Production of Indole Auxins by Enterobacter sp. Strain P-36 under Submerged Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Media
2.2. Indole Auxin Production in Shake Flasks
2.3. Production of Indole Auxin in a 2-L Stirred Tank Fermenter
2.4. Measurement of Indole-3-Acetic Acid (IAA) and Related Indolic Metabolites Production
2.5. Evaluation of Auxin Stability
2.6. Metabolome Analysis by Quadrupole Time-of-Flight Liquid Chromatography-Mass Spectroscopy
2.7. Statistical Analysis
3. Results
3.1. Production of Indole-3-Acetic Acid (IAA) and Related Indolic Metabolites in Shake Flasks
3.2. Auxin/IAA Production in 2-L Stirred Tank Fermenter
3.3. Development of a Protocol for Indole Auxin Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 29 April 2021).
- Rouphael, Y.; Colla, G. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009 (accessed on 29 April 2021).
- Luziatelli, F.; Ficca, A.G.; Colla, G.; Baldassarre Švecová, E.; Ruzzi, M. Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 2019, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Toscano, S.; Romano, D.; Massa, D.; Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulant applications in low input horticultural cultivation systems. Italus Hortus 2018, 25, 27–36. [Google Scholar] [CrossRef]
- Luziatelli, F.; Ficca, A.G.; Cardarelli, M.; Melini, F.; Cavalieri, A.; Ruzzi, M. Genome sequencing of Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant growth-promotion and tolerance to heavy metals. Microorganisms 2020, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd-Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Keswani, C.; Satyendra, S.; Singh, P.; Cueto, L.; García-Estrada, C.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Surya, U.; Blázquez, M.A.; et al. Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 8549–8565. [Google Scholar] [CrossRef] [PubMed]
- Leontidou, K.; Genitsaris, S.; Papadopoulou, A.; Kamou, N.; Bosmali, I.; Matsi, T.; Madesis, P.; Vokou, D.; Karamanoli, K.; Mellidou, I. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: Genomic characterisation and exploration of phyto-beneficial traits. Sci. Rep. 2020, 10, 14857. [Google Scholar] [CrossRef] [PubMed]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-acetic acid in plant-microbe interactions. Antonie Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef]
- Luziatelli, F.; Ficca, A.G.; Bonini, P.; Muleo, R.; Gatti, L.; Meneghini, M.; Tronati, M.; Melini, F.; Ruzzi, M. A genetic and metabolomic perspective on the production of indole-3-acetic acid by Pantoea agglomerans and use of their metabolites as biostimulants in plant nurseries. Front. Microbiol. 2020, 11, 1475. [Google Scholar] [CrossRef]
- Luziatelli, F.; Gatti, L.; Ficca, A.G.; Medori, G.; Silvestri, C.; Melini, F.; Muleo, R.; Ruzzi, M. Metabolites secreted by a plant-growth-promoting Pantoea agglomerans strain improved rooting of Pyrus communis L. cv Dar Gazi cuttings. Front. Microbiol. 2020, 11, 539359. [Google Scholar] [CrossRef] [PubMed]
- Agnolucci, M.; Avio, L.; Pepe, A.; Turrini, A.; Cristani, C.; Bonini, P.; Cirino, V.; Colosimo, F.; Ruzzi, M.; Giovannetti, M. Bacteria associated with a commercial mycorrhizal inoculum: Community composition and multifunctional activity as assessed by illumina sequencing and culture-dependent tools. Front. Plant Sci. 2019, 9, 1956. [Google Scholar] [CrossRef]
- Lennox, E.S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1955, 1, 190–206. [Google Scholar] [CrossRef]
- Kram, K.E.; Finkel, S.E. Culture volume and vessel affect long-term survival, mutation frequency, and oxidative stress of Escherichia coli. Appl. Environ. Microbiol. 2014, 80, 1732–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patten, C.L.; Glick, B.R. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 2002, 68, 3795–3801. [Google Scholar] [CrossRef] [Green Version]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Srisuk, N.; Sakpuntoon, V.; Nutaratat, P. Production of indole-3-acetic acid by Enterobacter sp. DMKU-rp206 using sweet whey as a low-cost feed stock. J. Microbiol. Biotechnol. 2018, 28, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Nutaratat, P.; Srisuk, N. Low-cost production of indole-3-acetic acid fermentation by Enterobacter sp. Chiang Mai. J. Sci. 2019, 46, 653–660. [Google Scholar]
- Nutaratat, P.; Monprasit, A.; Srisuk, N. High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Gupta, M.K.; Kumar, N.; Kanwar, S.S. Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii. Rhizosphere 2017, 4, 62–69. [Google Scholar] [CrossRef]
- Sarron, E.; Clément, N.; Pawlicki-Jullian, N.; Gaillard, I.; Boitel-Conti, M. Stimulating effects of two plant growth-promoting bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, on flax culture. AIP Conf. Proc. 2018, 1954, 020003. [Google Scholar]
- Widowati, T.; Nuriyanah; Sukiman, H. Production of indole acetic acid by Enterobacter cloacae H3 isolated from Mungbean (Vigna radiata) and its potential supporting the growth of soybean seedling. IOP Conf. Ser. Earth Environ. Sci. 2019, 308, 012040. [Google Scholar] [CrossRef] [Green Version]
- Panigrahi, S.; Mohanty, S.; Rath, C.C. Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with indole acetic acid (IAA) production and plant growth promoting capabilities against selected crops. S. Afr. J. Bot. 2020, 134, 17–26. [Google Scholar] [CrossRef]
- Shoebitz, M.; Ribaudo, C.M.; Pardo, M.A.; Cantore, M.L.; Ciampi, L.; Curá, J.A. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol. Biochem. 2008, 41, 1768–1774. [Google Scholar] [CrossRef]
- Cheng, C.; O’Brien, E.J.; McCloskey, D.; Utrilla, J.; Olson, C.; LaCroix, R.A.; Lim, E.K.; Li, Y.; Kowalczyk, M. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS Comput. Biol. 2019, 15, e1007066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig-Müller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Peer, W.A. Auxin homeostasis: The DAO of catabolism. J. Exp. Bot. 2017, 68, 3145–3154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljung, K. Auxin metabolism and homeostasis during plant development. Development 2013, 140, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz Rosquete, M.; Barbez, E.; Kleine-Vehn, J. Cellular auxin homeostasis: Gatekeeping is housekeeping. Mol. Plant 2012, 5, 772–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Östin, A.; Kowalyczk, M.; Bhalerao, R.P.; Sandberg, G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998, 118, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.G.; Lim, E.K.; Li, Y.; Kowalczyk, M.; Sandberg, G.; Hogget, J.; Ashford, D.A.; Bowles, D.J. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J. Biol. Chem. 2001, 276, 4350–4356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Hayashi, K.I.; Natsume, M.; Kamiya, Y.; Sakakibara, H.; Kawaide, H.; Kasahara, H. UGT74D1 catalyzes the glycosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol. 2014, 55, 218–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Auxin/IAA (mg IAAequ L−1) | ||||
---|---|---|---|---|
Sample | T0 | T30 | T60 | T90 |
Thermally treated | ||||
Btt (4) | 379.7 ± 14 d,D | 496.5 ± 12 b,A | 476.4 ± 6.3 b,B | 438.4 ± 0.7 c,D |
Btt (−20) | 379.7 ± 14 d,D | 471.0 ± 3.9 b,B | 413.0 ± 16 d,C | 433.9 ± 4.1 c,D |
Utt (4) | 379.7 ± 14 d,D | 536.4 ± 1.3 a,A | 457.3 ± 13.7 b,B | 452.2 ± 4.9 b,B |
Utt (−20) | 379.7 ± 14 d,D | 536.5 ± 1.5 a,A | 463.8 ± 9.3 b,B | 457.6 ± 0.7 b,B |
Filtered | ||||
Bf (4) | 379.0 ± 0.1 d,D | 466.2 ± 25.6 c,B | 476.9 ± 3.1 c,B | 478.7 ± 12.9 c,B |
Bf (−20) | 379.0 ± 0.1 d,D | 494.2 ± 1.8 b,A | 449.5 ± 9.4 c,B | 437.6 ± 6.9 c,B |
Uf (4) | 379.0 ± 0.1 d,D | 549.2 ± 1.7 a,A | 460.1 ± 1.9 c,B | 465.0 ± 7.8 c,B |
Uf (−20) | 379.0 ± 0.1 d,D | 509.5 ± 1.4 b,A | 465 ± 1.0 c,B | 456.6 ± 5.2 c,B |
Treatment | Compound | PubChem ID | Smiles | p-Value | Effect_Size | Edirection |
---|---|---|---|---|---|---|
Uf vs. Utt | IAA | 802 | C1=CC=C2C(=C1)C(=CN2)CC(=O)O | 0.0035 | 0.93 | down |
IAM | 397 | C1=CC=C2C(=C1)C(=CN2)CC(=O)N | 0.013 | 0.95 | down | |
Uf vs. Bf | IAA | 802 | C1=CC=C2C(=C1)C(=CN2)CC(=O)O | 0.0029 | 1.04 | up |
IAM | 397 | C1=CC=C2C(=C1)C(=CN2)CC(=O)N | 0.00014 | 1.10 | up |
Cluster Name | Cluster Size | p-Values | FDR | Altered Metabolites | Increased | Decreased | Increased Ratio | Altered Ratio |
---|---|---|---|---|---|---|---|---|
Uf vs. Utt | ||||||||
Amino Acids, Aromatic | 5 | 1.1 × 10−15 | 5.6 × 10−15 | 5 | 2 | 3 | 0.4 | 1 |
Benzamides | 3 | 1.9 × 10−3 | 2.1 × 10−3 | 2 | 2 | 0 | 1 | 0.7 |
Dipeptides | 6 | 0.1 × 10−3 | 1.5 × 10−4 | 5 | 3 | 2 | 0.6 | 0.8 |
Indoles | 7 | 7.6 × 10−10 | 1.9 × 10−09 | 7 | 0 | 7 | 0 | 1 |
Phosphatidic Acids | 3 | 2.0 × 10−2 | 2.0 × 10−2 | 2 | 0 | 2 | 0 | 0.7 |
Phosphatidylcholines | 4 | 7.9 × 10−9 | 1.6 × 10−8 | 4 | 1 | 3 | 0.2 | 1 |
Purines | 4 | 1.6 × 10−9 | 2.6 × 10−8 | 4 | 1 | 3 | 0.2 | 1 |
Uf vs. Bf | ||||||||
Amino Acids, Aromatic | 5 | 1.0 × 10−7 | 4.7 × 10−7 | 5 | 3 | 2 | 0.6 | 1 |
Benzamides | 3 | 2.6 × 10−8 | 2.4 × 10−7 | 3 | 3 | 0 | 1 | 1 |
Dipeptides | 4 | 4.0 × 10−3 | 5.9 × 10−3 | 3 | 2 | 1 | 0.7 | 0.8 |
Indoles | 6 | 0.4 × 10−4 | 0.9 × 10−4 | 5 | 2 | 3 | 0.4 | 0.8 |
Phosphatidic Acids | 3 | 2.1 × 10−3 | 3.9 × 10−3 | 2 | 1 | 1 | 0,5 | 0.7 |
Phosphatidylcholines | 4 | 4.6 × 10−3 | 5.9 × 10−3 | 3 | 2 | 1 | 0.7 | 0.8 |
Purines | 3 | 1.7 × 10−2 | 1.9 × 10−2 | 2 | 2 | 0 | 1 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luziatelli, F.; Melini, F.; Bonini, P.; Melini, V.; Cirino, V.; Ruzzi, M. Production of Indole Auxins by Enterobacter sp. Strain P-36 under Submerged Conditions. Fermentation 2021, 7, 138. https://doi.org/10.3390/fermentation7030138
Luziatelli F, Melini F, Bonini P, Melini V, Cirino V, Ruzzi M. Production of Indole Auxins by Enterobacter sp. Strain P-36 under Submerged Conditions. Fermentation. 2021; 7(3):138. https://doi.org/10.3390/fermentation7030138
Chicago/Turabian StyleLuziatelli, Francesca, Francesca Melini, Paolo Bonini, Valentina Melini, Veronica Cirino, and Maurizio Ruzzi. 2021. "Production of Indole Auxins by Enterobacter sp. Strain P-36 under Submerged Conditions" Fermentation 7, no. 3: 138. https://doi.org/10.3390/fermentation7030138
APA StyleLuziatelli, F., Melini, F., Bonini, P., Melini, V., Cirino, V., & Ruzzi, M. (2021). Production of Indole Auxins by Enterobacter sp. Strain P-36 under Submerged Conditions. Fermentation, 7(3), 138. https://doi.org/10.3390/fermentation7030138