Preparation of Porous Biochar from Soapberry Pericarp at Severe Carbonization Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermochemical Properties of Soapberry Pericarp
2.3. Carbonization Experiments
2.4. Analysis of Resulting Biochar Properties
3. Results and Discussion
3.1. Thermochemical Characteristics of Soapberry Pericarp
3.2. Pore Properties of Resulting Biochar
3.3. Chemical Characteristics of Resulting Biochar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 1–13. [Google Scholar]
- BIOCHAR (International Biochar initiative). Available online: https://biochar-international.org/biochar/ (accessed on 3 September 2021).
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, B.; Wang, R.; Zhao, Z. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: A review. Environ. Sci. Pollut. Res. 2017, 24, 26297–26309. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar technology in wastewater treatment: A critical review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Jiang, S.; Nguyen, T.A.H.; Rudolph, V.; Yang, H.; Zhang, D.; Ok, Y.S.; Huang, L. Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environ. Geochem. Health 2017, 39, 403–415. [Google Scholar] [CrossRef]
- Kong, S.H.; Lam, S.S.; Yek, P.N.Y.; Liew, R.K.; Ma, N.L.; Osman, M.S.; Wong, C.C. Self-purging microwave pyrolysis: An innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption. J. Chem. Technol. Biotechnol. 2019, 94, 1397–1405. [Google Scholar] [CrossRef]
- Guo, C.; Zou, J.; Yang, J.; Wang, K.; Song, S. Surface characterization of maize-straw derived biochar and their sorption mechanism for Pb2+ and methylene blue. PLoS ONE 2020, 15, e0238105. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Lin, Y.Q.; Tsai, C.H.; Chen, W.S.; Chang, Y.T. Enhancing the pore properties and adsorption performance of cocoa pod husk (CPH)-derived biochars via post-acid treatment. Processes 2020, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.T.; Lin, Y.Q.; Huang, H.J. Valorization of rice husk for the production of porous biochar materials. Fermentation 2021, 7, 70. [Google Scholar] [CrossRef]
- Mondal, M.H.; Malik, S.; Garain, A.; Mandal, S.; Saha, B. Extraction of natural surfactant saponin from soapnut (Sapindus mukorossi) and its utilization in the remediation of hexavalent chromium from contaminated water. Tenside Surfactants Deterg. 2017, 54, 519–529. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.L.; Kuo, Y.H.; Lu, M.K.; Liao, C.H. Aqueous extract of Sapindus mukorossi induced cell death of A549 cells and exhibited antitumor property In Vivo. Sci. Rep. 2018, 8, 4831. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Gao, Y.; Chen, Z.; Zhao, G.C.; Liu, J.M.; Wang, X.; Gao, S.L.; Zhang, D.G.; Jia, L.M. Metabolomics analysis of the soapberry (Sapindus mukorossi Gaertn.) pericarp during fruit development and ripening based on UHPLC-HRMS. Sci. Rep. 2021, 11, 11657. [Google Scholar] [CrossRef] [PubMed]
- Eddaya, T.; Boughdad, A.; Sibille, E.; Chaimbault, P.; Zaid, A.; Amechouq, A. Biological activity of Sapindus mukorossi Gaerten (Sapindaceae) aqueous extract against Thysanoplusia orichalcea (Lepidoptera- Noctuidae). Ind. Crops Prod. 2013, 50, 325–332. [Google Scholar] [CrossRef]
- Dai, Z.Y.; Wang, J.; Ma, X.J.; Sun, J.; Tang, F. Laboratory and field evaluation of the phytotoxic activity of Sapindus mukorossi Gaertn pulp extract and identification of a phytotoxic substance. Molecules 2021, 26, 1318. [Google Scholar] [CrossRef]
- Gonzalez, P.J.; Sorensen, P.M. Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocoll. 2020, 101, 105541. [Google Scholar] [CrossRef]
- Zhang, C.; Ho, S.H.; Chen, W.H.; Fu, Y.; Chang, J.S.; Bi, X. Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage. Appl. Energy 2019, 235, 428–441. [Google Scholar] [CrossRef]
- Velusamy, K.; Periyasamy, S.; Kumar, P.S.; Jayaraj, T.; Krishnasamy, R.; Sindhu, J.; Sneka, D.; Subhashini, B.; Vo, D.V.N. Analysis on the removal of emerging contaminant from aqueous solution using biochar derived from soap nut seeds. Environ. Pollut. 2021, 287, 117632. [Google Scholar] [CrossRef]
- Marco Keiluweit, M.; Nico, P.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 89–109. [Google Scholar]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, 2nd ed.; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Tsai, W.T.; Huang, P.C. Characterization of acid-leaching cocoa pod husk (CPH) and its resulting activated carbon. Biomass Convers. Biorefin. 2018, 8, 521–528. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lin, Y.Q.; Tsai, C.H.; Chung, M.H.; Chu, M.H.; Huang, H.J.; Jao, Y.H.; Yeh, S.I. Conversion of water caltrop husk into biochar by torrefaction. Energy 2020, 195, 116967. [Google Scholar] [CrossRef]
- Touray, N.; Tsai, W.T.; Chen, H.R.; Liu, S.C. Thermochemical and pore properties of goat-manure-derived biochars prepared from different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2014, 109, 116–122. [Google Scholar] [CrossRef]
- Tsai, W.T.; Huang, C.N.; Chen, H.R.; Cheng, H.Y. Pyrolytic conversion of horse manure into biochar and its thermochemical and physical properties. Waste Biomass Valoriz. 2015, 6, 975–981. [Google Scholar] [CrossRef]
- Condon, J.B. Surface Area and Porosity Determinations by Phyisorption: Measurement and Theory; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R., Jr.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Mosek, O.; Johnston, C.T. Thermal analysis for biochar characterisation. In Biochar: A Guide to Analytical Methods; Singh, B., Camps-Arbestain, M., Lehmann, J., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 283–293. [Google Scholar]
- Mukome, F.N.D.; Parikh, S.J. Chemical, physical, and surface characterization of biochar. In Biochar: Production, Characterization, and Applications; Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 67–96. [Google Scholar]
- Hung, C.Y.; Tsai, W.T.; Chen, J.W.; Lin, Y.Q.; Chang, Y.M. Characterization of biochar prepared from biogas digestate. Waste Manag. 2017, 66, 53–60. [Google Scholar] [CrossRef]
- Tsai, W.T.; Huang, C.P.; Lin, Y.Q. Characterization of biochars produced from dairy manure at high pyrolysis temperatures. Agronomy 2019, 9, 634. [Google Scholar] [CrossRef] [Green Version]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.T. Biochar analysis by Fourier-transform infra-red spectroscopy. In Biochar: A Guide to Analytical Methods; Singh, B., Camps-Arbestain, M., Lehmann, J., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 199–213. [Google Scholar]
Properties a | Value |
---|---|
Proximate analysis b | |
Ash (wt%) | 2.28 ± 0.03 |
Volatile matter (wt%) | 77.44 ± 1.33 |
Fixed carbon c (wt%) | 20.28 |
Ultimate analysis d | |
Carbon (wt%) | 52.96 ± 0.01 |
Hydrogen (wt%) | 7.29 ± 0.15 |
Oxygen (wt%) | 36.94 ± 0.02 |
Nitrogen (wt%) | 1.48 ± 0.12 |
Sulfur (wt%) | 0.36 ± 0.10 |
Calorific value (MJ/kg) b | 21.75 ± 0.18 |
Inorganic Element | Value a | Method Detection Limit (ppm) |
---|---|---|
Ca (wt%) | 0.544 | |
K (wt%) | 0.527 | |
Mg (wt%) | 0.121 | |
Fe (wt%) | 0.092 | |
Si (wt%) | ND a | 63.0 |
Al (wt%) | ND | 11.4 |
Na (wt%) | ND | 3.0 |
Cu (wt%) | ND | 3.6 |
P (wt%) | ND | 39.6 |
Ti (wt%) | ND | 2.4 |
Pore Property | SP-BC-400 | SP-BC-500 | SP-BC-600 | SP-BC-700 | SP-BC-800 | SP-BC-800 a |
---|---|---|---|---|---|---|
Surface area (m2/g) | ||||||
Single point surface area b | 0.3 | 1.3 | 1.2 | 13.3 | 282.0 | 231.4 |
BET surface area c | 0.3 | 1.4 | 1.5 | 14.1 | 277.1 | 240.8 |
Langmuir surface area | 0.4 | 3.7 | 1.8 | 21.0 | 410.6 | 355.2 |
t-plot micropore area d | 0.4 | 0.4 | 1.1 | 11.7 | 226.5 | 194.6 |
t-plot external surface area | 0.0 | 1.0 | 0.4 | 2.3 | 50.6 | 46.2 |
Pore volume (cm3/g) | ||||||
Total pore volume e | 0.0005 | 0.005 | 0.002 | 0.010 | 0.153 | 0.130 |
t-plot micropore area d | 0.0003 | 0.0002 | 0.001 | 0.006 | 0.119 | 0.096 |
Pore size (nm) | ||||||
Average pore width f | 7.317 | 12.654 | 5.142 | 2.784 | 2.210 | 2.160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, W.-T.; Jiang, T.-J.; Lin, Y.-Q.; Chang, H.-L.; Tsai, C.-H. Preparation of Porous Biochar from Soapberry Pericarp at Severe Carbonization Conditions. Fermentation 2021, 7, 228. https://doi.org/10.3390/fermentation7040228
Tsai W-T, Jiang T-J, Lin Y-Q, Chang H-L, Tsai C-H. Preparation of Porous Biochar from Soapberry Pericarp at Severe Carbonization Conditions. Fermentation. 2021; 7(4):228. https://doi.org/10.3390/fermentation7040228
Chicago/Turabian StyleTsai, Wen-Tien, Tasi-Jung Jiang, Yu-Quan Lin, Hsuan-Lun Chang, and Chi-Hung Tsai. 2021. "Preparation of Porous Biochar from Soapberry Pericarp at Severe Carbonization Conditions" Fermentation 7, no. 4: 228. https://doi.org/10.3390/fermentation7040228
APA StyleTsai, W. -T., Jiang, T. -J., Lin, Y. -Q., Chang, H. -L., & Tsai, C. -H. (2021). Preparation of Porous Biochar from Soapberry Pericarp at Severe Carbonization Conditions. Fermentation, 7(4), 228. https://doi.org/10.3390/fermentation7040228