Evaluation of Different Brown Seaweeds as Feed and Feed Additives Regarding Rumen Fermentation and Methane Mitigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basal Diets and Seaweeds
2.2. Donor Animals and Rumen Fluid Collection
2.3. Experimental Design and In Vitro Incubation Procedure
2.4. Incubation Medium Sampling and Analysis
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results
3.1. EXP. 1
3.2. EXP. 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pradhan, B.; Bhuyan, P.P.; Patra, S.; Nayak, R.; Behera, P.K.; Behera, C.; Behera, A.K.; Ki, J.-S.; Jena, M. Beneficial effects of seaweeds and seaweed-derived bioactive compounds: Current evidence and future prospective. Biocatal. Agric. Biotechnol. 2022, 39, 102242. [Google Scholar] [CrossRef]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Rajauria, G. Seaweeds: A sustainable feed source for livestock and aquaculture. In Seaweed Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 389–420. ISBN 9780124186972. [Google Scholar]
- Rjiba-Ktita, S.; Chermiti, A.; Bodas, R.; France, J.; López, S. Aquatic plants and macroalgae as potential feed ingredients in ruminant diets. J. Appl. Phycol. 2017, 29, 449–458. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Guiry, M.D. The Seaweed Site: Information on Marine Algae. Available online: https://www.seaweed.ie/ (accessed on 11 September 2022).
- Pandey, D.; Mansouryar, M.; Novoa-Garrido, M.; Næss, G.; Kiron, V.; Hansen, H.H.; Nielsen, M.O.; Khanal, P. Nutritional and anti-methanogenic potentials of macroalgae for ruminants. In Seaweed and Microalgae as Alternative Sources of Protein; Lei, X.G., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 195–228. ISBN 9781786766205. [Google Scholar]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Min, B.R.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Akbay, A.; Augyte, S. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef]
- Mišurcová, L. Chemical Composition of Seaweeds. In Handbook of Marine Macroalgae; Kim, S.-K., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 171–192. ISBN 9780470979181. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Wang, Y.; Alexander, T.W.; McAllister, T.A. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. J. Sci. Food Agric. 2009, 89, 2252–2260. [Google Scholar] [CrossRef]
- Arnold, T.M.; Targett, N.M. Marine tannins: The importance of a mechanistic framework for predicting ecological roles. J. Chem. Ecol. 2002, 28, 1919–1934. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.-U.; Arshad, M.A.; Ebeid, H.M.; Rehman, M.S.-U.; Khan, M.S.; Shahid, S.; Yang, C. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet-microbe interaction. Front. Vet. Sci. 2020, 7, 575801. [Google Scholar] [CrossRef] [PubMed]
- Bikker, P.; Stokvis, L.; van Krimpen, M.M.; van Wikselaar, P.G.; Cone, J.W. Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Anim. Feed Sci. Technol. 2020, 263, 114460. [Google Scholar] [CrossRef]
- Belanche, A.; Jones, E.; Parveen, I.; Newbold, C.J. A Metagenomics approach to evaluate the impact of dietary supplementation with Ascophyllum nodosum or Laminaria digitata on rumen function in rusitec fermenters. Front. Microbiol. 2016, 7, 299. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.R.G.; Fonseca, A.J.M.; Oliveira, H.M.; Mendonça, C.; Cabrita, A.R.J. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 2016, 6, 32321. [Google Scholar] [CrossRef]
- De La Moneda, A.; Carro, M.D.; Weisbjerg, M.R.; Roleda, M.Y.; Lind, V.; Novoa-Garrido, M.; Molina-Alcaide, E. Variability and potential of seaweeds as ingredients of ruminant diets: An in vitro study. Animals 2019, 9, 851. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Bach, S.J.; McAllister, T.A. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim. Feed Sci. Technol. 2008, 145, 375–395. [Google Scholar] [CrossRef]
- Erickson, P.S.; Marston, S.P.; Gemmel, M.; Deming, J.; Cabral, R.G.; Murphy, M.R.; Marden, J.I. Short communication: Kelp taste preferences by dairy calves. J. Dairy Sci. 2012, 95, 856–858. [Google Scholar] [CrossRef]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed potential in the animal feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Marín, A.; Casas-Valdez, M.; Carrillo, S.; Hernández, H.; Monroy, A.; Sanginés, L.; Pérez-Gil, F. The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Rev. Biol. Trop. 2009, 57, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Kim, D.H.; Lee, S.S. The potential nutritive value of Sargassum fulvellum as a feed ingredient for ruminants. Algal Res. 2020, 45, 101761. [Google Scholar] [CrossRef]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. The efficacy of plant-based bioactives supplementation to different proportion of concentrate diets on methane production and rumen fermentation characteristics in vitro. Animals 2021, 11, 1029. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- D’Armas, H.; Jaramillo, C.; D’Armas, M.; Echavarría, A.; Valverde, P. Proximate composition of several green, brown and red seaweeds from the coast of Ecuador. Rev. Biol. Trop. 2019, 67, 61–68. [Google Scholar] [CrossRef]
- Fernández-Segovia, I.; Lerma-García, M.J.; Fuentes, A.; Barat, J.M. Characterization of spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Res. Int. 2018, 111, 212–219. [Google Scholar] [CrossRef]
- Pino, F.; Heinrichs, A.J. Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers. J. Dairy Sci. 2016, 99, 2797–2810. [Google Scholar] [CrossRef]
- Lahaye, M. Marine algae as sources of fibres: Determination of soluble and insoluble dietary fibre contents in some ‘sea vegetables’. J. Sci. Food Agric. 1991, 54, 587–594. [Google Scholar] [CrossRef]
- Biancarosa, I.; Espe, M.; Bruckner, C.G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E.J. Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. J. Appl. Phycol. 2017, 29, 1001–1009. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Neto, A.I.; Baptista, J. Seasonal variability of the biochemical composition and antioxidant properties of Fucus spiralis at two Azorean islands. Mar. Drugs 2018, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Britton, D.; Schmid, M.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L.; Mundy, C.N. Seasonal and site-specific variation in the nutritional quality of temperate seaweed assemblages: Implications for grazing invertebrates and the commercial exploitation of seaweeds. J. Appl. Phycol. 2021, 33, 603–616. [Google Scholar] [CrossRef]
- Owens, F.N.; Basalan, M. Ruminal Fermentation. In Rumenology; Millen, D.D., de Beni Arrigoni, M., Lauritano Pacheco, R.D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 63–102. ISBN 978-3-319-30531-8. [Google Scholar]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Le Guan, L.; Seo, J.; Kim, H.; Lee, S.S.; Lee, S.S. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci. Rep. 2021, 11, 24092. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, J.S.; Shin, N.H.; Lee, S.K.; Kim, H.S.; Eom, J.S.; Lee, S.S. Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations. Asian Australas. J. Anim. Sci. 2019, 32, 1864–1872. [Google Scholar] [CrossRef]
- Hansen, H.; Hector, B.; Feldmann, J. A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep. Anim. Feed Sci. Technol. 2003, 105, 21–28. [Google Scholar] [CrossRef]
- Targett, N.M.; Arnold, T.M. Minireview-predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 1998, 34, 195–205. [Google Scholar] [CrossRef]
- Hierholtzer, A.; Chatellard, L.; Kierans, M.; Akunna, J.C.; Collier, P.J. The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J. Appl. Microbiol. 2013, 114, 964–973. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J. Appl. Phycol. 2016, 28, 1443–1452. [Google Scholar] [CrossRef]
- Künzel, S.; Yergaliyev, T.; Wild, K.J.; Philippi, H.; Petursdottir, A.H.; Gunnlaugsdottir, H.; Reynolds, C.K.; Humphries, D.J.; Camarinha-Silva, A.; Rodehutscord, M. Methane reduction potential of brown seaweeds and their influence on nutrient degradation and microbiota composition in a rumen simulation technique. Front. Microbiol. 2022, 13, 889618. [Google Scholar] [CrossRef] [PubMed]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; de Anda, V.; Ginsburg, D.W.; Harden, M.C.; Nuzhdin, S.V.; et al. Methane reduction potential of two pacific coast macroalgae during in vitro ruminant fermentation. Front. Mar. Sci. 2020, 7, 561. [Google Scholar] [CrossRef]
- Romero-Pérez, A.; Okine, E.K.; Guan, L.L.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. Rapid Communication: Evaluation of methane inhibitor 3-nitrooxypropanol and monensin in a high-grain diet using the rumen simulation technique (Rusitec)1,2. J. Anim. Sci. 2017, 95, 4072–4077. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Yano, R.; Fujimori, M.; Kand, D.; Hanada, M.; Nishida, T.; Fukuma, N. Impacts of Mootral on methane production, rumen fermentation, and microbial community in an in vitro study. Front. Vet. Sci. 2020, 7, 623817. [Google Scholar] [CrossRef] [PubMed]
g/kg | Kleingrass Hay | Concentrate Mixture |
---|---|---|
Dry matter (g/kg in fresh matter) | 910 | 875 |
Organic matter | 892 | 937 |
Crude ash | 108 | 63 |
Crude protein | 146 | 188 |
Ether extract | 37 | 43 |
Neutral detergent fiber | 626 | 315 |
Acid detergent fiber | 339 | 117 |
Acid detergent lignin | 63 | 26 |
Non-fiber carbohydrate | 83 | 391 |
Product Name | Seaweed Species | Site of Collection | Drying Method | Drying Temperature | Crushing Method |
---|---|---|---|---|---|
Algin gold | Ascophyllum nodosum | North Atlantic Sea Basin, Ireland | Rotary Kiln Dryer | 60–80 °C for 1.5 h | Hammer mill |
Asco Sea Green | Ascophyllum nodosum | North Atlantic Sea Basin, Canada | Rotary Kiln Dryer | 60–80 °C for 1.5 h | Hammer mill |
Ecklonia gold | Ecklonia maxima | South Atlantic Sea Basin (offshore of Western Cape State), South Africa | Sun Drying | - | Hammer mill |
Seaweed meal | Sargassum fulvellum | Sunda Strait, Indonesia | Rotary Kiln Dryer | 60–80 °C for 1.5 h | Hammer mill |
Lessonia gold | Lessonia flavicans | Chilean Sea, Chile | Sun Drying | - | Hammer mill |
Lessonia gold | Lessonia nigrescens | Chilean Sea, Chile | Sun Drying | - | Hammer mill |
Laminaria gold | Laminaria japonica | Bohai Sea and Yellow Sea, China | Rotary Kiln Dryer | 60–80 °C for 1.5 h | Hammer mill |
g/kg | A. nodosum (Ireland) | A. nodosum (Canada) | E. maxima (South Africa) | S. fulvellum (Indonesia) | L. flavicans (Chile) | L. nigrescens (Chile) | L. japonica (China) |
---|---|---|---|---|---|---|---|
Dry matter (g/kg in fresh matter) | 873 | 881 | 877 | 853 | 907 | 930 | 905 |
Organic matter | 705 | 708 | 582 | 680 | 506 | 324 | 602 |
Crude ash | 295 | 292 | 418 | 320 | 494 | 676 | 398 |
Crude protein | 76 | 89 | 116 | 95 | 101 | 79 | 133 |
Ether extract | 22 | 32 | 4.0 | 9.0 | 5.0 | 5.0 | 6.0 |
Neutral detergent fiber | 431 | 315 | 392 | 457 | 265 | 200 | 298 |
Acid detergent fiber | 273 | 219 | 232 | 231 | 157 | 109 | 275 |
Acid detergent lignin | 207 | 101 | 93 | 136 | 74 | 69 | 38 |
Non-fiber carbohydrate | 228 | 330 | 148 | 187 | 184 | 78 | 254 |
Total digestible nutrients | 263 | 408 | 238 | 256 | 232 | 86 | 337 |
Ca | 12 | 16 | 42 | 36 | 42 | 96 | 778 |
P | 1.0 | 1.6 | 3.1 | 1.2 | 17 | 9.7 | 2.1 |
Mg | 8.3 | 10 | 11 | 12 | 13 | 13 | 5.8 |
K | 26 | 23 | 43 | 83 | 81 | 55 | 35 |
Parameter | Control | A. nodosum (Ireland) | A. nodosum (Canada) | E. maxima (South Africa) | S. fulvellum (Indonesia) | L. flavicans (Chile) | L. nigrescens (Chile) | L. japonica (China) | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Total Gas/DM 1 (mL/g) | 102.71 c | 116.09 b | 115.64 b | 114.01 b | 116.93 b | 116.78 b | 111.14 bc | 132.75 a | 1.51 | <0.001 |
Total gas/D.DM 2 (mL/g) | 176.06 c | 192.8 b | 194.59 b | 195.94 b | 191.5 b | 189.4 b | 187.1 b | 216.76 a | 1.64 | <0.001 |
CH4 (%) | 5.83 b | 6.02 ab | 5.87 b | 5.77 b | 5.95 b | 6.13 ab | 5.91 b | 6.37 a | 0.05 | <0.001 |
CO2 (%) | 94.16 a | 93.97 ab | 94.12 a | 94.22 a | 94.04 a | 93.86 ab | 94.08 a | 93.62 b | 0.05 | <0.001 |
CH4/DM (mL/g) | 6.03 c | 7.03 b | 6.84 bc | 6.62 bc | 7.01 b | 7.21 b | 6.61 bc | 8.49 a | 0.14 | <0.001 |
CH4/D.DM (mL/g) | 10.27 c | 11.62 b | 11.45 b | 11.32 b | 11.40 b | 11.62 b | 11.07 bc | 13.83 a | 0.16 | <0.001 |
CO2/DM (mL/g) | 96.67 c | 109.05 b | 108.8 b | 107.39 b | 109.77 b | 109.57 b | 104.53 bc | 124.26 a | 1.38 | <0.001 |
CO2/D.DM (mL/g) | 165.79 c | 181.17 b | 183.14 b | 184.62 b | 180.06 b | 177.78 b | 176.03 b | 202.92 a | 1.50 | <0.001 |
Parameter | Control | A. nodosum (Ireland) | A. nodosum (Canada) | E. maxima (South Africa) | S. fulvellum (Indonesia) | L. flavicans (Chile) | L. nigrescens (Chile) | L. japonica (China) | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|
pH | 6.58 a | 6.56 ab | 6.56 abc | 6.54 bc | 6.52 bcd | 6.52 cd | 6.53 bcd | 6.50 d | 0.01 | <0.001 |
IVDMD 1 (%) | 58.37 | 60.29 | 59.31 | 58.20 | 60.99 | 61.65 | 59.50 | 61.33 | 0.58 | 0.100 |
Acetate (mmol/L) | 347.55 c | 360.63 b | 360.26 b | 364.48 ab | 364.37 ab | 363.60 ab | 358.01 bc | 374.38 a | 9.75 | <0.001 |
Propionate (mmol/L) | 82.74 c | 87.35 ab | 88.93 ab | 88.14 ab | 89.36 b | 88.28 b | 86.10 bc | 91.44 a | 2.51 | <0.001 |
Butyrate (mmol/L) | 24.47 b | 25.19 ab | 24.58 b | 24.59 b | 25.53 ab | 25.25 ab | 24.88 ab | 26.25 a | 0.88 | 0.003 |
Total VFA 2 (mmol/L) | 454.77 c | 473.17 b | 473.78 b | 477.23 ab | 479.27 ab | 477.13 ab | 469.00 bc | 492.08 a | 13.03 | <0.001 |
Acetate (mol/100mol) | 76.66 | 76.44 | 76.23 | 76.54 | 76.18 | 76.42 | 76.58 | 76.23 | 0.16 | 0.094 |
Propionate (mol/100mol) | 18.08 b | 18.38 ab | 18.71 a | 18.41 ab | 18.62 ab | 18.43 ab | 18.25 ab | 18.53 ab | 0.13 | 0.016 |
Butyrate (mol/100mol) | 5.24 a | 5.17 abc | 5.04 c | 5.03 c | 5.19 abc | 5.14 abc | 5.15 abc | 5.22 ab | 0.06 | 0.001 |
Parameter | Control | A. nodosum (Ireland) | A. nodosum (Canada) | E. maxima (South Africa) | S. fulvellum (Indonesia) | L. flavicans (Chile) | L. nigrescens (Chile) | L. japonica (China) | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Total Gas/DM 1 (mL/g) | 101.92 a | 91.08 ab | 88.73 b | 87.13 b | 93.89 ab | 94.64 ab | 88.15 b | 87.87 b | 1.17 | 0.008 |
Total gas/D.DM 2 (mL/g) | 165.78 | 162.45 | 166.34 | 161.80 | 156.56 | 160.88 | 164.39 | 159.77 | 1.42 | 0.75 |
CH4 (%) | 5.92 a | 5.45 abc | 5.36 abc | 4.97 bc | 5.66 ab | 5.81 a | 5.22 bc | 4.84 c | 0.08 | <0.001 |
CO2 (%) | 94.08 c | 94.55 abc | 94.64 abc | 95.03 ab | 94.34 bc | 94.19 bc | 94.78 ab | 95.16 a | 0.08 | <0.001 |
CH4/DM (mL/g) | 6.04 a | 4.97 abc | 4.76 bc | 4.33 bc | 5.35 abc | 5.50 ab | 4.60 b | 4.26 bc | 0.13 | 0.001 |
CH4/D.DM (mL/g) | 9.82 a | 8.85 ab | 8.91 ab | 8.02 b | 8.88 ab | 9.35 a | 8.58 ab | 7.75 b | 0.15 | 0.005 |
CO2/DM (mL/g) | 95.87 a | 86.11 ab | 83.97 b | 82.79 b | 88.54 ab | 89.14 ab | 83.55 b | 83.61 b | 1.05 | 0.012 |
CO2/D.DM (mL/g) | 155.96 | 153.59 | 157.43 | 153.77 | 147.68 | 151.53 | 155.81 | 152.02 | 1.34 | 0.756 |
Parameter | Control | A. nodosum (Ireland) | A. nodosum (Canada) | E. maxima (South Africa) | S. fulvellum (Indonesia) | L. flavicans (Chile) | L. nigrescens (Chile) | L. japonica (China) | SEM | p Value |
---|---|---|---|---|---|---|---|---|---|---|
pH | 6.65 | 6.75 | 6.74 | 6.68 | 6.69 | 6.72 | 6.68 | 6.67 | 0.01 | 0.132 |
IVDMD 1 (%) | 61.44 a | 56.09 abc | 53.42 bc | 54.09 bc | 59.83 a | 58.86 abc | 53.60 c | 55.05 bc | 0.66 | 0.001 |
Acetate (mmol/L) | 202.60 a | 191.89 bc | 189.18 bc | 186.40 bc | 192.71 abc | 195.80 ab | 187.30 bc | 184.85 c | 1.18 | <0.001 |
Propionate (mmol/L) | 45.48 a | 38.05 b | 37.99 b | 37.00 b | 38.07 b | 39.40 b | 37.13 b | 38.03 b | 0.51 | <0.001 |
Butyrate (mmol/L) | 15.12 a | 13.27 b | 12.87 b | 13.29 b | 13.73 ab | 13.96 ab | 13.26 b | 13.49 b | 0.15 | 0.001 |
Total VFA 2 (mmol/L) | 263.19 a | 243.21 b | 240.05 b | 236.70 b | 244.50 b | 249.16 b | 237.69 b | 236.37 b | 1.75 | <0.001 |
Acetate (mol/100mol) | 76.98 b | 78.90 a | 78.81 a | 78.75 a | 78.83 a | 78.58 a | 78.80 a | 78.20 a | 0.12 | <0.001 |
Propionate (mol/100mol) | 17.28 a | 15.65 b | 15.83 b | 15.63 b | 15.56 b | 15.82 b | 15.62 b | 16.09 b | 0.11 | <0.001 |
Butyrate (mol/100mol) | 5.74 a | 5.45 ab | 5.36 b | 5.62 ab | 5.61 ab | 5.60 ab | 5.58 ab | 5.71 ab | 0.03 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, E.; Batbekh, B.; Fukuma, N.; Hanada, M.; Nishida, T. Evaluation of Different Brown Seaweeds as Feed and Feed Additives Regarding Rumen Fermentation and Methane Mitigation. Fermentation 2022, 8, 504. https://doi.org/10.3390/fermentation8100504
Ahmed E, Batbekh B, Fukuma N, Hanada M, Nishida T. Evaluation of Different Brown Seaweeds as Feed and Feed Additives Regarding Rumen Fermentation and Methane Mitigation. Fermentation. 2022; 8(10):504. https://doi.org/10.3390/fermentation8100504
Chicago/Turabian StyleAhmed, Eslam, Belgutei Batbekh, Naoki Fukuma, Masaaki Hanada, and Takehiro Nishida. 2022. "Evaluation of Different Brown Seaweeds as Feed and Feed Additives Regarding Rumen Fermentation and Methane Mitigation" Fermentation 8, no. 10: 504. https://doi.org/10.3390/fermentation8100504
APA StyleAhmed, E., Batbekh, B., Fukuma, N., Hanada, M., & Nishida, T. (2022). Evaluation of Different Brown Seaweeds as Feed and Feed Additives Regarding Rumen Fermentation and Methane Mitigation. Fermentation, 8(10), 504. https://doi.org/10.3390/fermentation8100504