Rich Wastewater. Water Res. 2015, 71, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Solon, K.; Flores-Alsina, X.; Gernaey, K.; Jeppsson, U. Effects of Influent Fractionation, Kinetics, Stoichiometry and Mass Transfer on CH4, H2 and CO2 Production for (Plant-Wide) Modeling of Anaerobic Digesters. Water Sci. Technol. 2015, 71, 870–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-Y.; Suh, C.-W.; Ahn, Y.-T.; Shin, H.-S. Variation of ADM1 by Using Temperature-Phased Anaerobic Digestion (TPAD) Operation. Bioresour. Technol. 2009, 100, 2816–2822. [Google Scholar] [CrossRef]
- Atallah, N.M.; El-Fadel, M.; Ghanimeh, S.; Saikaly, P.; Abou-Najm, M. Performance Optimization and Validation of ADM1 Simulations under Anaerobic Thermophilic Conditions. Bioresour. Technol. 2014, 174, 243–255. [Google Scholar] [CrossRef]
- Souza, T.S.O.; Carvajal, A.; Donoso-Bravo, A.; Peña, M.; Fdz-Polanco, F. ADM1 Calibration Using BMP Tests for Modeling the Effect of Autohydrolysis Pretreatment on the Performance of Continuous Sludge Digesters. Water Res. 2013, 47, 3244–3254. [Google Scholar] [CrossRef]
- Jeong, H.-S.; Suh, C.-W.; Lim, J.-L.; Lee, S.-H.; Shin, H.-S. Analysis and Application of ADM1 for Anaerobic Methane Production. Bioprocess Biosyst. Eng. 2005, 27, 81–89. [Google Scholar] [CrossRef]
- Al, R.; Behera, C.R.; Zubov, A.; Gernaey, K.V.; Sin, G. Meta-Modeling Based Efficient Global Sensitivity Analysis for Wastewater Treatment Plants—An Application to the BSM2 Model. Comput. Chem. Eng. 2019, 127, 233–246. [Google Scholar] [CrossRef]
- Ramin, E.; Flores-Alsina, X.; Sin, G.; Gernaey, K.; Jeppsson, U.; Mikkelsen, P.; Plósz, B. Influence of Selecting Secondary Settling Tank Sub-Models on the Calibration of WWTP Models—A Global Sensitivity Analysis Using BSM2. Chem. Eng. J. 2014, 241, 28–34. [Google Scholar] [CrossRef]
- Schiochet Pinto, L.; Pinheiro Neto, D.; de Leles Ferreira Filho, A.; Domingues, E.G. An Alternative Methodology for Analyzing the Risk and Sensitivity of the Economic Viability for Generating Electrical Energy with Biogas from the Anaerobic Bio-Digestion of Vinasse. Renew. Energy 2020, 155, 1401–1410. [Google Scholar] [CrossRef]
- Fuess, L.T.; Zaiat, M. Economics of Anaerobic Digestion for Processing Sugarcane Vinasse: Applying Sensitivity Analysis to Increase Process Profitability in Diversified Biogas Applications. Process Saf. Environ. Prot. 2018, 115, 27–37. [Google Scholar] [CrossRef]
- Flores-Alsina, X.; Gernaey, K.V.; Jeppsson, U. Global Sensitivity Analysis of the BSM2 Dynamic Influent Disturbance Scenario Generator. Water Sci. Technol. 2012, 65, 1912–1922. [Google Scholar] [CrossRef]
- McLeod, J.D.; Othman, M.Z.; Beale, D.J.; Joshi, D. The Use of Laboratory Scale Reactors to Predict Sensitivity to Changes in Operating Conditions for Full-Scale Anaerobic Digestion Treating Municipal Sewage Sludge. Bioresour. Technol. 2015, 189, 384–390. [Google Scholar] [CrossRef]
- Pastor-Poquet, V.; Papirio, S.; Harmand, J.; Steyer, J.-P.; Trably, E.; Escudié, R.; Esposito, G. Assessing Practical Identifiability during Calibration and Cross-Validation of a Structured Model for High-Solids Anaerobic Digestion. Water Res. 2019, 164, 114932. [Google Scholar] [CrossRef]
- Li, D.; Lee, I.; Kim, H. Application of the Linearized ADM1 (LADM) to Lab-Scale Anaerobic Digestion System. J. Environ. Chem. Eng. 2021, 9, 105193. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Mailier, J.; Ruiz-Filippi, G.; Vande Wouwer, A. Identification in an Anaerobic Batch System: Global Sensitivity Analysis, Multi-Start Strategy and Optimization Criterion Selection. Bioprocess Biosyst. Eng 2013, 36, 35–43. [Google Scholar] [CrossRef]
- Silva, M.I.; De Bortoli, A.L. Sensitivity Analysis for Verification of an Anaerobic Digestion Model. Int. J. Appl. Comput. Math 2020, 6, 38. [Google Scholar] [CrossRef]
- Marsili-Libelli, S.; Nardini, M. Stability and Sensitivity Analysis of Anaerobic Digestion Models. Environ. Technol. Lett. 1985, 6, 602–609. [Google Scholar] [CrossRef]
- Havlik, I.; Votruba, J.; Sobotka, M.; Volesky, B. Parametric Sensitivity in Modeling of Anaerobic Digestion. Biotechnol. Lett. 1984, 6, 607–610. [Google Scholar] [CrossRef]
- Dochain, D.; Vanrolleghem, P. Dynamical Modelling & Estimation in Wastewater Treatment Processes; IWA Publishing: London, UK, 2005; Volume 4, ISBN 978-1-78040-304-5. [Google Scholar]
- Di, Z.H.; Ye, A.Z.; Duan, Q.Y.; Wang, X.X. Assessment of Parametric Sensitivity Analysis Methods Based on A Quasi Two-Dimensional Groundwater Model. J. Environ. Inform. 2019, 37, 62–78. [Google Scholar] [CrossRef]
- Loonen, R.; Hensen, J. Dynamic Sensitivity Analysis For Performance-Based Building Design And Operation; IBPSA: Chambery, France, 2013; Volume 13, pp. 299–305. [Google Scholar]
- Wu, W.H.; Wang, F.S.; Chang, M.S. Dynamic Sensitivity Analysis of Biological Systems. BMC Bioinform. 2008, 9, S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, D.A. Fourth-Order Parallel Rosenbrock Formulae for Stiff Systems. Math. Comput. Model. 2004, 40, 1193–1198. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Nordstokke, D.; Colp, S.M. Factorial Design. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 2144–2145. ISBN 978-94-007-0753-5. [Google Scholar]
- Hamby, D.M. A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models. Environ. Monit Assess 1994, 32, 135–154. [Google Scholar] [CrossRef]
- Saltelli, A. Sensitivity Analysis: Could Better Methods Be Used? J. Geophys. Res. Atmos. 1999, 104, 3789–3793. [Google Scholar] [CrossRef]
- Dereli, R.K.; Ersahin, M.E.; Ozgun, H.; Ozturk, I.; Aydin, A.F. Applicability of Anaerobic Digestion Model No. 1 (ADM1) for a Specific Industrial Wastewater: Opium Alkaloid Effluents. Chem. Eng. J. 2010, 165, 89–94. [Google Scholar] [CrossRef]
- Crestaux, T.; Le Maitre, O.; Martinez, J.-M. Polynomial Chaos Expansion for Sensitivity Analysis. Reliab. Eng. Syst. Saf. 2009, 94, 1161–1172. [Google Scholar] [CrossRef]
- Minh, L.Q.; Duong, P.L.T.; Lee, M. Global Sensitivity Analysis and Uncertainty Quantification of Crude Distillation Unit Using Surrogate Model Based on Gaussian Process Regression. Ind. Eng. Chem. Res. 2018, 57, 5035–5044. [Google Scholar] [CrossRef]
- Cao, M.; Alkayem, N.F.; Pan, L.; Novák, D. Advanced Methods in Neural Networks-Based Sensitivity Analysis with Their Applications in Civil Engineering; IntechOpen: London, UK, 2016; ISBN 978-953-51-2705-5. [Google Scholar]
- Fathaddin, M.T.; Arshanda, M.I.; Rachman, Y.A.; Putra, E.A.P.; Nugrahanti, A.; Kasmungin, S. Sensitivity Analysis in Using of Artificial Neural Network Models to Determine Infill Well Locations in a Mature Oil Field. IOP Conf. Ser. Earth Environ. Sci. 2018, 212, 012070. [Google Scholar] [CrossRef]
Model | Reference |
---|---|
ADM1 | [6,12,43,44,45,46,47,48,49,50,51,52,53] |
BSM2 | [39,40,54,55] |
Economic models of AD plants | [56,57] |
BSM | [58] |
Experimental-based model | [59] |
Simplified AD bioprocess | [42] |
Structured model for high-solids AD | [60] |
Single-component feedstock digestion model with substrate inhibition | [45] |
Simplified AD model (ADM1) | [1] |
Surface-based ADM1 | [7] |
Linearized ADM1 | [61] |
1-D reactor model with six parabolic partial differential equations | [41] |
Anaerobic batch system | [62] |
Other mathematical AD models | [63,64,65] |
Sensitivity Analysis Methods | Freq. | Ref. |
---|---|---|
Local Approaches | 19 | |
Local sensitivity analysis (LSA) | 15 | [7,12,41,42,44,47,51,52,53,56,57,59,61,63,64] |
Local relative sensitivity analysis (LSRA) | 1 | [48] |
Parametric sensitivity analysis (PSA) | 2 | [46,65] |
Dynamic sensitivity analysis (DSA) | 1 | [50] |
Global approach | 12 | |
Global sensitivity analysis (GSA) | 12 | [1,6,39,40,43,45,49,54,55,58,60,62] |
Total | 31 |
Approach | Via | Ref. | Year |
---|---|---|---|
LSA | Sensitivity index | [12] | 2022 |
GSA | Definitive screening design and multiple linear regression analysis | [1] | 2021 |
GSA | Screening analysis with the Morris method and Sobol indices | [6] | 2021 |
LSA | [7] | 2021 | |
LSA | [61] | 2021 | |
LSA | [56] | 2020 | |
LSA | Calculating sensitivity coefficients, 4th order Rosenbrock method | [63] | 2020 |
SA | Shannon entropy concept and genetic algorithms | [44] | 2020 |
GSA | Integrating with functional principal component analysis (FPCA), rank-clustering techniques, and Morris’ technique | [45] | 2019 |
GSA | Sobol analysis | [60] | 2019 |
GSA | Monte Carlo simumation | [43] | 2019 |
GSA | Metamodel-based method | [54] | 2019 |
LSA | [57] | 2018 | |
SA | Sensitivity matrix | [42] | 2017 |
PSA | Using the absolute–relative sensitivity function and minimizing the absolute–relative sensitivity function, the sum of the squares of the weighted deviations between measurements and calculated model results | [46] | 2016 |
SA | Factorial design of experiments | [59] | 2015 |
LSA | [47] | 2015 | |
LRSA | Fisher information matrix | [48] | 2015 |
GSA | Standardized regression coefficients (SRCs), and Morris’ screening (MS) | [49] | 2015 |
DSA | [50] | 2014 | |
SA | Multi-objective optimization | [51] | 2014 |
GSA | linear regression of Monte Carlo simulations (SRC method), and Morris screening | [55] | 2014 |
GSA | Sobol analysis | [62] | 2013 |
LSA | Sensitivity index | [52] | 2013 |
GSA | Monte Carlo simulations, standardized regression coefficients (SRC), and cluster analysis | [58] | 2012 |
GSA | linear regression of Monte Carlo simulations (SRC method), and Morris screening | [39] | 2012 |
GSA | Monte Carlo simumation | [40] | 2008 |
LSA | [53] | 2005 | |
LSA | [41] | 2003 | |
SA | [64] | 1985 | |
PSA | [65] | 1984 |
Model | Sensitivity of/Aim | Ref. |
---|---|---|
Simplified AD model (ADM1) | biogas flowrate, the percentage of methane in the biogas, and pH to kinetic and mass transfer parameters | [1] |
ADM1 | model outputs to the key model parameter (37 parameters) | [6] |
ADM1 | model outputs to key model parameter | [7] |
Linearized ADM1 | methane production on the model input data from the lab-scale AD system | [61] |
Economic study | investments projects’ economic to contracted plant energy generation | [56] |
A mathematical AD model with 7 reactions and 9 species | each reaction in the mechanism of chemical species to the chemical reaction mechanism | [63] |
ADM1 | to identify the most sensitive parameters (6 parameters) for the ADM1 model calibration | [44] |
ADM1 and single-component feedstock digestion model with substrate inhibition | model parameters on the feedstock variation (22 parameters) | [45] |
Structured model for high-solids AD | the practical identifiability of 35 structural/biochemical parameters and 32 initial conditions | [60] |
ADM1 | model outputs on key model parameters | [43] |
BSM2 | model outputs on key model parameters | [54] |
Economic study | different factors including the sensitivity of profitability of the process (IRR) to model’s economic parameters | [57] |
Simplified AD bioprocess | state variables of the bioprocess to the dilution rate, and the influent substrate concentration | [42] |
ADM1 | methane concentration to the key model parameter (16 parameters) | [46] |
Experiment-based model | digester performance indicators to the operating conditions | [59] |
ADM1 | model outputs to the mass transfer coefficient (kLa) and the maximum substrate consumption rate (kmX) | [47] |
ADM1 | to calculate sensitivity functions for the dynamic simulations | [48] |
ADM1 | studying the influent waste composition and model parameters to estimate how the predicted biogas production | [49] |
ADM1 | model outputs to the kinetic parameters | [50] |
ADM1 | methane, pH, acetate, ammonia, total chemical oxygen demand (COD), and equally weighted combination (EWC) of the five indicators to the key model parameter (15 parameters) | [51] |
BSM2 | wastewater treatment plant (WWTP) model performance to the selection of one-dimensional secondary settling tanks (1-D SST) models to biokinetic parameters in the activated sludge model No. 1 (ASM1), a fractionation parameter in the primary clarifier, and the settling parameters in the SST model | [55] |
Anaerobic batch system | biogas production and pH to key model parameter | [62] |
ADM1 | to define the most sensitive ADM1 parameters to be calibrated using data from BMP tests. | [52] |
BSM | influent variations to generate dynamic wastewater treatment plant (WWTP) influent disturbance scenarios | [58] |
BSM2 | to provide a parameter sensitivity ranking and predict key plant performance criteria, including methane production and effluent water quality index | [39] |
BSM2 | model outputs to key model parameter (68 parameters) | [40] |
ADM1 | model outputs to 17 kinetic and stoichiometric parameters | [53] |
1-D reactor model with 6 parabolic partial differential equations | model variables (W-waste, B-biomass, VFA, CH4) to key model parameters (eleven parameter values within the ±50% range) | [41] |
A mathematical AD model | methane production to the key model parameter (seven parameters) | [64] |
A mathematical AD model | the sensitivity of methane production and degree of volatile solids degradation to the key model parameter (19 parameters) | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barahmand, Z.; Samarakoon, G. Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review. Fermentation 2022, 8, 624. https://doi.org/10.3390/fermentation8110624
Barahmand Z, Samarakoon G. Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review. Fermentation. 2022; 8(11):624. https://doi.org/10.3390/fermentation8110624
Chicago/Turabian StyleBarahmand, Zahir, and Gamunu Samarakoon. 2022. "Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review" Fermentation 8, no. 11: 624. https://doi.org/10.3390/fermentation8110624
APA StyleBarahmand, Z., & Samarakoon, G. (2022). Sensitivity Analysis and Anaerobic Digestion Modeling: A Scoping Review. Fermentation, 8(11), 624. https://doi.org/10.3390/fermentation8110624