Application of Immobilized Yeasts for Improved Production of Sparkling Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Winemaking Process
2.3. Analytical Procedures
2.4. Volatile Compound Analysis
2.5. Sensory Analysis
2.5.1. Consumers’ Sensory Test
2.5.2. Descriptive Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Comparison of Sparkling Wines Elaborated with Free and Immobilized Yeasts
3.2. Sensory and Chemical Characteristics of the Sparkling Wines from the Two Vintages
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandre, H.; Guilloux-Benatier, M. Yeast autolysis in sparkling wine—A review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Torresi, S.; Frangipane, M.T.; Anelli, G. Biotechnologies in sparkling wine production. Interesting approaches for quality improvement: A review. Food Chem. 2011, 129, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Bayón, M.; Martínez-Rodríguez, A.; Pueyo, E.; Moreno-Arribas, M.V. Chemical and biochemical features involved in sparkling wine production: From a traditional to an improved winemaking technology. Trends Food Sci. Technol. 2009, 20, 289–299. [Google Scholar] [CrossRef]
- Benucci, I.; Cerreti, M.; Maresca, D.; Mauriello, G.; Esti, M. Yeast cells in double layer calcium alginate-chitosan microcapsules for sparkling wine production. Food Chem. 2019, 300, 125174. [Google Scholar] [CrossRef]
- Coloretti, F.; Zambonelli, C.; Tini, V. Characterization of flocculent Saccharomyces interspecific hybrids for the production of sparkling wines. Food Microbiol. 2006, 23, 672–676. [Google Scholar] [CrossRef]
- Divies, C.; Cachon, R.; Cavin, J.F.; Prevost, H. Theme 4—Immobilized cell technology in wine production. Crit. Rev. Biotechnol. 1994, 14, 135–153. [Google Scholar] [CrossRef]
- López, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Prokes, K.; Baron, M.; Mlcek, J.; Jurikova, T.; Adamkova, A.; Ercisli, S.; Sochor, J. The influence of traditional and immobilized yeast on the amino-acid content of sparkling wine. Fermentation 2022, 8, 36. [Google Scholar] [CrossRef]
- Puig-Pujol, A.; Bertrán, E.; García-Martínez, T.; Capdevila, F.; Mínguez, S.; Mauricio, J.C. Application of a new organic yeast immobilization method for sparkling wine production. Am. J. Enol. Vitic. 2013, 64, 386–394. [Google Scholar] [CrossRef]
- Bidan, P.; Divies, C.; Dupuy, P. Procédé Perfectionné de Préparation de Vins Mousseux. French Patent FR2432045A1, 26 July 1978. [Google Scholar]
- Costa, G.P.; Nicolli, K.P.; Welke, J.E.; Manfroi, V.; Zini, C.A. Volatile profile of sparkling wines produced with the addition of mannoproteins or lees before second fermentation performed with free and immobilized yeasts. J. Braz. Chem. Soc. 2018, 29, 1866–1875. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Bekatorou, A.; Banat, I.M.; Marchant, R.; Koutinas, A.A. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 2004, 21, 377–397. [Google Scholar] [CrossRef]
- Martynenko, N.; Gracheva, I. Physiological and biochemical characteristics of immobilized champagne yeasts and their participation in champagnizing processes: A review. Appl. Biochem. Microbiol. 2003, 39, 439–445. [Google Scholar] [CrossRef]
- International Oenological Codex. Chapter I. Products Used in Oenology; (Oeno 33/2000, Oeno 410/2010); Organisation Internationale de la Vigne et du Vin (OIV): Paris, France, 2013.
- Bozdogan, A.; Canbas, A. Influence of yeast strain, immobilisation and ageing time on the changes of free amino acids and amino acids in peptides in bottle-fermented sparkling wines obtained from Vitis vinifera cv. Emir. Int. J. Food Sci. Technol. 2011, 46, 1113–1121. [Google Scholar] [CrossRef]
- Godia, F.; Casas, C.; Sola, C. Application of immobilized yeast-cells to sparkling wine fermentation. Biotechnol. Prog. 1991, 7, 468–470. [Google Scholar] [CrossRef]
- Compendium of International Methods of Analysis of Wines and Musts; Organisation Internationale de la Vigne et du Vin (OIV): Paris, France, 2013.
- Bradford, M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Shively, C.E.; Henick-Kling, T. Comparison of two procedures for assay of free amino nitrogen. Am. J. Enol. Vitic. 2001, 52, 400–401. [Google Scholar]
- Segarra, I.; Lao, C.; López-Tamames, E.; De La Torre-Boronat, M.C. Spectrophotometric methods for the analysis of polysaccharide levels in winemaking products. Am. J. Enol. Vitic. 1995, 46, 564–570. [Google Scholar]
- Andrés Lacueva, C.; Lamuela Raventós, R.M.; Buxaderas, S.; de la Torre Boronat, M.D.C. Influence of variety and aging on foaming properties of cava (sparkling wine). 2. J. Agric. Food Chem. 1997, 45, 2520–2525. [Google Scholar] [CrossRef]
- Liger-Belair, G.; Marchal, R.; Robillard, B.; Vignes-Adler, M.; Maujean, A.; Jeandet, P. Study of effervescence in a glass of champagne: Frequencies of bubble formation, growth rates, and velocities of rising bubbles. Am. J. Enol. Vitic. 1999, 50, 317–323. [Google Scholar]
- Bertrand, A.; Ribéreau-Gayon, P. Determination of volatile components of wine by gas-phase chromatography. Ann. Falsif. Expert Chim. Toxicol. 1970, 63, 148–156. [Google Scholar]
- Armada, L.; Falqué, E. Repercussion of the clarification treatment agents before the alcoholic fermentation on volatile composition of white wines. Eur. Food Res. Technol. 2007, 225, 553–558. [Google Scholar] [CrossRef]
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efremenko, E.N.; Stepanov, N.; Martinenko, N.N.; Gracheva, I.M. Cultivation conditions preferable for yeast cells to be immobilized into poly (vinyl alcohol) and used in bottled sparkling wine production. Chem. Ind. Chem. Eng. Quart. 2006, 12, 18–23. [Google Scholar] [CrossRef]
- Busova, K.; Magyar, I.; Janky, F. Effect of immobilized yeasts on the quality of bottle-fermented sparkling wine. Acta Aliment. 1994, 23, 9–23. [Google Scholar]
- Fumi, M.D.; Trioli, G.; Colagrande, O. Preliminary assessment on the use of immobilized yeast-cells in sodium alginate for sparkling wine processes. Biotechnol. Lett. 1987, 9, 339–342. [Google Scholar] [CrossRef]
- Yokotsuka, K.; Yajima, M.; Matsudo, T. Production of bottle-fermented sparkling wine using yeast immobilized in double-layer gel beads or strands. Am. J. Enol. Vitic. 1997, 48, 471–481. [Google Scholar]
- Martínez-Rodríguez, A.J.; Polo, M.C. Effect of the addition of bentonite to the tirage solution on the nitrogen composition and sensory quality of sparkling wines. Food Chem. 2003, 81, 383–388. [Google Scholar] [CrossRef]
- Bozdogan, A.; Canbas, A. The effect of yeast strain, immobilisation, and ageing time on the amount of free amino acids and amino acids in peptides of sparkling wines obtained from cv. Dimrit grapes. S. Afr. J. Enol. Vitic. 2012, 33, 257–263. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Ortega-Heras, M.; Pérez-Magarino, S. Changes in polysaccharide composition during sparkling wine making and aging. J. Agric. Food Chem. 2013, 61, 12362–12373. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Picarra-Pereira, M.A.; Monteiro, S.; Loureiro, V.B.; Teixeira, A.R. The wine proteins. Trends Food Sci. Technol. 2011, 12, 230–239. [Google Scholar] [CrossRef]
- Maarse, H. Volatile Compounds in Foods and Beverages, 1st ed.; Marcel Dekker, Inc.: New York, NY, USA, 1991. [Google Scholar]
Free Cells | Immobilized Cells | Significance | ||||
---|---|---|---|---|---|---|
Variable | First Vintage | Second Vintage | First Vintage | Second Vintage | Method | Vintage |
pH | 3.51 ± 0.04 b | 3.03 ± 0.03 a | 3.34 ± 0.04 b | 3.09 ± 0.03 a | ns | * |
Total acidity (g tartaric ac./L) | 7.84 ± 0.25 a | 8.03 ± 0.21 b | 7.62 ± 0.25 a | 8.80 ± 0.20 b | ns | * |
Volatile acidity (g acetic ac./L) | 0.35 ± 0.05 a | 0.28 ± 0.04 a | 0.29 ± 0.03 a | 0.27 ± 0.05 a | ns | ns |
Reducing sugars (g/L) | 2.06 ± 0.40 a | 4.03 ± 0.32 b | 2.06 ± 0.32 a | 4.58 ± 0.25 b | ns | * |
Alcoholic strength (%, v/v) | 12.63 ± 0.25 b | 11.79 ± 0.21 a | 12.85 ± 0.25 b | 11.71 ± 0.20 a | ns | * |
Turbidity (NTU) | 88.39 ± 8.54 c | 54.50 ± 1.29 b | 6.14 ± 3.03 a | 4.27 ± 0.44 a | * | * |
Number of yeasts/mL | 975 ± 104 b | 3262 ± 423 c | 0 ± 0 a | 0 ± 0 a | * | * |
Effervescence (Hz) | 20.2 ± 1.2 a | 20.2 ± 1.4 a | 19.8 ± 0.8 a | 19.8 ± 0.9 a | ns | ns |
Free Cells | Immobilized Cells | Significance | |
---|---|---|---|
Methanol | 30 ± 1 | 30 ± 2 | ns |
1-propanol | 25 ± 7 | 27 ± 5 | ns |
Isobutanol | 19 ± 3 | 21 ± 4 | ns |
1-butanol | 0.79 ± 0.39 | 0.55 ± 0.10 | ns |
Isoamyl alcohols | 192 ± 12 | 191 ± 28 | ns |
Benzyl alcohol | 2.57 ± 0.41 | 1.53 ± 0.32 | * |
2-phenyl-ethanol | 40 ± 13 | 38 ± 16 | ns |
1-hexanol | 0.60 ± 0.10 | 0.55 ± 0.08 | ns |
trans-3-hexenol | 0.18 ± 0.04 | 0.15 ± 0.02 | ns |
cis-3-hexenol | 0.09 ± 0.01 | 0.08 ± 0.00 | ns |
1-pentanol a | 7 ± 2 | 7 ± 1 | ns |
1-heptanol a | 26 ± 4 | 30 ± 3 | ns |
2,3-butanediol a | 528 ± 173 | 421 ± 64 | ns |
1,2-propanediol a | 12 ± 3 | 10 ± 1 | ns |
Furfural | 0.14 ± 0.01 | 0.14 ± 0.02 | ns |
Benzaldehyde | 0.02 ± 0.01 | 0.02 ± 0.01 | ns |
Ethyl buryrate | 0.13 ± 0.02 | 0.13 ± 0.02 | ns |
Ethyl hexanoate | 0.15 ± 0.03 | 0.15 ± 0.03 | ns |
Ethyl octanoate | 0.18 ± 0.05 | 0.16 ± 0.04 | ns |
9-ethyl decanoate a | 30 ± 8 | 20 ± 4 | ns |
Ethyl lactate | 31 ± 9 | 25 ± 3 | ns |
Ethyl pyruvate a | 130 ± 58 | 82 ± 48 | ns |
Diethyl succinate | 7.5 ± 3.7 | 8.0 ± 3.4 | ns |
Isoamyl acetate | 0.35 ± 0.13 | 0.35 ± 0.10 | ns |
Phenylethyl acetate | 0.18 ± 0.15 | 0.20 ± 0.05 | ns |
Butyric acid | 1.53 ± 0.50 | 1.35 ± 0.10 | ns |
Isobutyric acid | 0.32 ± 0.12 | 0.54 ± 0.11 | * |
Isovaleric acid | 1.22 ± 0.70 | 1.24 ± 0.72 | ns |
Hexanoic acid | 3.6 ± 1.7 | 4.7 ± 0.7 | ns |
Octanoic acid | 7.5 ± 2.2 | 8.4 ± 1.8 | ns |
Decanoic acid | 2.88 ± 3.54 | 0.64 ± 0.02 | ns |
γ-butyrolactone | 10.0 ± 2.6 | 9.2 ± 0.9 | ns |
R-pantolactone | 0.33 ± 0.07 | 0.33 ± 0.10 | ns |
4-vinyl-guaiacol | 1.70 ± 0.65 | 1.75 ± 0.21 | ns |
Methionol a | 98 ± 36 | 83 ± 21 | ns |
Thiazole a | 364 ± 54 | 378 ± 85 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Fernández, E.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Falqué-López, E. Application of Immobilized Yeasts for Improved Production of Sparkling Wines. Fermentation 2022, 8, 559. https://doi.org/10.3390/fermentation8100559
Fernández-Fernández E, Rodríguez-Nogales JM, Vila-Crespo J, Falqué-López E. Application of Immobilized Yeasts for Improved Production of Sparkling Wines. Fermentation. 2022; 8(10):559. https://doi.org/10.3390/fermentation8100559
Chicago/Turabian StyleFernández-Fernández, Encarnación, José Manuel Rodríguez-Nogales, Josefina Vila-Crespo, and Elena Falqué-López. 2022. "Application of Immobilized Yeasts for Improved Production of Sparkling Wines" Fermentation 8, no. 10: 559. https://doi.org/10.3390/fermentation8100559
APA StyleFernández-Fernández, E., Rodríguez-Nogales, J. M., Vila-Crespo, J., & Falqué-López, E. (2022). Application of Immobilized Yeasts for Improved Production of Sparkling Wines. Fermentation, 8(10), 559. https://doi.org/10.3390/fermentation8100559