Malolactic Fermentation—Theoretical Advances and Practical Considerations
Abstract
:1. Introduction
2. Genetic and Transcriptomic Organization of MLF
- I.
- L-malate import to the cell,
- II.
- L-malate decarboxylation to L-lactate, and
- III.
- L-lactate release to the growth environment.
3. Biotic and Abiotic Parameters Affecting MLF
3.1. pH Value
3.2. Temperature
3.3. Grapevine Cultivar
3.4. Interactions with Yeasts
4. Correlation between MLF and Wine Quality Characteristics
4.1. Glycosidase Activity
4.2. Esterase Activity
4.3. Citrate Metabolism
4.4. Production of Exopolysaccharides
4.5. Biogenic Amines Production
4.6. Ethyl Carbamate (Urethane) Production
5. Practical Considerations of MLF
5.1. Malolactic Starters
5.2. Inoculation Protocol
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Semon, M.J.; Edwards, C.G.; Forsyth, D.; Dinn, C. Inducing malolactic fermentation in Chardonnay musts and wines using different strains of Oenococcus oeni. Aust. J. Grape Wine Res. 2001, 7, 52–59. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Troianou, V.; Paramithiotis, S.; Proksenia, N.; Kotseridis, Y. Evaluation of malolactic starters in white and rosé winemaking of Moschofilero wines. Appl. Sci. 2022, 12, 5722. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Mendes-Faia, A. The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Lerm, E.; Engelbrecht, L.; du Toit, M. Malolactic fermentation: The ABC’s of MLF. S. Afr. J. Enol. Vitic. 2010, 31, 186–212. [Google Scholar] [CrossRef] [Green Version]
- Virdis, C.; Sumby, K.; Bartowsky, E.; Jiranek, V. Lactic acid bacteria in wine: Technological advances and evaluation of their functional role. Front. Microbiol. 2021, 11, 612118. [Google Scholar] [CrossRef]
- Salema, M.; Poolman, B.; Lolkema, J.S.; Loureiro Dias, M.; Konings, W.N. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos. Eur. J. Biochem. 1994, 225, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Poolman, B.; Molenaar, D.; Smid, E.J.; Ubbink, T.; Abee, T.; Renault, P.P.; Konings, W.N. Malolactic fermentation: Electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J. Bacteriol. 1991, 173, 6030–6037. [Google Scholar] [CrossRef] [Green Version]
- Olsen, E.B.; Russell, J.B.; Henick-Kling, T. Electrogenic L-malate transport by Lactobacillus plantarum: A basis for energy derivation from malolactic fermentation. J. Bacteriol. 1991, 173, 6199–6206. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Wang, H.; Chen, X.; Wei, G.; Tao, S.; Fan, M. Altered metabolic strategies: Elaborate mechanisms adopted by Oenococcus oeni in response to acid stress. J. Agric. Food Chem. 2021, 69, 2906–2918. [Google Scholar] [CrossRef]
- Versari, A.; Parpinello, G.P.; Cattaneo, M. Leuconostoc oenos and malolactic fermentation in wine: A review. J. Ind. Microbiol. Biotechnol. 1999, 23, 447–455. [Google Scholar] [CrossRef]
- Renault, P.; Gaillardin, C.; Heslot, H. Product of the Lactococcus lactis gene required for malolactic fermentation is homologous to a family of positive regulators. J. Bacteriol. 1989, 171, 3108–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labarre, C.; Divies, C.; Guzzo, J. Genetic organization of the mle Locus and identification of a mleR-like gene from Leuconostoc oenos. Appl. Environ. Microbiol. 1996, 62, 4493–4498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olguin, N.; Champomier-Verges, M.; Anglade, P.; Baraige, F.; Cordero-Otero, R.; Bordons, A.; Zagorec, M.; Reguant, C. Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock. Food Microbiol. 2015, 51, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Costantini, A.; Rantsiou, K.; Majumder, A.; Jacobsen, S.; Pessione, E.; Svensson, B.; Garcia-Moruno, E.; Cocolin, L. Complementing DIGE proteomics and DNA subarray analyses to shed light on Oenococcus oeni adaptation to ethanol in wine-simulated conditions. J. Proteom. 2015, 123, 114–127. [Google Scholar] [CrossRef]
- Augagneur, Y.; Ritt, J.-F.; Linares, D.M.; Remize, F.; Tourdot-Marechal, R.; Garmyn, D.; Guzzo, J. Dual effect of organic acids as a function of external pH in Oenococcus oeni. Arch. Microbiol. 2007, 188, 147–157. [Google Scholar] [CrossRef]
- Costantini, A.; Vaudano, E.; Rantsiou, K.; Cocolin, L.; Garcia-Moruno, E. Quantitative expression analysis of mleP gene and two genes involved in the ABC transport system in Oenococcus oeni during rehydration. Appl. Microbiol. Biotechnol. 2011, 91, 1601–1609. [Google Scholar] [CrossRef]
- Onetto, C.A.; Costello, P.J.; Kolouchova, R.; Jordans, C.; McCarthy, J.; Schmidt, S.A. Analysis of transcriptomic response to SO2 by Oenococcus oeni growing in continuous culture. Microbiol. Spectr. 2021, 9, e01154-21. [Google Scholar] [CrossRef]
- Miller, B.J.; Franz, C.M.A.P.; Cho, G.-S.; du Toit, M. Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions. Curr. Microbiol. 2011, 62, 1682–1688. [Google Scholar] [CrossRef]
- Binati, R.L.; Du Toit, M.; Snoep, J.L.; Salvetti, E.; Torriani, S. Transcriptional and metabolic response of wine-related Lactiplantibacillus plantarum to different conditions of aeration and nitrogen availability. Fermentation 2021, 7, 68. [Google Scholar] [CrossRef]
- Lund, P.A.; De Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Noriega Fernández, E.; Bover-Cid, S.; Hall, R.; Sauer, M.; et al. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front. Microbiol. 2020, 11, 556140. [Google Scholar] [CrossRef]
- Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B.W.; Holopainen, J.; Karttunen, M. Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers. Biophys. J. 2006, 90, 1121–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.R.; Wibowo, D.J.; Lee, T.H.; Fleet, G.H. Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl. Environ. Microbiol. 1986, 51, 539–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaillant, H.; Formisyn, P.; Gerbaux, V. Malolatic fermentation of wine: Study of the influence of some physico-chemical factors by experimental design assays. J. Appl. Bacteriol. 1995, 79, 640–650. [Google Scholar] [CrossRef]
- Du Toit, M.; Engelbrecht, L.; Lerm, E.; Krieger-Weber, S. Lactobacillus: The next generation of malolactic fermentation starter cultures—An overview. Food Bioprocess Technol. 2011, 4, 876–906. [Google Scholar] [CrossRef]
- Cinquanta, L.; De Stefano, G.; Formato, D.; Niro, S.; Panfili, G. Effect of pH on malolactic fermentation in southern Italian wines. Eur. Food Res. Technol. 2018, 244, 1261–1268. [Google Scholar] [CrossRef]
- Lerena, M.C.; Rojo, M.C.; Sari, S.; Mercado, L.A.; Krieger-Weber, S.; Combina, M. Malolactic fermentation induced by Lactobacillus plantarum in Malbec wines from Argentina. S. Afr. J. Enol. Vitic. 2016, 37, 115–123. [Google Scholar] [CrossRef]
- Pimentel, M.S.; Silva, M.H.; Cortes, I.; Mendes Faia, A. Growth and metabolism of sugar and acids of Leuconostoc oenos under different conditions of temperature and pH. J. Appl. Bacteriol. 1994, 76, 42–48. [Google Scholar] [CrossRef]
- Guerzoni, M.E.; Sinigaglia, M.; Gardini, F.; Ferruzzi, M.; Torriani, S. Effects of pH, temperature, ethanol, and malate concentration on Lactobacillus plantarum and Leuconostoc oenos: Modelling of the malolactic activity. Am. J. Enol. Vitic. 1995, 46, 368–374. [Google Scholar]
- Sereni, A.; Phan, Q.; Osborne, J.; Tomasino, E. Impact of the timing and temperature of malolactic fermentation on the aroma composition and mouthfeel properties of Chardonnay wine. Foods 2020, 9, 802. [Google Scholar] [CrossRef]
- Guzzon, R.; Roman, T.; Larcher, R. Impact of different temperature profiles on simultaneous yeast and bacteria fermentation. Ann. Microbiol. 2020, 70, 44. [Google Scholar] [CrossRef]
- Ojeda, H.; Andary, C.; Creaba, E.; Carbonneau, A.; Deloire, A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera var. Shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Rodriguez Montealegre, R.; Romero Peces, R.; Chacon Vozmediano, J.L.; Martinez Gascuena, J.; Garcia Romero, E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compost. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Guidoni, S.; Oggero, G.; Cravero, S.; Rabino, M.; Cravero, M.C.; Balsari., P. Manual and mechanical leaf removal in the bunch zone (Vitis vinifera L., cv Barbera): Effects on berry composition, health, yield and wine quality, in a warm temperate area. J. Int. Sci. Vigne Vin 2008, 42, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Gamero, E.; Moreno, D.; Talaverano, I.; Prieto, M.H.; Guerra, M.T.; Valdés, M.E. Effects of irrigation and cluster thinning on Tempranillo grape and wine composition. S. Afr. J. Enol. Vitic. 2014, 35, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Jones, G.V.; Yuste, J. Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate. Int. J. Biometeorol. 2015, 59, 1849–1860. [Google Scholar] [CrossRef]
- Barroso, J.M.; Pombeiro, L.; Rato, A.E. Impacts of crop level, soil and irrigation management in grape berries of cv ‘Trincadeira’ (Vitis vinifera L.). J. Wine Res. 2016, 28, 1–12.
- Blank, M.; Hofmann, M.; Stoll, M. Seasonal differences in Vitis vinifera L. cv. Pinot noir fruit and wine quality in relation to climate. OENO One 2019, 2, 189–203. [Google Scholar]
- Echeverría, G.; Ferrer, M.; Mirás-Avalos, J.M. Effects of soil type on vineyard performance and berry composition in the Río de la Plata coast (Uruguay). OENO One 2017, 51, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Izcara, S.; Morante-Zarcero, S.; de Andrés, M.T.; Arroyo, T.; Sierra, I. A comparative study of phenolic composition and antioxidant activity in commercial and experimental seedless table grapes cultivated in a Mediterranean climate. J. Food Meas. Charact. 2021, 15, 1916–1930. [Google Scholar] [CrossRef]
- Karaman, H.T.; Küskü, D.Y.; Söylemezoğlu, G. Phenolic compounds and antioxidant capacities in grape berry skin, seed and stems of six wine grape varieties grown in Turkey. Acta Sci. Pol. Hortorum Cultus 2021, 20, 15–25. [Google Scholar] [CrossRef]
- Liu, M.; Song, Y.; Liu, H.; Tang, M.; Yao, Y.; Zhai, H.; Gao, Z.; Du, Y. Effects of flower cluster tip removal on phenolics and antioxidant activity of grape berries and wines. Am. J. Enol. Vitic. 2021, 72, 298–306. [Google Scholar] [CrossRef]
- Luzio, A.; Bernardo, S.; Correia, C.; Moutinho-Pereira, J.; Dinis, L.-T. Phytochemical screening and antioxidant activity on berry, skin, pulp and seed from seven red Mediterranean grapevine varieties (Vitis vinifera L.) treated with kaolin foliar sunscreen. Sci. Hortic. 2021, 281, 109962. [Google Scholar] [CrossRef]
- García-Ruiz, A.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bartolomé, B. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria. Int. J. Food Microbiol. 2011, 145, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Zimdars, S.; Caspers-Weiffenbach, R.; Wegmann-Herr, P.; Weber, F. Stilbenes can impair malolactic fermentation with strains of Oenococcus oeni and Lactobacillus plantarum. Am. J. Enol. Vitic. 2021, 72, 56–63. [Google Scholar] [CrossRef]
- Collombel, I.; Campos, F.M.; Hogg, T. Changes in the composition of the lactic acid bacteria behavior and the diversity of Oenococcus oeni isolated from red wines supplemented with selected grape phenolic compounds. Fermentation 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.R.; Campos, F.; Freitas, V.; Hogg, T.; Couto, J.A. Effect of phenolic aldehydes and flavonoids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. Food Microbiol. 2008, 25, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sabel, A.; Bredefeld, S.; Schlander, M.; Claus, H. Wine phenolic compounds: Antimicrobial properties against yeasts, lactic acid and acetic acid bacteria. Beverages 2017, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.; Anu-Appaiah, K.A. Diverse physiological and metabolic adaptations by Lactobacillus plantarum and Oenococcus oeni in response to the phenolic stress during wine fermentation. Food Chem. 2018, 268, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Sirk, T.W.; Brown, E.F.; Friedman, M.; Sum, A.K. Molecular binding of catechins to biomembranes: Relationship to biological activity. J. Agric. Food Chem. 2009, 57, 6720–6728. [Google Scholar] [CrossRef]
- Teixeira, H.; Goncalves, M.G.; Rozes, N.; Ramos, A.; San Romao, M.V. Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni: A response to ethanol stress? Microb. Ecol. 2002, 43, 146–153. [Google Scholar] [CrossRef]
- Grandvalet, C.; Assad-Garcia, J.S.; Chu-Ky, S.; Tollot, M.; Guzzo, J.; Gresti, J. Changes in membrane lipid composition in ethanol- and acid-adapted Oenococcus oeni cells: Characterization of the cfa gene by heterologous complementation. Microbiology 2008, 154, 2611–2619. [Google Scholar] [CrossRef] [Green Version]
- Alberto, M.R.; Manca de Nadra, M.C.; Arena, M.E. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium. Braz. J. Microbiol. 2012, 43, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.N. The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am. J. Enol. Vitic. 1995, 46, 463–468. [Google Scholar]
- Cavin, J.F.; Andioc, V.; Etievant, P.X.; Divies, C. Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids. Am. J. Enol. Vitic. 1993, 44, 76–80. [Google Scholar]
- De las Rivas, B.; Rodríguez, H.; Curiel, J.A.; Landete, J.M.; Muñoz, R. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids. J. Agric. Food Chem. 2009, 57, 490–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curiel, J.A.; Rodríguez, H.; Landete, J.M.; de las Rivas, B.; Muñoz, R. Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chem. 2010, 120, 225–229. [Google Scholar] [CrossRef]
- Couto, J.A.; Campos, F.M.; Figueiredo, A.R.; How, T.A. Ability of lactic acid bacteria to produce volatile phenols. Am. J. Enol. Vitic. 2006, 57, 166–171. [Google Scholar]
- Rodriguez, H.; Landete, J.M.; de las Rivas, B.; Munoz, R. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem. 2008, 107, 1393–1398. [Google Scholar] [CrossRef] [Green Version]
- Rogozinska, M.; Korsak, D.; Mroczek, J.; Biesaga, M. Catabolism of hydroxycinnamic acids in contact with probiotic Lactobacillus. J. Appl. Microbiol. 2021, 131, 1464–1473. [Google Scholar] [CrossRef]
- Nishitani, Y.; Sasaki, E.; Fujisawa, T.; Osawa, R. Genotypic analyses of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. Syst. Appl. Microbiol. 2004, 27, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Vaquero, I.; Marcobal, A.; Muñoz, R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 2004, 96, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, N.; Esteban-Torres, M.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl. Environ. Microbiol. 2014, 80, 2991–2997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguant, C.; Bordons, A.; Arola, L.; Rozes, N. Influence of phenolic compounds on the physiology of Oenococcus oeni from wine. J. Appl. Microbiol. 2000, 88, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Chasseriaud, L.; Krieger-Weber, S.; Deleris-Bou, M.; Sieczkowski, N.; Jourdes, M.; Teissedre, P.L.; Claisse, O.; Lonvaud-Funel, A. Hypotheses on the effects of enological tannins and total red wine phenolic compounds on Oenococcus oeni. Food Microbiol. 2015, 52, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Breniaux, M.; Dutilh, L.; Petrel, M.; Gontier, E.; Campbell-Sills, H.; Deleris-Bou, M.; Krieger, S.; Teissedre, P.L.; Jourdes, M.; Reguant, C.; et al. Adaptation of two groups of Oenococcus oeni strains to red and white wines: The role of acidity and phenolic compounds. J. Appl. Microbiol. 2018, 125, 1117–1127. [Google Scholar] [CrossRef]
- McDonnell, G.; Denver Russell, A. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhao, H.; Liu, L.; Peng, S.; Li, H.; Wang, H. Heterologous expression of the puuE from Oenococcus oeni SD-2a in Lactobacillus plantarum WCFS1 improves ethanol tolerance. J. Basic Microbiol. 2019, 59, 1134–1142. [Google Scholar] [CrossRef]
- Liu, S.; Skory, C.; Liang, X.; Mills, D.; Qureshi, N. Increased ethanol tolerance associated with the pntAB locus of Oenococcus oeni and Lactobacillus buchneri. J. Ind. Microbiol. Biotechnol. 2019, 46, 1547–1556. [Google Scholar] [CrossRef]
- Henick-Kling, T. Malolactic Fermentation. In Wine Microbiology and Biotechnology, 1st ed.; Fleet, G.H., Ed.; Harwood Academic Publishers: Chur, Switzerland, 1993; pp. 289–326. [Google Scholar]
- Gockowiak, H.; Henschke, P.A. Interaction of pH, ethanol concentration and wine matrix on induction of malolactic fermentation with commercial ‘direct inoculation’ starter cultures. Aust. J. Grape Wine Res. 2003, 9, 200–209. [Google Scholar] [CrossRef]
- Fugelsang, K.C.; Edwards, C.G. Wine Microbiology, Practical Applications and Procedures, 2nd ed.; Springer Science+Business Media LLC: New York, NY, USA, 2007. [Google Scholar]
- Hood, A. Inhibition of growth of wine lactic-acid bacteria by acetaldehyde bound sulphur dioxide. Aust. Grape. Grapegrow. Winemak. 1983, 232, 34–43. [Google Scholar]
- Davis, C.R.; Wibowo, D.; Fleet, G.H.; Lee, T.H. Properties of wine lactic acid bacteria: Their potential enological significance. Am. J. Enol. Vitic. 1988, 39, 137–142. [Google Scholar]
- Mannazzu, I.; Domizio, P.; Carboni, G.; Zara, S.; Comitini, F.; Budroni, M.; Ciani, M. Yeast killer toxins: From ecological significance to application. Crit. Rev. Biotechnol. 2019, 39, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M.; Shavandi, A.; Mirdamadi, S.; Soleymanzadeh, N.; Motahari, P.; Mirdamadi, N.; Moser, M.; Subra, G.; Alimoradi, H.; Goriely, S. Bioactive peptides from yeast: A comparative review on production methods, bioactivity, structure-function relationship, and stability. Trends Food Sci. Technol. 2021, 118, 297–315. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J.; Cheng, X.-R.; Liu, J.; Kang, J.; Fu, C.-Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Dick, K.J.; Molan, P.C.; Eschembruch, R. The isolation from Saccharomyces cerevisiae of two antibacterial cationic proteins that inhibit malolactic bacteria. Vitis 1992, 31, 105–116. [Google Scholar]
- Comitini, F.; Ferretti, R.; Clementi, F.; Mannazzu, I.; Ciani, M. Interactions between Saccharomyces cerevisiae and malolactic bacteria: Preliminary characterization of a yeast proteinaceous compound(s) active against Oenococcus oeni. J. Appl. Microbiol. 2005, 99, 105–111. [Google Scholar] [CrossRef]
- Osborne, J.P.; Edwards, C.G. Inhibition of malolactic fermentation by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 2007, 118, 27–34. [Google Scholar] [CrossRef]
- Albergaria, H.; Francisco, D.; Gori, K.; Arneborg, N.; Gírio, F. Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains. Appl. Microb. Cell Physiol. 2010, 86, 965–972. [Google Scholar] [CrossRef]
- Mendoza, L.M.; Manca, M.C.; Farías, M.E. Antagonistic interaction between yeasts and lactic acid bacteria of oenological relevance partial characterization of inhibitory compounds produced by yeasts. Food. Res. Int. 2010, 43, 1990–1998. [Google Scholar] [CrossRef] [Green Version]
- Branco, P.; Francisco, D.; Chambon, C.; Hébraud, M.; Arneborg, N.; Almeida, M.G.; Caldeira, J.; Albergaria, H. Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl. Microbiol. Biotechnol. 2014, 98, 843–853. [Google Scholar] [CrossRef]
- Fahimi, N.; Brandam, C.; Taillandier, P. A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni. World J. Microbiol. Biotechnol. 2014, 30, 3163–3172. [Google Scholar] [CrossRef] [Green Version]
- Capucho, I.; San Ramao, M.V. Effect of ethanol and fatty acids on malolactic activity of Leoconostoc oenos. Appl. Microbiol. Biotech. 1994, 42, 723–726. [Google Scholar]
- Lipke, P.N.; Ovalle, R. Cell wall architecture in yeast: New structure and new challenges. J. Bacteriol. 1998, 180, 3735–3740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vejarano, R. Non-Saccharomyces in winemaking: Source of mannoproteins, nitrogen, enzymes, and antimicrobial compounds. Fermentation 2020, 6, 76. [Google Scholar] [CrossRef]
- Alexandre, H.; Costello, P.J.; Remize, F.; Guzzo, J.; Guilloux-Benatier, M. Saccharomyces cerevisiae–Oenococcus oeni interactions in wine: Current knowledge and perspectives. Int. J. Food Microbiol. 2004, 93, 141–154. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozes, N.; Bordons, A.; Reguant, C. Simulated lees of different yeast species modify the performance of malolactic fermentation by Oenococcus oeni in wine-like medium. Food Microbiol. 2021, 99, 103839. [Google Scholar] [CrossRef]
- Ferrando, N.; Araque, I.; Ortís, A.; Thornes, G.; Bautista-Gallego, J.; Bordons, A.; Reguant, C. Evaluating the effect of using non-Saccharomyces on Oenococcus oeni and wine malolactic fermentation. Food Res. Int. 2020, 138, 109779. [Google Scholar] [CrossRef]
- Huang, H.T. Decolorization of anthocyanins by fungal enzymes. J. Agric. Food Chem. 1995, 3, 141–146. [Google Scholar] [CrossRef]
- Matthews, A.; Grimaldi, A.; Walker, M.; Bartowsky, E.; Grbin, P.; Jiranek, V. Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl. Environ. Microbiol. 2004, 70, 5715–5731. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, A.; McLean, H.; Jiranek, V. Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacterium, Oenococcus oeni. Am. J. Enol. Vitic. 2000, 51, 362–369. [Google Scholar]
- Grimaldi, A.; Bartowsky, E.; Jiranek, V. A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int. J. Food Microbiol. 2005, 105, 233–244. [Google Scholar] [CrossRef]
- Grimaldi, A.; Bartowsky, E.; Jiranek, V. Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology. J. Appl. Microbiol. 2005, 99, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Boido, E.; Lloret, A.; Medina, K.; Carrau, F.; Dellacassa, E. Effect of glycosidase activity of Oenococcus oeni on the glycosylated flavor precursors of tannat wine during malolactic fermentation. J. Agric. Food Chem. 2002, 50, 2344–2349. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.K.; Zoecklein, B.W.; Whiton, R.S. Quantification of glycosidase activity in selected strains of Brettanomyces bruxellensis and Oenococcus oeni. Am. J. Enol. Vitic. 2002, 53, 303–307. [Google Scholar]
- Ugliano, M.; Genovese, A.; Moio, L. Hydrolysis of wine aroma precursors during malolactic fermentation with four commercial starter cultures of Oenococcus oeni. J. Agric. Food Chem. 2003, 51, 5073–5078. [Google Scholar] [CrossRef] [PubMed]
- D’Incecco, N.; Bartowsky, E.; Kassara, S.; Lante, A.; Spettoli, P.; Henschke, P. Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation. Food Microbiol. 2004, 21, 257–265. [Google Scholar] [CrossRef]
- Spano, G.; Rinaldi, A.; Ugliano, M.; Moio, L.; Beneduce, L.; Massa, S. A b-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J. Appl. Microbiol. 2005, 98, 855–861. [Google Scholar] [CrossRef]
- Michlmayr, H.; Schümann, C.; Barreira Braz Da Silva, N.M.; Kulbe, K.D.; Del Hierro, A.M. Isolation and basic characterization of a b-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J. Appl. Microbiol. 2010, 108, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Bravo-Ferrada, B.M.; Hollmann, A.; Brizuela, N.; La Hens, D.V.; Tymczyszyn, E.; Semorile, L. Growth and consumption of l-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains. Folia Microbiol. 2016, 61, 365–373. [Google Scholar] [CrossRef]
- Fia, G.; Millarini, V.; Granchi, L.; Bucalossi, G.; Guerrini, S.; Zanoni, B.; Rosi, I. Beta-glucosidase and esterase activity from Oenococcus oeni: Screening and evaluation during malolactic fermentation in harsh conditions. Food Sci. Technol. 2018, 89, 262–268. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Fan, L.; Wang, F.; Liu, X.; Zhang, H.; Zhou, J. Assessment of β-D glucosidase activity and bgl gene expression of Oenococcus oeni SD-2a. PLoS ONE 2020, 15, e0240484. [Google Scholar] [CrossRef]
- López-Seijas, J.; García-Fraga, B.; da Silva, A.F.; Zas-García, X.; Lois, L.C.; Gago-Martínez, A. Evaluation of malolactic bacteria associated with wines from Albariño variety as potential starters: Screening for quality and safety. Foods 2020, 9, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brizuela, N.S.; Arnez-Arancibia, M.; Semorile, L.; Pozo-Bayón, M.Á.; Bravo-Ferrada, B.M.; Tymczyszyn, E.E. β-Glucosidase activity of Lactiplantibacillus plantarum UNQLp 11 in different malolactic fermentations conditions: Effect of pH and ethanol content. Fermentation 2021, 7, 22. [Google Scholar] [CrossRef]
- Olguin., N.; Alegret, J.O.; Bordons, A.; Reguant, C. β-Glucosidase activity and bgl gene expression of Oenococcus oeni strains in model media and cabernet sauvignon wine. Am. J. Enol. Vitic. 2011, 62, 99–105. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Laurent, M.H.; Henick-Kling, T.; Acree, T.E. Changes in the aroma and odor of Chardonnay wines due to malolactic fermentation. Wein-Wiss 1994, 49, 3–10. [Google Scholar]
- De Revel, G.; Martin, N.; Pripis-Nicolau, L.; Lonvaud-Funel, A.; Bertrand, A. Contribution to the knowledge of malolactic fermentation influence on wine aroma. J. Agric. Food Chem. 1999, 47, 4003–4008. [Google Scholar] [CrossRef]
- Maicas, S.; Gil, J.V.; Pardo, I.; Ferrer, S. Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res. Int. 1999, 32, 491–496. [Google Scholar] [CrossRef]
- Delaquis, P.; Cliff, M.; King, M.; Girard, B.; Hall, J.; Reynolds, A. Effect of two commercial malolactic cultures on the chemical and sensory properties of Chancellor wines vinified with different yeasts and fermentation temperatures. Am. J. Enol. Vitic. 2000, 51, 42–48. [Google Scholar]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Gambaro, A.; Boido, E.; Zlotejablko, A.; Medina, K.; Lloret, A.; Dellacassa, E.; Carrau, F. Effect of malolactic fermentation on the aroma properties of Tannat wine. Aust. J. Grape Wine Res. 2001, 7, 27–32. [Google Scholar] [CrossRef]
- Vilanova, M.; Martinez, C. First study of determination of aromatic compounds of red wine from Vitis vinifera cv. Castanãl grown in Galica (NW Spain). Eur. Food Res. Technol. 2007, 224, 431–436. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Lavilla, M.; Amarita, F. Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: Selection of potential malolactic starters. Int. J. Food Microbiol. 2021, 356, 109324. [Google Scholar] [CrossRef] [PubMed]
- Matthews, A.; Grbin, P.R.; Jiranek, V. A survey of lactic acid bacteria for enzymes of interest to oenology. Aust. J. Grape Wine Res. 2006, 12, 235–244. [Google Scholar] [CrossRef]
- Pérez-Martín, F.; Seseña, S.; Izquierdo, P.M.; Palop, M.L. Esterase activity of lactic acid bacteria isolated from malolactic fermentation of red wines. Int. J. Food Microbiol. 2013, 163, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Diez-Ozaeta, I.; Lavilla, M.; Amarita, F. Technological characterisation of potential malolactic starters from Rioja Alavesa winemaking region. LWT-Food Sci. Technol. 2020, 134, 109916. [Google Scholar] [CrossRef]
- Gammacurta, M.; Lytra, G.; Marchal, A.; Marchand, S.; Barbe, J.C.; Moine, V.; de Revel, G. Influence of lactic acid bacteria strains on ester concentrations in red wines: Specific impact on branched hydroxylated compounds. Food Chem. 2018, 239, 252–259. [Google Scholar] [CrossRef]
- Matthews, A.; Grbin, P.; Jiranek, V. Biochemical characterisation of the esterase activities of wine lactic acid bacteria. Appl. Microbiol. Biotechnol. 2007, 77, 329–337. [Google Scholar] [CrossRef]
- Collombel, I.; Melkonian, C.; Molenaar, D.; Campos, F.M.; Hogg, T. New insights into cinnamoyl esterase activity of Oenococcus oeni. Front. Microbiol. 2019, 10, 2597. [Google Scholar] [CrossRef]
- Chescheir, S.; Philbin, D.; Osborne, J.P. Impact of Oenococcus oeni on wine hydroxycinnamic acids and volatile phenol production by Brettanomyces bruxellensis. Am. J. Enol. Viticult. 2015, 66, 357–362. [Google Scholar] [CrossRef]
- Madsen, M.G.; Edwards, N.K.; Petersen, M.A.; Mokwena, L.; Swiegers, J.H.; Arneborg, N. Influence of Oenococcus oeni and Brettanomyces bruxellensis on hydroxycinnamic acids and volatile phenols of aged wine. Am. J. Enol. Viticult. 2016, 68, 23–29. [Google Scholar] [CrossRef]
- Zepeda-Mendoza, M.L.; Edwards, N.K.; Madsen, M.G.; Abel-Kistrup, M.; Puetz, L.; Sicheritz-Ponten, T.; Swiegers, J.H. Influence of Oenococcus oeni and Brettanomyces bruxellensis aged wine microbial taxonomic and functional potential profiles. Am. J. Enol. Viticult. 2018, 69, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Rozes, N.; Arola, L.; Bordons, A. Effect of phenolic compounds on the co-metabolism of citric acid and sugars by Oenococcus oeni from wine. Lett. Appl. Microbiol. 2003, 36, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Medina de Figueroa, R.B.; Alvarez, F.; Pesce de Ruiz Holgado, A.; Oliver, G.; Sesma, F. Citrate utilization by homo- and heterofermentative lactobacilli. Microbiol. Res. 2000, 154, 313–320. [Google Scholar] [CrossRef]
- Palles, T.; Beresford, T.; Condon, S.; Cogan, T. Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J. Appl. Microbiol. 1998, 85, 147–154. [Google Scholar] [CrossRef]
- Pretorius, N.; Engelbrecht, L.; Du Toit, M. Influence of sugars and pH on the citrate metabolism of different lactic acid bacteria strains in a synthetic wine matrix. J. Appl. Microbiol. 2019, 127, 1490–1500. [Google Scholar] [CrossRef]
- Welman, A.D.; Maddox, I.S. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 2003, 21, 269–274. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Dols-Lafargue, M. Exopolysaccharides producing lactic acid bacteria in wine and other fermented beverages: For better or for worse? Foods 2021, 10, 2204. [Google Scholar] [CrossRef]
- Lonvaud-Funel, A. Lactic acid bacteria and the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 1999, 76, 317–331. [Google Scholar] [CrossRef]
- Walling, E.; Gindreau, E.; Lonvaud Funel, A. La biosynthese d’exopolysaccharides par des souches de Pediococcus damnosus isolees du vin Mise au point d’outils moleculaires de detectio. Lait 2001, 289, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Coulon, J.; Houlès, A.; Dimopoulou, M.; Maupeu, J.; Dols-Lafargue, M. Lysozyme resistance of the ropy strain Pediococcus parvulus IOEB 8801 is correlated with beta-glucan accumulation around the cell. Int. J. Food Microbiol. 2012, 159, 25–29. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Raffenne, J.; Claisse, O.; Miot-Sertier, C.; Iturmendi, N.; Moine, V.; Coulon, J.; Dols-Lafargue, M. Oenococcus oeni exopolysaccharide biosynthesis, a tool to improve malolactic starter performance. Front. Microbiol. 2018, 9, 1276. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, D.; Bosscher, J.S.; Ten Brink, B.; Driessen, A.J.M.; Konings, W.N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 1993, 175, 2864–2870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority. Scientific opinion on risk-based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393–2486. [Google Scholar] [CrossRef] [Green Version]
- Soksawatmaekhin, W.; Kuraishi, A.; Sakata, K.; Kashiwagi, K.; Igarashi, K. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol. Microbiol. 2004, 51, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Wolken, W.A.; Lucas, P.M.; Lonvaud-Funel, A.; Lolkema, J.S. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J. Bacteriol. 2006, 188, 2198–2206. [Google Scholar] [CrossRef] [Green Version]
- Landete, J.M.; Ferrer, S.; Pardo, I. Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control 2007, 18, 1569–1574. [Google Scholar] [CrossRef]
- Callejon, S.; Sendra, R.; Ferrer, S.; Pardo, I. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl. Microbiol. Biotechnol. 2014, 98, 185–198. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Ladero, V.; Fernandez, M.; Fiocco, D.; Alvarez, M.A.; Grieco, F.; Spano, G. Biogenic amines degradation by Lactobacillus plantarum: Toward a potential application in wine. Front. Microbiol. 2012, 3, 122. [Google Scholar] [CrossRef] [Green Version]
- Paramithiotis, S.; Ray, R.C. Biogenic Amines in Wine. In Winemaking: Basics and Applied Aspects; Joshi, V.K., Ray, R.C., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2021; pp. 452–467. [Google Scholar]
- Landete, J.M.; Pardo, I.; Ferrer, S. Regulation of hdc expression and HDC activity by enological factors in lactic acid bacteria. J. Appl. Microbiol. 2008, 105, 1544–1551. [Google Scholar] [CrossRef]
- Xue, J.; Fu, F.; Liang, M.; Zhao, C.; Wang, D.; Wu, Y. Ethyl carbamate production kinetics during wine storage. S. Afr. J. Enol. Vitic. Stellenbosch. 2015, 36, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Leca, J.M.; Pereira, V.; Miranda, A.; Vilchez, J.L.; Marques, J.C. New insights into ethyl carbamate occurrence in fortified wines. LWT-Food Sci. Technol. 2021, 150, 111566. [Google Scholar] [CrossRef]
- Sumby, K.; Bartle, L.; Grbin, P.; Jiranek, V. Measures to improve wine malolactic fermentation. Appl. Microbiol. Biotechnol. 2019, 103, 2033–2051. [Google Scholar] [CrossRef] [PubMed]
- Bou, M.; Krieger, S. Alcohol-Tolerant Malolactic Strains for the Maturation of Wines with Average or High pH. U.S. Patent 7,625,745, 14 February 2012. [Google Scholar]
- Krieger-Weber, S.; Heras, J.M.; Suarez, C. Lactobacillus plantarum, a new biological tool to control malolactic fermentation: A review and an outlook. Beverages 2020, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Iorizzo, M.; Testa, B.; Lombardi, S.J.; García-Ruiz, A.; Muñoz-González, C.; Bartolomé, B.; Moreno-Arribas, M.V. Selection and technological potential of Lactobacillus plantarum bacteria suitable for wine malolactic fermentation and grape aroma release. LWT-Food Sci. Technol. 2016, 73, 557–566. [Google Scholar] [CrossRef]
- Wade, M.E.; Strickland, M.T.; Osborne, J.P.; Edwards, C.G. Role of Pediococcus in winemaking. Aust. J. Grape Wine Res. 2018, 25, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Juega, M.; Costantini, A.; Bonello, F.; Cravero, M.C.; Martinez-Rodriguez, A.J.; Carrascosa, A.V.; Garcia-Moruno, E. Effect of malolactic fermentation by Pediococcus damnosus on the composition and sensory profile of Albariño and Caiño white wines. J. Appl. Microbiol. 2014, 116, 586–595. [Google Scholar] [CrossRef]
- Strickland, M.T.; Schopp, L.M.; Edwards, C.G.; Osborne, J.P. Impact of Pediococcus spp. on Pinot noir wine quality and growth of Brettanomyces. Am. J. Enol. Vitic. 2016, 67, 188–198. [Google Scholar] [CrossRef]
- Brizuela, N.S.; Franco-Luesma, E.; Bravo-Ferrada, B.M.; Pérez-Jiménez, M.; Semorile, L.; Tymczyszyn, E.E.; Pozo-Bayon, M.A. Influence of Patagonian Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory perception of Pinot Noir wine after malolactic fermentation. Aust. J. Grape Wine Res. 2021, 27, 118–127. [Google Scholar] [CrossRef]
- Bartle, L.; Sumby, K.; Sundstrom, J.; Jiranek, V. The microbial challenge of winemaking: Yeast-bacteria compatibility. FEMS Yeast Res. 2019, 19, foz040. [Google Scholar] [CrossRef]
- Lucio, O.; Pardo, I.; Heras, J.M.; Krieger-Weber, S.; Ferrer, S. Use of starter cultures of Lactobacillus to induce malolactic fermentation in wine. Aust. J. Grape Wine Res. 2017, 23, 15–21. [Google Scholar] [CrossRef]
- Comitini, F.; Ciani, M. The inhibitory activity of wine yeast starters on malolactic bacteria. Ann. Microbiol. 2007, 57, 61–66. [Google Scholar] [CrossRef]
- Bayrock, D.P.; Ingledew, W.M. Inhibition of yeast by lactic acid bacteria in continuous culture: Nutrient depletion and/or acid toxicity? J. Ind. Microbiol. Biotechnol. 2004, 31, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo Canas, P.M.; García Romero, E.; Perez-Martín, F.; Prieto, S.; Palop Herreros, M.L. Sequential inoculation versus co-inoculation in Cabernet Franc wine fermentation. Food Sci. Technol. Int. 2014, 21, 1–10. [Google Scholar]
- Versari, A.; Patrizi, C.; Parpinello, G.P.; Mattioli, A.U.; Pasini, L.; Meglioli, M.; Longhini, G. Effect of co-inoculation with yeast and bacteria on chemical and sensory characteristics of commercial Cabernet Franc red wine from Switzerland. J. Chem. Technol. Biotechnol. 2015, 91, 876–882. [Google Scholar] [CrossRef]
- Jussier, D.; Morneau, A.D.; de Orduna, R.M. Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate Chardonnay. Appl. Environ. Microbiol. 2006, 72, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, S.J.; Pannella, G.; Iorizzo, M.; Testa, B.; Succi, M.; Tremonte, P.; Sorrentino, E.; Di Renzo, M.; Strollo, D.; Coppola, R. Inoculum strategies and performances of malolactic starter Lactobacillus plantarum M10: Impact on chemical and sensorial characteristics of Fiano Wine. Microorganisms 2020, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Guzzon, R.; Moser, S.; Davide, S.; Villegas, T.R.; Malacarne, M.; Larcher, R.; Nardi, T.; Vagnoli, P.; Krieger-Weber, S. Exploitation of simultaneous alcoholic and malolactic fermentation of Incrocio Manzoni, a traditional Italian white wine. S. Afr. J. Enol. Vitic. 2016, 37, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, L.; Merín, M.; Morata, V.; Farías, M. Characterization of wines produced by mixed culture of autochthonous yeasts and Oenococcus oeni from the northwest region of Argentina. J. Ind. Microbiol. Biotechnol. 2011, 38, 1777–1785. [Google Scholar] [CrossRef]
- Massera, A.; Soria, A.; Catania, C.; Krieger, S.; Combina, M. Simultaneous inoculation of Malbec (Vitis vinifera) musts with yeast and bacteria: Effects on fermentation performance, sensory and sanitary attributes of wines. Food Technol. Biotechnol. 2009, 47, 192–201. [Google Scholar]
- Hu, K.; Zhao, H.; Kang, X.; Ge, X.; Zheng, M.; Hu, Z.; Tao, Y. Fruity aroma modifications in Merlot wines during simultaneous alcoholic and malolactic fermentations through mixed culture of S. cerevisiae, P. fermentans, and L. brevis. LWT-Food Sci. Technol. 2022, 154, 112711. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.C.; de Revel, G. Co-inoculation with yeast and LAB under winery conditions: Modification of the aromatic profile of Merlot wines. S. Afr. J. Enol. Vitic. 2013, 34, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Tristezza, M.; di Feo, L.; Tufariello, M.; Grieco, F.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. Simultaneous inoculation of yeasts and lactic acid bacteria: Effects on fermentation dynamics and chemical composition of Negroamaro wine. LWT-Food Sci. Technol. 2016, 66, 406–412. [Google Scholar] [CrossRef]
- Knoll, C.; Fritsch, S.; Schnell, S.; Grossmann, M.; Krieger-Weber, S.; du Toit, M.; Rauhut, D. Impact of different malolactic fermentation inoculation scenarios on Riesling wine aroma. World J. Microbiol. Biotechnol. 2012, 28, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Anu-Appaiah, K.A. Mixed malolactic co-culture (Lactobacillus plantarum and Oenococcus oeni) with compatible Saccharomyces influences the polyphenolic, volatile and sensory profile of Shiraz wine. LWT-Food Sci. Technol. 2021, 135, 110246. [Google Scholar] [CrossRef]
- Abrahamse, C.E.; Bartowsky, E.J. Timing of malolactic fermentation inoculation in Shiraz grape must and wine: Influence on chemical composition. World J. Microbiol. Biotechnol. 2012, 28, 255–265. [Google Scholar] [CrossRef]
- Munoz, V.; Beccaria, B.; Abreo, E. Simultaneous and successive inoculations of yeasts and lactic acid fermentation of an unsulfited Tannat grape must. Braz. J. Microbiol. 2014, 45, 59–66. [Google Scholar] [CrossRef]
- Izquierdo-Cañas, P.M.; Ríos-Carrasco, M.; García-Romero, E.; Mena-Morales, A.; Heras-Manso, J.M.; Cordero-Bueso, G. Co-existence of inoculated yeast and lactic acid bacteria and their impact on the aroma profile and sensory traits of Tempranillo red wine. Fermentation 2020, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo Cañas, P.M.; Pérez-Martín, F.; Romero, E.G.; Prieto, S.S.; Herreros, M.L.P. Influence of inoculation time of an autochthonous selected malolactic bacterium on volatile and sensory profile of Tempranillo and Merlot wines. Int. J. Food Microbiol. 2012, 156, 245–254. [Google Scholar] [CrossRef]
- Plavsa, T.; Jagatic Korenika, A.-M.; Lukic, I.; Bubola, M.; Jeromel, A. Influence of different malolactic fermentation techniques on changes in chemical properties and volatile compounds of cv. Teran red wine (Vitis vinifera L.). J. Cent. Eur. Agric. 2021, 22, 582–595. [Google Scholar] [CrossRef]
Cultivar | Yeasts/LAB | Inoculation Strategy | Comment | Reference |
---|---|---|---|---|
Cabernet Franc | S. cerevisiae Uvaferm VN®; O. oeni C22L9 | 1. LAB inoculation after AF 2. LAB inoculation 24 h after yeast inoculation | Inoculation strategy had no effect on yeast growth, ethanol content, color intensity, total and volatile acidity. Simultaneous inoculation reduced color tonality and increased free and polymerized anthocyanins. Simultaneous fermentation resulted in increased propanol, ethyl acetate, hexyl acetate, ethyl lactate, ethyl butyrate, ethyl hexanoate, ethyl octanoate, diethyl succinate, valeric acid, acetaldehyde, and 2-methyl-tetrahydrothiophene-3-one and decreased 1-octen-3-ol, 2-phenylethanol, tyrosol, 2-phenylethyl acetate, ethyl dodecanoate, 2-phenylethyl succinate, diethyl malate, phenylacetic acid, furfural, hydroxymethyl furfural, 4-vinyl-guaiacol, 4-vinylphenol, 3-oxo-α-ionol, dihydro-α-ionone, 3-oxo-7,8-dihydro-α-ionol, vanillin, zingerone, homovanillyl alcohol, and siringol concentration. Simultaneous inoculation resulted in wines with increased aromatic intensity, floral, and vegetable aroma. Sequential inoculation produced more intense spicy tones and longer aftertaste intensity and body in wine. | [158] |
Cabernet Franc | S. cerevisiae NT-202; O. oeni and Lp. plantarum NT-202 co-inoculant | 1. LAB inoculation after AF 2. LAB mixture inoculation after 3 days of AF (specific gravity of ca. 1040) | Simultaneous fermentation had no effect on ethanol, total acidity, and total phenolic content. However, volatile acidity increased, while glycerol, color intensity, and tonality decreased. The volatile compounds with more pronounced increase were isobutyl alcohol, 3-etoxy-1-propanol, acetoin, and 2-methyl-propanoic acid, whereas a more pronounced decrease was observed in the case of isoamyl alcohol, phenylethyl alcohol, ethyl lactate, butanedioic monoethyl, and diethyl esters. Wine made by co-inoculation had more red and ripe fruits tones, while the one made by sequential inoculation more spice and herb tones. | [159] |
Chardonnay | S. cerevisiae D47; T. delbrueckii Vinoflora PreludeTM; O. oeni Beta | 1. S. cerevisiae simultaneously with O. oeni 2. O. oeni inoculated after AF by S. cerevisiae 3. T. delbrueckii (15 or 21 °C for 48 h), then S. cerevisiae simultaneously with O. oeni 4. T. delbrueckii (15 or 21 °C for 48 h), then S. cerevisiae and O. oeni inoculation after AF | Higher ethanol content was observed in sequential fermentation at both 15 and 21 °C. Aroma and mouthfeel differed significantly between inoculation strategies. Temperature affected aroma in sequential inoculations. Acetic acid increase was associated with lower fermentation temperature. | [29] |
Chardonnay | S. cerevisiae CY3079; O. oeni EQ54, Alpha | for each LAB strain 1. LAB inoculation after AF 2. LAB co-inoculation with the yeast | Simultaneous fermentation had no effect on ethanol and glycerol content. However, it resulted in reduced acetaldehyde, citric, and fumaric acid and increased acetic acid concentration. No statistically significant differences were observed in sensory evaluation. | [160] |
Fiano | S. cerevisiae FE; Lp. plantarum M10 | 1. Lp. plantarum inoculated at ca. 5% ethanol 2. LAB inoculation 24 h after yeast inoculation 3. LAB inoculation after AF 4. LAB inoculation (with cells pre-adapted to sub-optimal pH) after AF 5. no MLF | No effect on yeast growth and ethanol production. MLF was only evident in strategy 4. Increased 2,3-butanediol, 2-nonanol, 2-phenylethanol, linalool, 4-terpineol, geraniol, and reduced 1-propanol, 1-methyl-propanol, 3-methyl-1-butanol, 2-pentanol, 1-pentanol, methyl-tyo-propanol, methanol, and hexanoic acid concentration in the wine produced with strategy 4 compared to the rest. | [161] |
Incrocio Manzoni | S. cerevisiae CY3079; O. oeni Lal1, Lal2 | for each LAB strain 1. LAB inoculation after AF 2. LAB inoculation 48 h after yeast inoculation | LAB addition had no effect on yeast growth and ethanol production. Strain-specific differences in MLF were observed. Total acidity, acetic acid, and citric acid concentration were not affected by simultaneous fermentation. On the contrary, ethyl acetate and acetaldehyde concentration increased. | [162] |
Malbec | K. apiculata mc1, S. cerevisiae mc2; O. oeni X2L | 1. AF by K. apiculata mc1 2. AF by S. cerevisiae mc2 3. AF by both yeasts 4. simultaneous inoculation of both yeasts and LAB 5. LAB inoculation after AF by both yeasts | Better development and alcoholic fermentation kinetics of S. cerevisiae compared to K. apiculata. No effect on S. cerevisiae development by simultaneous LAB inoculation. No effect of co-inoculation on ethanol content. Co-inoculation resulted in higher volatile acidity, reduction of color intensity and the concentration of acetaldehyde, ethyl caproate, ethyl caprylate, 2-phenylethyl acetate, and specific esters. On the other hand, increase in the concentration of ethyl acetate and isoamyl acetate was noticed. Sequential inoculation resulted in better fruity and floral aromas and high equilibrium-harmony rating. Simultaneous inoculation scored higher phenolic aroma and low equilibrium-harmony rating. | [163] |
Malbec (2 vintages) | S. cerevisiae INTA MZA, ICV D80; O. oeni Uvaferm Alpha | for each yeast strain 1. LAB inoculation after AF 2. LAB co-inoculation with the yeast | Must composition and yeast strain affected volatile acidity in both sequential and simultaneous fermentations. Co-inoculation had no effect on yeast and LAB viability, histamine, and putrescine content as well as the sensorial quality of the wines. | [164] |
Merlot | S. cerevisiae Laffort Actiflore®; P. fermentans H5Y-28; Lv. brevis 26 | 1. S. cerevisiae simultaneous and sequential with Lv. brevis 2. S. cerevisiae and P. fermentans simultaneous and sequential with Lv. brevis | P. fermentans seemed to enhance Lv. brevis viability and the production of higher alcohol acetates and fatty acid ethyl esters. Strong jammy and temperate fruit aromas produced by the co-fermentation of the three strains. | [165] |
Merlot (different wineries, two vintages) | S. cerevisiae (5 strains); O. oeni (3 strains) | 1. LAB inoculation after AF 2. LAB inoculation 24 h after yeast inoculation | Volatile wine composition depended upon microbial strain, MLF strategy, vintage, and winery. In all cases, an increase of γ-decalactone and a decrease of ethyl isovalerate, 2-methyl-butanol, and 3-methyl-butanol concentrations were noticed in simultaneous, compared to sequential fermentation. In addition, fruity aroma intensity was increased with simultaneous fermentation. | [166] |
Negroamaro | S. cerevisiae CY1, CY2; O. oeni CL1, CL2 | each yeast strain was combined with each LAB: 1. LAB inoculated after AF 2. LAB inoculated 24 h after yeast | Strain-specific microbial development and L-malic acid consumption in both strategies. Co-inoculation strategy had no effect on ethanol content. However, differences in the production of specific esters, alcohols, and acids between the strains and inoculation timing were observed. Co-inoculation enhanced red and ripe fruit notes as well as buttery and creamy notes. | [167] |
Riesling | S. cerevisiae Uvaferm GHM®; O. oeni R1105, R1124; | For each LAB strain: 1. LAB inoculation 24 h after yeast inoculation 2. LAB inoculation at 40% of AF 3. LAB inoculation at 60% of AF 4. LAB inoculation after AF completion | Simultaneous AF and MLF had no negative impact on fermentation and the final wine volatile aroma composition. Modified concentration of specific alcohols, acids, ethyl, and acetate esters in simultaneous compared to sequential fermentation, for each strain, were observed. Both LAB strains resulted in higher butyric acid ethyl ester and lower acetic acid ethyl ester and propionic acid ethyl ester concentration upon co-inoculation (regime 1) compared to sequential fermentation. | [168] |
Shiraz | S. cerevisiae AAV2, ITB, 101; Lp. plantarum Lp 1; O. oeni Oo 1 | for each yeast and LAB strain: 1. AF without MLF by each yeast strain 2. Co-inoculation of both LAB strains with each yeast strain 3. Inoculation of both LAB after AF conducted by each yeast strain | Volatile and polyphenolic wine composition depended upon yeast strain and MLF strategy. In all cases, co-inoculation resulted in the increase of p-hydroxybenzoic acid, vanillic acid, coutaric acid, quercetin-3-glu, quercetin-3-gal, myricetin, 2,3 butanediol, syringol, ethyl lactate, 2-phenylehtyl acetate, ethyl butanoate, ethyl decanoate, ethyl hexanoate, isoamyl acetate, citronellol, and butyrolactone, and the decrease of gallic acid, fertaric acid, epicatechic, 2-phenylethanol, propanol, and propanoic acid concentration. Co-inoculation resulted in more fruity, floral, nutty, and smoky odors, compared to sequential inoculation | [169] |
Shiraz | S. cerevisiae AWRI 1490; O. oeni Viniflora oenosTM | 1. no MLF 2. LAB inoculated 24 h after yeast 3. LAB inoculated 4 d after yeast 4. LAB inoculated 7 days after yeast 5. LAB inoculated 10 days after yeast (post AF) | Strategy 2 resulted in better LAB development, faster degradation of L-malic acid and reduction of total vinification time. Time of inoculation had no effect on ethanol, acetic acid, citric acid, lactic acid, and glycerol content. Succinic acid production was reduced in strategy 2. Changes in specific acetate and ethyl esters and higher alcohols according to time of inoculation were noted. Color density was decreased compared to no MLF but no significant differences were observed at the time of inoculation. | [170] |
Tannat | S. cerevisiae LD80, FUY4; O. oeni VP41 | For each yeast strain 1. LAB inoculation after AF 2. simultaneous inoculation of LAB 3. LAB inoculation 3 d after yeast inoculation | Inoculation timing had strain specific effect on both yeast and LAB development. Inoculation timing had no effect on ethanol content but strain-specific effect on organic acid content and volatile acidity. | [171] |
Tempranillo | S. cerevisiae Viacell C-58® O. oeni PN4TM, OmegaTM | 1. each LAB inoculated 24 h after yeast 2. spontaneous MLF | No differences in alcoholic strength, total acidity, glycerol content, color intensity, or tone between inoculated and spontaneous fermentations. In general, wines with inoculated MLF presented with higher ethyl acetate, 1-hexanol, acetaldehyde, and guaiacol concentration and lower valeric acid, isovaleric acid, 2,3 butanodiote and eugenol, compared to spontaneous MLF. Inoculated wines reached more fruity and floral flavors; spontaneous ones had stronger astringency and milky, raisin flavors. | [172] |
Tempranillo; Merlot | S. cerevisiae VRB, VN; O. oeni C22L9 | For each yeast strain 1. LAB inoculation after AF 2. LAB inoculation 24 h after yeast inoculation | Inoculation time had no effect on yeast growth and ethanol production. Different L-malic acid degradation kinetics between cultivars. Volatile acidity, as well as the concentration of specific alcohols, acids, aldehydes, ketones, esters, furans, terpenes, volatile phenols, vanillate derivates, and norisoprenoids were affected by yeast strain, cultivar, and MLF regime. In all cases, co-inoculation resulted in increased isobutanol, c-3-hexen-1-ol, ethyl lactate, diethyl succinate, citronellol, and zingerone, and decreased 3-methyl-thio-propanol, 3-ethyl-thio-propanol, furfuryl alcohol, 3-hydroxy-2-butanone, 3-hydroxy-2-pentanone, benzyl acetate, and linalool concentration. Slight differences in the organoleptic properties were assigned to inoculation timing. | [173] |
Teran | S. cerevisiae Uvaferm 299; O. oeni Uvaferm Alpha, Lalvin 31 | 1. no MLF 2. spontaneous MLF 3. co-inoculation of the yeast with each LAB 4. sequential inoculation of each LAB after AF | Co-inoculation had no effect on alcoholic fermentation kinetics. Inoculation timing had no effect on volatile acidity. Timing and LAB strain affected volatile compounds concentration. In all cases, increased diethyl succinate, ethyl lactate, and 2,3-butanediol, and decreased ethyl acetate and isoamyl acetate concentration was observed in co-inoculation compared to sequential fermentation. | [174] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramithiotis, S.; Stasinou, V.; Tzamourani, A.; Kotseridis, Y.; Dimopoulou, M. Malolactic Fermentation—Theoretical Advances and Practical Considerations. Fermentation 2022, 8, 521. https://doi.org/10.3390/fermentation8100521
Paramithiotis S, Stasinou V, Tzamourani A, Kotseridis Y, Dimopoulou M. Malolactic Fermentation—Theoretical Advances and Practical Considerations. Fermentation. 2022; 8(10):521. https://doi.org/10.3390/fermentation8100521
Chicago/Turabian StyleParamithiotis, Spiros, Vasiliki Stasinou, Aikaterini Tzamourani, Yorgos Kotseridis, and Maria Dimopoulou. 2022. "Malolactic Fermentation—Theoretical Advances and Practical Considerations" Fermentation 8, no. 10: 521. https://doi.org/10.3390/fermentation8100521
APA StyleParamithiotis, S., Stasinou, V., Tzamourani, A., Kotseridis, Y., & Dimopoulou, M. (2022). Malolactic Fermentation—Theoretical Advances and Practical Considerations. Fermentation, 8(10), 521. https://doi.org/10.3390/fermentation8100521