Anaerobic Co-Digestion of Sheep Manure and Waste from a Potato Processing Factory: Techno-Economic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochemical Methane Potential (BMP) Tests
2.2. Semi-Continuous Digestion Experiments
2.3. Analytical Techniques
2.4. Technical Analysis of the Digestion Process
3. Results
3.1. Results from Batch Digestion Tests
3.2. Results from Semi-Continuous Digestion Systems
3.3. Technical Analysis of Mono-Digestion
3.4. Techno-Economic Analysis of the Co-Digestion Case: Manure and Potato Processing Factory Waste
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lee, Y.R.; Tsai, W.T. Valorization of Value-Added Resources from the Anaerobic Digestion of Swine-Raising Manure for Circular Economy in Taiwan. Fermentation 2020, 6, 81. [Google Scholar] [CrossRef]
- Gómez, X.; Cuetos, M.J.; García, A.I.; Morán, A. Evaluation of digestate stability from anaerobic process by thermogravimetric analysis. Thermochim. Acta 2005, 426, 179–184. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Morán, A.; Otero, M.; Gómez, X. Anaerobic co-digestion of poultry blood with OFMSW: FTIR and TG–DTG study of process stabilization. Environ. Technol. 2009, 30, 571–582. [Google Scholar] [CrossRef]
- Gómez-Quiroga, X.; Aboudi, K.; Álvarez-Gallego, C.J.; Romero-García, L.I. Enhancement of methane production in thermophilic anaerobic co-digestion of exhausted sugar beet pulp and pig manure. Appl. Sci. 2019, 9, 1791. [Google Scholar] [CrossRef] [Green Version]
- Baek, G.; Kim, D.; Kim, J.; Kim, H.; Lee, C. Treatment of cattle manure by anaerobic co-digestion with food waste and pig manure: Methane yield and synergistic effect. Int. J. Environ. Res. Public Health 2020, 17, 4737. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Tang, X.; Zhao, K.; Balan, V.; Zhu, Q. Biogas Production from Anaerobic Co-Digestion of Spent Mushroom Substrate with Different Livestock Manure. Energies 2021, 14, 570. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lin, Y.Q. Analysis of Promotion Policies for the Valorization of Food Waste from Industrial Sources in Taiwan. Fermentation 2021, 7, 51. [Google Scholar] [CrossRef]
- Nasir, I.M.; Mohd Ghazi, T.I.; Omar, R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Krooneman, J.; Euverink, G.J.W. Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Sci. Total Environ. 2020, 142940. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Lee, C. Effect of mild-temperature thermo-alkaline pretreatment on the solubilization and anaerobic digestion of spent coffee grounds. Energies 2018, 11, 865. [Google Scholar] [CrossRef] [Green Version]
- Ferrentino, R.; Merzari, F.; Fiori, L.; Andreottola, G. Biochemical methane potential tests to evaluate anaerobic digestion enhancement by thermal hydrolysis pretreatment. Bioenergy Res. 2019, 12, 722–732. [Google Scholar] [CrossRef]
- Lotfi Aski, A.; Borghei, A.; Zenouzi, A.; Ashrafi, N.; Taherzadeh, M.J. Steam explosion pretreatment of sludge for pharmaceutical removal and heavy metal release to improve biodegradability and biogas production. Fermentation 2020, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Şenol, H.; Açıkel, Ü.; Oda, V. Anaerobic digestion of sugar beet pulp after acid thermal and alkali thermal pretreatments. Biomass Convers. Biorefin. 2021, 11, 895–905. [Google Scholar] [CrossRef]
- García-Cascallana, J.; Borge-Díez, D.; Gómez, X. Enhancing the efficiency of thermal hydrolysis process in wastewater treatment plants by the use of steam accumulation. Int. J. Environ. Sci. Technol. 2019, 16, 3403–3418. [Google Scholar] [CrossRef]
- García-Cascallana, J.; Gómez, X.; Martinez, E.J. Thermal Hydrolysis of Sewage Sludge: A Case Study of a WWTP in Burgos, Spain. Appl. Sci. 2021, 11, 964. [Google Scholar] [CrossRef]
- Abdelsalam, E.M.; Samer, M.; Amer, M.A.; Amer, B.M. Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environ. Dev. Sustain. 2021, 23, 8746–8757. [Google Scholar] [CrossRef]
- Achinas, S.; Li, Y.; Achinas, V.; Euverink, G.J.W. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies 2019, 12, 2311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Li, H.; Cheng, Y.C.; Liu, C. Influence of solids concentration on diffusion behavior in sewage sludge and its digestate. Chem. Eng. Sci. 2016, 152, 674–677. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; Cascallana, J.G.; González, R.; Gómez, X. High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. Environments 2021, 8, 80. [Google Scholar] [CrossRef]
- Jansson, A.T.; Patinvoh, R.J.; Sárvári Horváth, I.; Taherzadeh, M.J. Dry anaerobic digestion of food and paper industry wastes at different solid contents. Fermentation 2019, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- González, R.; Smith, R.; Blanco, D.; Fierro, J.; Gómez, X. Application of thermal analysis for evaluating the effect of glycerine addition on the digestion of swine manure. J. Thermal Anal. Calorim. 2019, 135, 2277–2286. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Gómez, X.; Martínez, E.J.; Fierro, J.; Otero, M. Feasibility of anaerobic co-digestion of poultry blood with maize residues. Bioresour. Technol. 2013, 144, 513–520. [Google Scholar] [CrossRef]
- Brulé, M.; Oechsner, H.; Jungbluth, T. Exponential model describing methane production kinetics in batch anaerobic digestion: A tool for evaluation of biochemical methane potential assays. Bioprocess Biosyst. Eng. 2014, 37, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.S.; Strangfeld, M.; Meyer, M. Diauxie Studies in Biogas Production from Gelatin and Adaptation of the Modified Gompertz Model: Two-Phase Gompertz Model. Appl. Sci. 2021, 11, 1067. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Gomez, X.; Otero, M.; Morán, A. Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: Influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 2008, 40, 99–106. [Google Scholar] [CrossRef]
- Cuetos, M.J.; Gómez, X.; Otero, M.; Morán, A. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): Influence of heat and pressure pre-treatment in biogas yield. Waste Manage. 2010, 30, 1780–1789. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environmental Federation (WEF). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Melikoglu, M.; Menekse, Z.K. Forecasting Turkey’s cattle and sheep manure based biomethane potentials till 2026. Biomass Bioenergy 2020, 132, 105440. [Google Scholar] [CrossRef]
- Available online: https://agriculturaganaderia.jcyl.es/web/es/efectivos-ganaderos-2019.html (accessed on 12 August 2021).
- Rajendran, K.; Murthy, G.S. Techno-economic and life cycle assessments of anaerobic digestion—A review. Biocatal. Agric. Biotechnol. 2019, 20, 101207. [Google Scholar] [CrossRef]
- Sepelev, I.; Galoburda, R. Industrial potato peel waste application in food production: A review. Res. Rural Dev. 2015, 1, 130–136. [Google Scholar]
- Pedreschi, F.; Moyano, P. Oil uptake and texture development in fried potato slices. J. Food Eng. 2005, 70, 557–563. [Google Scholar] [CrossRef]
- González, R.; González, J.; Rosas, J.G.; Smith, R.; Gómez, X. Biochar and energy production: Valorizing swine manure through coupling coupling co-digestion and pyrolysis. C 2020, 6, 43. [Google Scholar] [CrossRef]
- Whiting, A.; Azapagic, A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 2014, 70, 181–193. [Google Scholar] [CrossRef]
- Balussou, D.; Kleyböcker, A.; McKenna, R.; Möst, D.; Fichtner, W. An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valori. 2012, 3, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Aui, A.; Li, W.; Wright, M.M. Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa. Waste Manage. 2019, 89, 154–164. [Google Scholar] [CrossRef]
- Oreggioni, G.D.; Gowreesunker, B.L.; Tassou, S.A.; Bianchi, G.; Reilly, M.; Kirby, M.E.; Toop, T.A.; Theodorou, M.K. Potential for energy production from farm wastes using anaerobic digestion in the UK: An economic comparison of different size plants. Energies 2017, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Manage. 2008, 28, 939–951. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Suja, F.B.; Porhemmat, M.; Pramanik, B.K. Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes 2019, 7, 600. [Google Scholar] [CrossRef] [Green Version]
- Duan, N.; Dong, B.; Wu, B.; Dai, X. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study. Bioresour. Technol. 2012, 104, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Borowski, S.; Domański, J.; Weatherley, L. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. Waste Manage. 2014, 34, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.; Herrmann, C.; Maja, W.; Borja, R. Effect of organic loading rate on the anaerobic digestion of swine waste with biochar addition. Environ. Sci. Pollut. Res. 2021, 28, 38455–38465. [Google Scholar] [CrossRef]
- Habagil, M.; Keucken, A.; Sárvári Horváth, I. Biogas production from food residues—the role of trace metals and co-digestion with primary sludge. Environments 2020, 7, 42. [Google Scholar] [CrossRef]
- Liao, X.; Li, H.; Cheng, Y.; Chen, N.; Li, C.; Yang, Y. Process performance of high-solids batch anaerobic digestion of sewage sludge. Environ. Technol. 2014, 35, 2652–2659. [Google Scholar] [CrossRef]
- Ellacuriaga, M.; García-Cascallana, J.; Gómez, X. Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy. Fuels 2021, 2, 9. [Google Scholar] [CrossRef]
- Koch, K.; Hafner, S.D.; Weinrich, S.; Astals, S.; Holliger, C. Power and limitations of biochemical methane potential (BMP) tests. Front. Energy Res. 2020, 8, 63. [Google Scholar] [CrossRef]
- Seruga, P.; Krzywonos, M.; Seruga, A.; Niedźwiecki, Ł.; Pawlak-Kruczek, H.; Urbanowska, A. Anaerobic digestion performance: Separate collected vs. mechanical segregated organic fractions of municipal solid waste as feedstock. Energies 2020, 13, 3768. [Google Scholar] [CrossRef]
- Song, L.; Li, D.; Fang, H.; Cao, X.; Liu, R.; Niu, Q.; Li, Y.Y. Revealing the correlation of biomethane generation, DOM fluorescence, and microbial community in the mesophilic co-digestion of chicken manure and sheep manure at different mixture ratio. Environ. Sci. Pollut. Res. 2019, 26, 19411–19424. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Achinas, S.; Zhao, J.; Geurkink, B.; Krooneman, J.; Euverink, G.J.W. Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renew. Energy 2020, 153, 553–563. [Google Scholar] [CrossRef]
- Alvarez, R.; Lidén, G. Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass Bioenergy 2009, 33, 527–533. [Google Scholar] [CrossRef]
- Ajayi-Banji, A.A.; Rahman, S.; Sunoj, S.; Igathinathane, C. Impact of corn stover particle size and C/N ratio on reactor per-formance in solid-state anaerobic co-digestion with dairy manure. J. Air Waste Manag. Assoc. 2020, 70, 436–454. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.energy.gov/sites/prod/files/2016/09/f33/CHP-Recip%20Engines.pdf (accessed on 18 September 2021).
- Available online: https://www.wolf-ps.de/fileadmin/WPS/Broschueren/WOLF_PS_CHP_solutions_with_added_value_EN.pdf (accessed on 18 September 2021).
- Available online: https://www.tedom.com/en/chp-units/biogas/ (accessed on 10 September 2021).
- Available online: https://helbio.com/small-chp-systems/ (accessed on 10 September 2021).
- Mucha, A.P.; Dragisa, S.; Dror, I.; Garuti, M.; van Hullebusch, E.D.; Repinc, S.K.; Muňoz, J.; Rodriguez-Perez, S.; Stres, B.; Ust’ak, S.; et al. Re-use of digestate and recovery techniques. In Trace Elements in Anaerobic Biotechnologies; Fermoso, F.G., van Hullebusch, E., Collins, G., Roussel, J., Mucha, A.P., Esposito, G., Eds.; IWA Publishing: London, UK, 2019; p. 181. [Google Scholar] [CrossRef] [Green Version]
- Drennan, M.F.; DiStefano, T.D. Characterization of the curing process from high-solids anaerobic digestion. Bioresour. Technol. 2010, 101, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Kulikowska, D.; Bernat, K. Waste Willow-Bark from Salicylate Extraction Successfully Reused as an Amendment for Sewage Sludge Composting. Sustainability 2021, 13, 6771. [Google Scholar] [CrossRef]
- Available online: https://www.omie.es/es/market-results/daily/daily-market/daily-hourly-price (accessed on 18 September 2021).
- Lovarelli, D.; Falcone, G.; Orsi, L.; Bacenetti, J. Agricultural small anaerobic digestion plants: Combining economic and environmental assessment. Biomass Bioenergy 2019, 128, 105302. [Google Scholar] [CrossRef]
Parameter | Sheep Manure | Potato Peels | Discarded Fries |
---|---|---|---|
TS (g/kg) | 233.7 ± 7.1 | 122.8 ± 4.4 | 858.1 ± 2.7 |
VS (g/kg) | 174.5 ± 5.2 | 106.2 ± 3.8 | 812.6 ± 5.3 |
N-NH3 (mg/L) | 1045 ± 53.6 | - | - |
C/N | 12.17 ± 1.41 | 24.04 ± 2.56 | 42.53 ± 4.73 |
N (%) | 3.06 ± 0.20 | 2.01 ± 0.16 | 1.24 ± 0.17 |
Ash (%) | 8.27 ± 0.32 | 1.45 ± 0.08 | 2.23 ± 0.11 |
pH | 8.43 ± 0.10 | 5.45 ± 0.10 | 5.84 ± 0.10 |
Lipids (%) | - | - | 44.25 ± 2.66 |
Phosphorus (mg/L) | 4400 ± 124 | 2117 ± 56 | 1401 ± 53 |
Na (cmol/kg) | 45.46 ± 2.72 | 1.76 ± 0.09 | 0.36 ± 0.01 |
Mg (cmol/kg) | 14.98 ± 0.78 | 8.74 ± 0.40 | 2.57 ± 0.14 |
K (cmol/kg) | 70.0 ± 2.31 | 93.7 ± 5.8 | 24.9 ± 1.04 |
Ca (cmol/kg) | 16.2 ± 0.61 | 8.87 ± 0.54 | 0.32 ± 0.02 |
Model | Sheep Manure | Potato Peels | Discarded Chips |
---|---|---|---|
Exponential model | |||
Po (mL CH4/g VS) | 330.0 ± 4.1 | 200.4 ± 2.6 | - |
K (1/d) | 0.0736 ± 0.0028 | 0.2732 ± 0.014 | - |
R2 | 0.982 | 0.984 | - |
R2adj | 0.981 | 0.984 | - |
Gompertz model | |||
Pmax (mL CH4/g VS) | 308.8 ± 1.4 | 197.7 ± 3.3 | 713.0 ± 10.5 |
Rmax (mL CH4/d) | 17.9 ± 0.2 | 27.3 ± 1.3 | 42.4 ± 1.0 |
λ (d) | 0.93 ± 0.13 | −0.88 ± 0.29 | 18.99 ± 0.25 |
R2 | 0.996 | 0.970 | 0.993 |
R2adj | 0.996 | 0.967 | 0.993 |
Parameter | R_Manure | R_m + Peels | R_m + Chips | ||
---|---|---|---|---|---|
Feed | Sheep manure | Sheep manure and potato peels | Sheep manure and discarded fries | ||
TS (g/L) | 104.2 ± 0.2 | 103.0 ± 0.3 | 103.1 ± 0.1 | ||
VS (g/L) | 75.4 ± 0.1 | 79.4 ± 0.2 | 79.4 ± 0.1 | ||
C/N ratio | 12.2 | 14.0 | 15.2 | ||
pH | 8.43 ± 0.20 | 7.82 ± 0.20 | 7.67 ± 0.2 | ||
Digestion parameters | |||||
OLR (g VS/L d) | 2.4 | 2.5 | 3.5 | 3.5 | 4.0 |
HRT (d) | 31.4 | 32 | 22 | 22 | 19.5 |
VS removal (%) | 37.9 ± 0.1 | 41.2 ± 0.4 | 45.7 ± 0.2 | 42.7 ± 0.5 | 46.9 ± 0.5 |
Acetic (mg/L) | 74.1 ± 19.1 | 31.0 ± 5.0 | 31.0 ± 5.0 | 30 ± 5.0 | 31± 5.0 |
Propionic (mg/L) | 6.0 ± 0.5 | - | - | - | - |
NH3 (mg/L) | 756.9 ± 34.8 | 744.0 ± 22.6 | 740.2 ± 35.3 | 707.7 ± 42.9 | 866.8 ± 47.2 |
Methane concentration (%) | 58.6 ± 3.4 | 57.6 ± 3.5 | 61.4 ± 4.5 | 62.4 ± 1.5 | 63.4 ± 3.2 |
SMP (mL CH4/g VS) | 196 ± 43 | 214.2 ± 33.3 | 215.6 ± 33.5 | 467.1 ± 32.5 | 422.0 ± 57.3 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Manure storage (m3) (storage capacity 10 d, density 0.6 t/m3) | 290 | Compost production (t/year) | 1864 |
Discarded chips + peeling waste storage (m3) (storage capacity 10 d, density 0.4 t/m3) | 145 | Compost selling price (EUR/t) | 21 |
Mixing tank (m3) (storage capacity 2 d) | 80 | Electricity production (kWh/year) | 700,800 |
Reactor volume (m3) | 1200 | Electricity selling price (EUR c/kWh) | 13 |
HRT (d) | 30 | Heat production (kWhth/year) | 497,568 |
Mixing tank (m3) | 80 | Heat selling price (EUR c/kWh) | 3 |
Biogas production (m3/d) | 1300 | Manure fees (EUR/t) | 5 |
Capital investment (EUR) | Revenue (EUR) | ||
Potato waste storage | 13,500 | Electricity 1 | 81,994 |
Manure storage | 27,000 | Heat | 3808 |
Mixing tank | 25,000 | Compost selling | 39,147 |
Digester | 321,776 | Manure fees annual revenues | 23,725 |
Engine | 112,960 | Total revenues | 148,674 |
Blower–biogas flare | 54,000 | Operating and maintenance costs O&M (EUR) | |
Dewatering unit (10 m3/h) | 12,800 | Labor and operations | 53,914 |
Composting equipment (KMC litter windrow composting unit) | 35,000 | Engine maintenance | 5646 |
Total main equipment | 602,031 | Transport costs (EUR c/t km) 2 | 18 |
Installation costs (0.1) | 60,203 | Tortuosity factor | 1.4 |
Piping and electrical connections (0.15) | 90,305 | Annual transport | 34,601 |
Land conditioning (0.05) | 30,101 | Total O&M | 94,162 |
Insulation (0.05 referred to digester cost) | 16,088 | Annual depreciation (EUR) | 68,291 |
Total | 798,728 | Depreciation period (year) | 15 |
Contract (25%) | 199,682 | Life span (year) | 30 |
Contingencies (10%) | 79,873 | Discount rate (%) | 3 |
Total investment | 1,078,284 | Plant construction period (year) | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, R.; Blanco, D.; Cascallana, J.G.; Carrillo-Peña, D.; Gómez, X. Anaerobic Co-Digestion of Sheep Manure and Waste from a Potato Processing Factory: Techno-Economic Analysis. Fermentation 2021, 7, 235. https://doi.org/10.3390/fermentation7040235
González R, Blanco D, Cascallana JG, Carrillo-Peña D, Gómez X. Anaerobic Co-Digestion of Sheep Manure and Waste from a Potato Processing Factory: Techno-Economic Analysis. Fermentation. 2021; 7(4):235. https://doi.org/10.3390/fermentation7040235
Chicago/Turabian StyleGonzález, Rubén, Daniel Blanco, José García Cascallana, Daniela Carrillo-Peña, and Xiomar Gómez. 2021. "Anaerobic Co-Digestion of Sheep Manure and Waste from a Potato Processing Factory: Techno-Economic Analysis" Fermentation 7, no. 4: 235. https://doi.org/10.3390/fermentation7040235
APA StyleGonzález, R., Blanco, D., Cascallana, J. G., Carrillo-Peña, D., & Gómez, X. (2021). Anaerobic Co-Digestion of Sheep Manure and Waste from a Potato Processing Factory: Techno-Economic Analysis. Fermentation, 7(4), 235. https://doi.org/10.3390/fermentation7040235