Ruminal Fermentation, Milk Production Efficiency, and Nutrient Digestibility of Lactating Dairy Cows Receiving Fresh Cassava Root and Solid Feed-Block Containing High Sulfur
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Animals, Diets, and Experimental Design
2.3. Sample Collection and Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Feeds
3.2. Effect on Intake and Digestibility
3.3. Characteristics of Rumen Ecology and Microorganism
3.4. Volatile Fatty Acid (VFA) and Methane Estimation
3.5. Blood Metabolites and Hormones
3.6. Milk Production and Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Supapong, C.; Cherdthong, A. Effect of sulfur concentrations in fermented total mixed rations containing fresh cassava root on rumen fermentation. Vet. Sci. 2020, 7, 98. [Google Scholar] [CrossRef]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation, and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef]
- Promkot, C.; Wanapat, M.; Wachirapakorn, C.; Navanukraw, C. Influence of sulfur on fresh cassava foliage and cassava hay incubated in rumen fluid of beef cattle. Asian-Australas. J. Anim. Sci. 2007, 20, 1424–1432. [Google Scholar] [CrossRef]
- Promkot, C.; Wanapat, M. Effect of elemental sulfur supplementation on rumen environment parameters and utilization efficiency of fresh cassava foliage and cassava hay in dairy cattle. Asian-Australas. J. Anim. Sci. 2009, 22, 1366–1376. [Google Scholar] [CrossRef]
- Supapong, C.; Cherdthong, A.; Wanapat, M.; Chanjula, P.; Uriyapongson, S. Effects of sulfur levels in fermented total containing fresh cassava root on feed utilization, rumen characteristics, microbial protein synthesis, and blood metabolites in Thai native beef cattle. Animals. 2019, 9, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M. Screening of cyanide-utilizing bacteria from rumen and in vitro evaluation of fresh cassava root utilization with pellet containing high sulfur diet. Vet. Sci. 2021, 8, 10. [Google Scholar] [CrossRef]
- FAO. Feed supplementation block technology—Past, present and future. In Feed Supplementation Blocks—Urea-Molasses Multinutrient Blocks: Simple and Effective Feed Supplement Technology for Ruminant Agriculture; Makkar, H.P.S., Sánchez, M., Speedy, A.W., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; pp. 1–12. [Google Scholar]
- Cherdthong, A.; Wanapat, M.; Rakwongrit, D.; Khota, W.; Khantharin, S.; Tangmutthapattharakun, G.; Kang, S.; Foiklang, S.; Phesatcha, K. Supplementation effect with slow-release urea in feed blocks for Thai beef cattle-nitrogen utilization, blood biochemistry and hematology. Trop. Anim. Health Prod. 2014, 46, 293–298. [Google Scholar] [CrossRef]
- Dagaew, G.; Cherdthong, A.; Wanapat, M.; Chanjula, P. In vitro rumen gas production kinetics, hydrocyanic acid concentration and fermentation characteristics of fresh cassava root and feed block sulfur concentration. Anim. Prod. Sci. 2020, 60, 659–664. [Google Scholar] [CrossRef]
- Belyea, R.L.; Ricketts, R.E. Forages for Cattle: New Methods of Determining Energy Content and Evaluating Heat Damage. University of Missouri Extension. 1993. Available online: https://extension.missouri.edu/publications/g3150 (accessed on 30 June 2021).
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1997, 44, 282–287. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Galyean, M. Laboratory Procedures in Animal Nutrition Research; New Mexico State University: Las Cruces, NM, USA, 1989. [Google Scholar]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Amer. J. Med. Technol. 1967, 33, 361–365. [Google Scholar]
- Jacob, B.M.; Antony, K.E.; Sreekumar, B.; Haridas, M. Thiocyanate mediated antifungal and antibacterial property of goat milk lacto-peroxidase. Life Sci. 2000, 66, 2433–2439. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics. 1949, 5, 99–114. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Wanapat, M.; Kang, K. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim. Nutr. 2015, 1, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Uwituze, S.; Parsons, G.L.; Karges, K.K.; Gibson, M.L.; Hollis, L.C.; Higgins, J.J.; Drouillard, J.S. Effects of distillers grains with high sulfur concentration on ruminal fermentation and digestibility of finishing diets. J. Anim. Sci. 2011, 89, 2817–2828. [Google Scholar] [CrossRef]
- Fang, H.; Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 2002, 82, 87–93. [Google Scholar] [CrossRef]
- Shah, A.M.; Ma, J.; Wang, Z.; Hu, R.; Wang, X.; Peng, Q.; Amevor, F.K.; Goswami, N. Production of hydrogen sulfide by fermentation in rumen and its impact on health and production of animals. Processes. 2020, 8, 1169. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Denman, S.E. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. J. Appl. Microbiol. 2007, 103, 1757–1765. [Google Scholar] [CrossRef]
- Slyter, L.L.; Chalupa, W.; Oltjen, R.R.; Weaver, J.M. Sulfur influences on rumen microorganisms in vitro and in sheep and calves. J. Anim. Sci. 1986, 63, 1949–1959. [Google Scholar] [CrossRef]
- Boucher, S.E.; Ordway, R.S.; Whitehouse, N.L.; Lundy, F.P.; Kononoff, P.J.; Schwab, C.G. Effect of incremental urea supplementation of a conventional corn silage-based diet on ruminal ammonia concentration and synthesis of microbial protein. J. Dairy Sci. 2007, 90, 5619–5633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankenberg, L. Enzyme therapy in cyanide poisoning: Effect of rhodanese and sulfur compounds. Arch. Toxicol. 1980, 45, 315–323. [Google Scholar] [CrossRef] [PubMed]
- So, S.; Wanapat, M.; Cherdthong, A. Effect of sugarcane bagasse as industrial by-products treated with Lactobacillus casei TH14, cellulase and molasses on feed utilization, ruminal ecology and milk production of mid-lactating Holstein Friesian cows. J. Sci. Food Agri. 2021, 101, 4481–4489. [Google Scholar] [CrossRef]
- Mosavi, G.H.R.; Fatahnia, F.; Mirzaei, A.H.R.; Mehrabi, A.A.; Darmani, K.H. Effect of dietary starch source on milk production and composition of lactating Holstein cows. S. Afr. J. Anim. Sci. 2012, 42, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Zapico, P.; Gaya, P.; Nuñez, M.; Medina, M. Activity of goat’s milk lactoperoxidase system on Pseudomonas fluorescens and Escherichia coli at refrigeration temperatures. J. Food Prot. 1995, 58, 1136–1138. [Google Scholar] [CrossRef]
- Petlum, A.; Surachai, B.; Werachai, T.; Kanawit, P.; Phanompon, W.; Anurak, P.; Ladda, P.; Manoch, K. Effect of ensiled cassava foliage supplementation on milk yield and milk quality of lactating dairy cows in smallholder farms. Khon Kaen Agric. J. 2012, 40, 114–117. [Google Scholar]
Items | Concentrate | S-FB-2 | S-FB-4 | CR | RS |
---|---|---|---|---|---|
Ingredient Proportions, g kg−1 DM | |||||
Corn | 70 | - | - | ||
Soybean pulp | 40 | - | - | ||
Cassava ship | 450 | - | - | ||
Rice bran | 50 | 300 | 300 | ||
Palm cannel meal | 95 | - | - | ||
Soybean meal | 200 | - | - | ||
Molasses | 30 | 420 | 400 | ||
Urea | 25 | 100 | 100 | ||
Di-calcium | 10 | - | - | ||
Vitamin | 5 | - | - | ||
Semen | - | 110 | 110 | ||
Sulfur | - | 20 | 40 | ||
Premixed | - | 20 | 20 | ||
Salt | 5 | 10 | 10 | ||
Tallow | - | 20 | 20 | ||
Chemical Composition | |||||
DM, g kg−1 | 896 | 791 | 763 | 385 | 849 |
OM, g kg−1 DM | 953 | 900 | 901 | 986 | 911 |
CP, g kg−1 DM | 167 | 305 | 302 | 23 | 26 |
NDF, g kg−1 DM | 276 | 189 | 227 | 531 | 854 |
ADF, g kg−1 DM | 118 | 100.1 | 100.3 | 312 | 476 |
TDN, g kg−1 DM | 791 | 820 | 815 | 825 | 444 |
HCN, mg/kg | - | - | - | 103.5 | - |
NEv, Mcal kg−1 DM † | 1.89 | 2.01 | 1.98 | 1.75 | 0.19 |
Items | CR-1 | CR-1.5 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
S-FB-2 | S-FB-4 | S-FB-2 | S-FB-4 | CR | S-FB | CR*S-FB | ||
Rice straw, kg day−1 | 4.0 | 4.0 | 3.8 | 3.7 | 0.33 | 0.51 | 0.88 | 0.96 |
Rice straw, g kg−1 BW0.75 | 39.9 | 39.8 | 37.6 | 38.2 | 3.59 | 0.59 | 0.96 | 0.95 |
Concentrate, kg day−1 | 5.8 | 6.8 | 7.3 | 6.3 | 0.56 | 0.39 | 1.00 | 0.09 |
Concentrate, g kg−1 BW0.75 | 64.5 | 68.8 | 64.8 | 66.0 | 6.76 | 0.96 | 0.87 | 0.99 |
CR, kg day−1 | 5.3 | 5.6 | 7.8 | 7.7 | 0.72 | 0.84 | 1.00 | 0.96 |
S-FB, kg day−1 | 0.6 | 0.5 | 0.6 | 0.5 | 0.10 | 0.76 | 0.13 | 0.89 |
Sulfur, kg day−1 | 0.02 | 0.02 | 0.02 | 0.02 | 0.004 | 0.89 | 0.45 | 0.85 |
HCN, mg day−1 | 563.4 | 559.4 | 637.3 | 669.7 | 75.35 | 0.01 | 0.75 | 0.87 |
Total intake, %BW | 3.2 | 3.3 | 3.6 | 3.6 | 0.19 | 0.92 | 0.79 | 0.67 |
Total intake, kg day−1 | 15.2 | 15.3 | 16.0 | 16.5 | 0.90 | 0.67 | 0.19 | 0.17 |
Nutrient intake, kg day−1 | ||||||||
OM | 13.3 | 13.3 | 14.8 | 14.5 | 0.76 | 0.21 | 0.75 | 0.64 |
CP | 3.3 | 3.3 | 3.6 | 3.8 | 0.23 | 0.46 | 0.83 | 0.94 |
NDF | 5.3 | 5.2 | 6.3 | 5.6 | 0.57 | 0.85 | 0.72 | 0.60 |
ADF | 3.4 | 3.5 | 4.3 | 3.9 | 0.44 | 0.63 | 0.81 | 0.86 |
Nutrient digestibility, g kg−1 | ||||||||
DM | 739 | 743 | 733 | 755 | 0.76 | 0.21 | 0.46 | 0.73 |
OM | 872 | 873 | 871 | 874 | 0.34 | 0.25 | 0.45 | 0.93 |
CP | 795 | 782 | 778 | 790 | 0.77 | 0.29 | 0.56 | 0.89 |
NDF | 694 | 630 | 668 | 702 | 3.58 | 0.37 | 0.71 | 0.88 |
ADF | 545 | 559 | 543 | 570 | 0.87 | 0.29 | 0.03 | 0.47 |
Item | CR-1 | CR-1.5 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
S-FB-2 | S-FB-4 | S-FB-2 | S-FB-4 | CR | S-FB | CR*S-FB | ||
Ruminal pH | ||||||||
0-h post-feeding | 6.9 | 6.9 | 6.8 | 6.9 | 0.18 | 0.92 | 0.66 | 0.67 |
4-h post-feeding | 6.6 | 6.5 | 6.5 | 6.6 | 0.23 | 0.85 | 0.63 | 0.89 |
Mean | 6.8 | 6.7 | 6.6 | 6.8 | 0.19 | 0.14 | 0.38 | 0.52 |
Ruminal Temperature, °C | ||||||||
0-h post-feeding | 38.8 | 39.0 | 38.4 | 38.7 | 0.19 | 0.14 | 0.38 | 0.52 |
4-h post-feeding | 39.2 | 39.1 | 38.4 | 38.9 | 0.84 | 0.07 | 0.29 | 0.25 |
Mean | 39.2 | 39.1 | 38.4 | 38.9 | 0.18 | 0.13 | 0.46 | 0.35 |
Ammonia-Nitrogen, mg dL−1 | ||||||||
0-h post-feeding | 14.5 | 16.2 | 14.7 | 16.7 | 1.46 | 0.27 | 0.77 | 0.82 |
4-h post-feeding | 15.3 | 15.7 | 15.9 | 16.2 | 0.79 | 0.48 | 0.92 | 0.72 |
Mean | 14.9 | 15.9 | 15.3 | 16.4 | 0.61 | 0.66 | 0.19 | 0.82 |
Rumen Microbes, cells mL−1 | ||||||||
Bacteria, ×1011 | ||||||||
0-h post-feeding | 4.2 | 4.5 | 4.3 | 4.8 | 0.72 | 6.14 | 0.86 | 0.86 |
4-h post-feeding | 4.7 | 5.0 | 4.8 | 5.3 | 0.73 | 0.86 | 0.62 | 0.86 |
Mean | 4.5 | 4.6 | 4.7 | 4.8 | 0.68 | 0.85 | 0.72 | 1.00 |
Protozoa ×107 | ||||||||
0-h post-feeding | 1.1 | 1.2 | 1.1 | 1.2 | 0.87 | 0.88 | 0.88 | 0.33 |
4-h post-feeding | 1.2 | 1.3 | 1.3 | 1.4 | 0.94 | 0.89 | 0.69 | 0.69 |
Mean | 1.1 | 1.1 | 1.2 | 1.2 | 1.10 | 0.50 | 0.73 | 0.73 |
Fungi ×106 | ||||||||
0-h post-feeding | 0.2 | 0.3 | 0.2 | 0.3 | 0.62 | 0.84 | 0.55 | 0.55 |
4-h post-feeding | 0.2 | 0.2 | 0.2 | 0.3 | 0.38 | 0.52 | 0.52 | 0.52 |
Mean | 0.2 | 0.3 | 0.2 | 0.3 | 0.37 | 0.33 | 0.51 | 0.74 |
Items | CR-1 | CR-1.5 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
S-FB-2 | S-FB-4 | S-FB-2 | S-FB-4 | CR | S-FB | CR*S-FB | ||
Total VFA, mM | ||||||||
0-h post-feeding | 101.5 | 104.0 | 102.5 | 104.0 | 1.38 | 0.90 | 0.12 | 0.86 |
4-h post-feeding | 102.5 | 104.3 | 103.7 | 105.1 | 1.37 | 0.41 | 0.49 | 0.52 |
Mean | 102.0 | 104.2 | 103.1 | 104.6 | 1.35 | 0.60 | 0.63 | 0.42 |
Acetic acid (C2), mol 100 mol−1 | ||||||||
0-h post-feeding | 63.6 | 63.2 | 62.7 | 63.6 | 1.71 | 0.26 | 0.74 | 0.82 |
4-h post-feeding | 64.4 | 65.3 | 63.3 | 62.3 | 1.53 | 0.22 | 0.69 | 0.75 |
Mean | 64.0 | 64.3 | 63.0 | 62.9 | 0.90 | 0.36 | 0.60 | 0.51 |
Propionic acid (C3), mol 100 mol−1 | ||||||||
0-h post-feeding | 21.7 | 22.2 | 23.2 | 23.6 | 1.12 | 0.97 | 0.12 | 0.86 |
4-h post-feeding | 21.6 | 22.4 | 23.5 | 23.6 | 1.20 | 0.89 | 0.73 | 0.52 |
Mean | 21.7 | 22.3 | 23.4 | 23.6 | 0.77 | 0.65 | 0.43 | 0.99 |
Butyric acid (C4), mol 100 mol−1 | ||||||||
0-h post-feeding | 15.7 | 15.2 | 14.3 | 13.4 | 1.01 | 0.97 | 0.65 | 0.82 |
4-h post-feeding | 15.8 | 12.3 | 13.2 | 14.1 | 1.52 | 0.47 | 0.60 | 0.77 |
Mean | 15.8 | 13.8 | 13.8 | 13.8 | 0.90 | 0.36 | 0.76 | 0.81 |
C2:C3 ratio | ||||||||
0-h post-feeding | 2.9 | 2.8 | 2.7 | 2.7 | 0.45 | 0.53 | 0.67 | 0.82 |
4-h post-feeding | 3.0 | 2.9 | 2.7 | 2.6 | 0.36 | 0.27 | 0.75 | 0.73 |
Mean | 2.9 | 2.8 | 2.7 | 2.7 | 0.38 | 0.45 | 0.86 | 0.59 |
C2 + C4:C3 ratio | 4.36 | 2.93 | 4.54 | 3.39 | 0.319 | 0.626 | 0.067 | 0.831 |
Methane (CH4) †, g day−1 | ||||||||
0-h post-feeding | 27.7 | 27.5 | 28.7 | 27.1 | 0.61 | 0.62 | 0.28 | 0.16 |
4-h post-feeding | 27.2 | 26.4 | 27.5 | 26.6 | 1.34 | 0.80 | 0.56 | 0.98 |
Mean | 26.9 | 25.1 | 26.3 | 26.1 | 0.61 | 0.62 | 0.28 | 0.16 |
Items | CR-1 | CR-1.5 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
S-FB-2 | S-FB-4 | S-FB-2 | S-FB-4 | CR | S-FB | CR*S-FB | ||
Serum SCN−, µg mL−1 | 3.4 | 4.0 | 4.0 | 4.2 | 0.84 | 0.31 | 0.70 | 0.21 |
BUN, mg dL−1 | 11.9 | 11.6 | 9.9 | 11.9 | 1.59 | 0.28 | 0.13 | 0.61 |
T3, nmol L−1 | 0.7 | 0.6 | 0.6 | 0.5.1 | 0.76 | 0.51 | 0.64 | 0.78 |
T4, nmol mL−1 | 69.8 | 46.8 | 52.2 | 40.4 | 1.82 | 0.26 | 0.16 | 0.53 |
ALT, units L−1 | 15.3 | 14.8 | 15.8 | 14.5 | 1.09 | 0.91 | 0.43 | 0.73 |
AST, units L−1 | 40.5 | 45.8 | 47.5 | 41.8 | 2.85 | 0.60 | 0.93 | 0.07 |
Items | CR-1 | CR-1.5 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
S-FB-2 | S-FB-4 | S-FB-2 | S-FB-4 | CR | S-FB | CR*S-FB | ||
Milk yield, kg day−1 | 11.0 | 11.3 | 11.4 | 11.8 | 0.48 | 0.90 | 0.92 | 0.81 |
3.5% FCM †, kg day−1 | 11.3 | 11.5 | 11.8 | 12.4 | 0.61 | 0.81 | 0.49 | 0.23 |
Milk fat, g kg−1 | 31 | 32 | 35 | 38 | 0.30 | 0.04 | 0.59 | 0.21 |
Protein, g kg−1 | 34 | 36 | 35 | 34 | 0.14 | 0.49 | 0.93 | 0.23 |
Lactose, g kg−1 | 44 | 43 | 45 | 43 | 0.08 | 0.49 | 0.30 | 0.64 |
Solid-not-fat, g kg−1 | 73 | 85 | 71 | 82 | 0.87 | 0.78 | 0.21 | 0.92 |
Total solids, g kg−1 | 115 | 128 | 122 | 125 | 0.50 | 0.27 | 0.88 | 0.20 |
SCN−, ppm | 7.1 | 7.3 | 8.0 | 8.6 | 1.14 | 0.28 | 0.79 | 0.61 |
SCC, ×103 cell mL−1 | 285.5 | 249.5 | 110.5 | 102.3 | 0.20 | 0.02 | 0.21 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagaew, G.; Cherdthong, A.; Wanapat, M.; So, S.; Polyorach, S. Ruminal Fermentation, Milk Production Efficiency, and Nutrient Digestibility of Lactating Dairy Cows Receiving Fresh Cassava Root and Solid Feed-Block Containing High Sulfur. Fermentation 2021, 7, 114. https://doi.org/10.3390/fermentation7030114
Dagaew G, Cherdthong A, Wanapat M, So S, Polyorach S. Ruminal Fermentation, Milk Production Efficiency, and Nutrient Digestibility of Lactating Dairy Cows Receiving Fresh Cassava Root and Solid Feed-Block Containing High Sulfur. Fermentation. 2021; 7(3):114. https://doi.org/10.3390/fermentation7030114
Chicago/Turabian StyleDagaew, Gamonmas, Anusorn Cherdthong, Metha Wanapat, Sarong So, and Sineenart Polyorach. 2021. "Ruminal Fermentation, Milk Production Efficiency, and Nutrient Digestibility of Lactating Dairy Cows Receiving Fresh Cassava Root and Solid Feed-Block Containing High Sulfur" Fermentation 7, no. 3: 114. https://doi.org/10.3390/fermentation7030114
APA StyleDagaew, G., Cherdthong, A., Wanapat, M., So, S., & Polyorach, S. (2021). Ruminal Fermentation, Milk Production Efficiency, and Nutrient Digestibility of Lactating Dairy Cows Receiving Fresh Cassava Root and Solid Feed-Block Containing High Sulfur. Fermentation, 7(3), 114. https://doi.org/10.3390/fermentation7030114