Assessment of Microbiological Quality and Physicochemical Parameters of Fruhe Made by Ovine and Goat Milk: A Sardinian (Italy) Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Physicochemical Analyses
2.3. Microbiological Analysis
2.4. Free Amino Acids (FAA) and Free Fatty Acids (FFA) Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Analyses
3.2. Microbiological Analysis
3.3. Free Amino Acids (FAA) and Free Fatty Acids (FFA) Content
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- CRENoS, Centro Ricerche Economiche Nord Sud. Economia della Sardegna, 26° Rapporto 2019 (Centre for North South Economic Research, Economy of Sardinia, 26th Report 2019, in Italian); Arkadia Editore: Cagliari, Italy, 2019. [Google Scholar]
- ISTAT, Istituto Nazionale di Statistica, Italy. Available online: https://www.istat.it/it/ (accessed on 30 October 2020).
- Murgia, M.A.; Mangia, N.P.; Fancello, F.; Deiana, P. Microbiological characterization of Fruhe cheese. Ann. Microbiol. 2009, 59, 69. [Google Scholar]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: http://data.europa.eu/eli/reg/2005/2073/oj (accessed on 26 November 2020).
- Spanu, C.; Scarano, C.; Venusti, M.; Sardo, D.; Serra, S.; Ibba, M.; Frau, F.; De Santis, E.P. Hygienic and sensory quality factors affecting the shelf-life of Fruhe (Casu axedu) traditional Sardinian fresh cheese. Ital. J. Food Saf. 2013, 2, e44. [Google Scholar] [CrossRef]
- Capozzi, V.; Fragasso, M.; Russo, P. Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms 2020, 8, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- IDF. Determination of the Total Solid Content (Cheese and Processed Cheese); IDF Standard 4A; International Dairy Federation: Brussels, Belgium, 1982. [Google Scholar]
- IDF. Determination of Fat Content (Cheese and Processed Cheese Products); IDF Standard 5B; International Dairy Federation: Brussels, Belgium, 1986. [Google Scholar]
- Bütikofer, M.; Rüegg, M.; Ardö, Y. Determination of nitrogen fractions in cheese: Evaluation of a collaborative study. Lebensm. Wiss. Technol. 1993, 26, 271–275. [Google Scholar] [CrossRef]
- St-Gelais, D.; Doyon, G.; Rolland, J.R.; Goulet, J. Sugar organic acid concentrations during ripening of Cheddar cheese-like products. Milchwissenschaft 1991, 46, 288–291. [Google Scholar]
- Mangia, N.P.; Murgia, M.A.; Garau, G.; Fancello, F.; Deiana, P. Suitability of selected autochthonous lactic acid bacteria cultures for Pecorino Sardo Dolce cheese manufacturing: Influence on microbial composition, nutritional value and sensory attributes. Int. J. Dairy. Technol. 2013, 66, 543–551. [Google Scholar] [CrossRef]
- Cardinali, F.; Osimani, A.; Taccari, M.; Milanović, V.; Garofalo, C.; Clementi, F.; Polverigiani, S.; Zitti, S.; Raffaelli, N.; Mozzon, M.; et al. Impact of thistle rennet from Carlina acanthifolia All. subsp. acanthifolia on bacterial diversity and dynamics of a specialty Italian raw ewes’ milk cheese. Int. J. Food Microbiol. 2017, 255, 7–16. [Google Scholar] [CrossRef]
- Tamime, A.Y.; Wszolek, M.; Božanić, R.; Özer, B. Popular ovine and caprine fermented milks. Small Rum. Res. 2011, 101, 2–16. [Google Scholar] [CrossRef]
- Mangia, N.P.; Garau, G.; Murgia, M.A.; Bennani, A.; Deiana, P. Influence of autochthonous lactic acid bacteria and enzymatic yeast extracts on the microbiological, biochemical and sensorial properties of Lben generic products. J. Dairy Res. 2014, 81, 193–201. [Google Scholar] [CrossRef]
- Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients 2019, 11, 1771. [Google Scholar] [CrossRef] [Green Version]
- Romero-Velarde, E.; Delgado-Franco, D.; García-Gutiérrez, M.; Gurrola-Díaz, C.; Larrosa-Haro, A.; Montijo-Barrios, E.; Muskiet, F.A.J.; Vargas-Guerrero, B.; Geurts, J. The Importance of Lactose in the in the Human Diet: Outcomes of a Mexican Consensus Meeting. Nutrients 2019, 11, 2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olarte, C.; Sanz, S.; Gonzalez-Fandos, E.; Torre, P. The effect of a commercial starter culture addition on the ripening of an artisanal goat’s cheese (Cameros cheese). J. Appl. Microbiol. 2000, 88, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Succi, M.; Aponte, M.; Tremonte, P.; Niro, S.; Sorrentino, E.; Iorizzo, M.; Tipaldi, L.; Pannella, G.; Panfili, G.; Fratianni, A.; et al. Variability in chemical and microbiological profiles of long-ripened Caciocavallo cheeses. J. Dairy Sci. 2016, 99, 9521–9533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maoloni, A.; Milanović, V.; Cardinali, F.; Mangia, N.P.; Murgia, M.A.; Garofalo, C.; Clementi, F.; Osimani, A.; Aquilanti, L. Bacterial and Fungal Communities of Gioddu as Revealed by PCR–DGGE Analysis. Indian J. Microbiol. 2020, 60, 119–123. [Google Scholar] [CrossRef]
- Maoloni, A.; Blaiotta, G.; Ferrocino, I.; Mangia, N.P.; Osimani, A.; Milanović, V.; Cardinali, F.; Cesaro, C.; Garofalo, C.; Clementi, F.; et al. Microbiological characterization of Gioddu, an Italian fermented milk. Int. J. Food Microbiol. 2020, 323, 108610. [Google Scholar] [CrossRef]
- Pappa, E.C.; Bontinis, T.G.; Tasioula-Margari, M.; Samelis, J. Microbial Quality of and Biochemical Changes in Fresh Soft, Acid-Curd Xinotyri Cheese Made from Raw or Pasteurized Goat’s Milk. Food Technol. Biotechnol. 2017, 55, 496–510. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Mangia, N.P.; Saliba, L.; Zoumpopoulou, G.; Chessa, S.; Anastasiou, R.; Karayiannis, Ι.; Sgouras, D.; Tsakalidou, E.; Nudda, A. Goat Milk with Different Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food. Fermentation 2019, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Mangia, N.P.; Saliba, L.; Deiana, P. Functional and safety characterization of autochthonous Lactobacillus paracasei FS103 isolated from sheep cheese and its survival in sheep and cow fermented milks during cold storage. Ann. Microbiol. 2019, 69, 161–170. [Google Scholar] [CrossRef]
- Shu, G.; Shi, X.; Chen, L.; Kou, J.; Meng, J.; Chen, H. Antioxidant Peptides from Goat Milk Fermented by Lactobacillus casei L61: Preparation, Optimization, and Stability Evaluation in Simulated Gastrointestinal Fluid. Nutrients 2018, 10, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Clementi, F. Ecology of lactic acid bacteria and coagulase negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. Int. Food Res. J. 2016, 23, 429–445. [Google Scholar]
- Cunha, M.L.R.S.; Peresi, E.; Calsolari, R.A.O.; Arau’jo, J.P., Jr. Detection of enterotoxins genes in coagulase-negative staphylococci isolated from foods. Braz. J. Microbiol. 2006, 37, 64–69. [Google Scholar] [CrossRef]
- Cardinali, F.; Taccari, M.; Milanović, V.; Osimani, A.; Polverigiani, S.; Garofalo, C.; Foligni, R.; Mozzon, M.; Zitti, S.; Raffaelli, N.; et al. Yeast and mould dynamics in Caciofiore della Sibilla cheese coagulated with an aqueous extract of Carlina acanthifolia All. Yeast 2016, 33, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich-Wyder, M.-T.; Arias-Roth, E.; Jakob, E. Cheese Yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef]
- Poltronieri, P.; Battelli, G.; Mangia, N.P. Metabolism and biochemistry of LAB and dairy-associated species. In Microbiological Opportunities and Challenges in the Dairy Industry, 1st ed.; Poltronieri, P., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; Chapter 6; pp. 154–196. [Google Scholar]
- Yu, L.; Han, X.; Cen, S.; Duan, H.; Feng, S.; Xue, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; et al. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol. Res. 2020, 233, 126409. [Google Scholar] [CrossRef]
- Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G.; Coda, R.; Gobbetti, M. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 2007, 73, 7283–7290. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, N.; St-Gelais, D.; Champagne, C.; Vuillemard, J. Gamma-aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters. Dairy Sci. Technol. 2013, 93, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, T.; Eren-Vapur, U. Determination of free amino acids in whole-fat Turkish White Brined Cheese produced by animal and microbial milk-clotting enzymes with and without the addition of starter culture. Mljekarstvo 2012, 62, 241–250. [Google Scholar]
- Collins, Y.F.; McSweeney, P.L.; Wilkinson, M.G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- McSweeney, P.L.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Le Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Poveda, J.M.; Cabezas, L. Free fatty acid composition of regionally-produced Spanish goat cheese and relationship with sensory characteristics. Food Chem. 2006, 95, 307–311. [Google Scholar] [CrossRef]
- Balthazar, C.; Pimentel, T.; Ferrão, L.; Almada, C.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.; Nascimento, J.; Silva, M.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Popović-Vranješ, A.; Pihler, I.; Paskaš, S.; Krstović, S.; Jurakić, Ž.; Strugar, K. Production of hard goat cheese and goat whey. Mljekarstvo 2017, 67, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Lobos-Ortega, I.; Revilla, I.; González-Martín, M.I.; Hernández Hierro, J.M.; Vivar-Quintana, A.M.; González-Pérez, C. Conjugated linoleic acid contents in cheeses of different compositions during six months of ripening. Czech J. Food Sci. 2012, 30, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001, 36, 1007–1024. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Nutrition tid-bites: Essential fatty acids in health and chronic disease. Food Rev. Int. 1997, 13, 623–631. [Google Scholar] [CrossRef]
FS | FG | ||||
---|---|---|---|---|---|
Parameters | Average | sd | Average | sd | |
Dry matter, (g/100 g) | 22.75 | 1.19 | 21.06 | 5.61 | |
Fat (g/100 g) | 10.18 | 0.39 | 9.29 | 3.02 | |
Proteins (g/100 g) | 7.68 | 0.78 | 6.70 | 1.81 | |
Lactose (g/100 g) | 2.40 | 0.41 | 2.79 | 0.29 | |
Acid lactic (%) | 1.82 | 0.56 | 1.80 | 0.30 | |
pH | 4.38 | 0.10 | 4.32 | 0.07 | |
Water activity | 0.99 | 0.01 | 0.99 | 0.01 |
Microbial Groups | FS | FG | ||
---|---|---|---|---|
log CFU/g | sd | log CFU/g | sd | |
Total Microbial Count * (PCA, 37 °C) | 8.77 | 1.30 | 7.41 | 0.62 |
Thermophilic lactobacilli * (MRS, 45 °C) | 8.23 | 1.91 | 5.78 | 0.30 |
Mesophilic lactobacilli * (MRS, 22 °C) | 7.79 | 1.91 | 7.78 | 0.18 |
Thermophilic streptococci * (M17, 45 °C) | 9.1 | 1.48 | 8.14 | 0.63 |
Mesophilic lactococci * (M17, 22 °C) | 9.1 | 1.48 | 9.76 | 0.24 |
Coagulase negative staphylococci | 5.86 | 1.66 | 6.37 | 2.01 |
Yeasts | 4.34 | 1.41 | 5.15 | |
** Total coliforms | 23 | 1100 | ||
** Fecal coliforms | <3 | <3 | ||
Salmonella | absent | absent | ||
Listeria | absent | absent |
Free Amino Acids (FAA) | FS | FG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Essential amino acids | mean | sd | min | max | AA/TAA 1 | mean | sd | min | max | AA/TAA 1 |
Leucine | 1.72 | 1.1 | 0.6 | 3.6 | 6.64 | 1.73 | 2.2 | 0.5 | 6.2 | 6.41 |
Lysine | 1.58 | 0.61 | 0.9 | 2.6 | 6.13 | 1.72 | 0.79 | 0.4 | 2.8 | 6.35 |
Phenylalanine | 1.5 | 0.55 | 0.9 | 2.4 | 5.8 | 1.35 | 0.99 | 0.6 | 3.2 | 4.99 |
Valine | 1.5 | 0.65 | 0.8 | 2.7 | 5.8 | 3.12 | 3.6 | 0.8 | 10 | 11.53 |
Histidine | 1.2 | 0.42 | 0.8 | 1.9 | 4.64 | 1.07 | 0.34 | 0.7 | 1.6 | 3.95 |
Isoleucine | 0.78 | 0.34 | 0.4 | 1.3 | 3.02 | 0.74 | 0.49 | 0.4 | 1.6 | 2.74 |
Threonine | 0.77 | 0.33 | 0.2 | 1.1 | 2.97 | 0.82 | 0.33 | 0.4 | 1.4 | 3.02 |
Methionine | 0.2 | 0.0 | 0.2 | 0.2 | 0.77 | 0.7 | 0.0 | 0.7 | 0.7 | 2.59 |
Non-essential amino acids | ||||||||||
Glutamic ac. | 3.78 | 3.82 | 1.3 | 10.5 | 14.62 | 2.62 | 1.68 | 0.5 | 5 | 9.69 |
Glycine | 2.97 | 0.86 | 1.9 | 4 | 11.48 | 3.85 | 0.77 | 2.7 | 4.9 | 14.24 |
γ-aminobutyric ac (GABA) | 2.88 | 1.17 | 1.3 | 4.5 | 11.14 | 3.12 | 2.07 | 1.8 | 7.3 | 11.53 |
Alanine | 2.15 | 1.4 | 1.1 | 4 | 8.32 | 1.85 | 0.8 | 1.2 | 3.4 | 6.84 |
Tyrosine | 1.2 | 0.24 | 0.8 | 1.5 | 4.64 | 1.48 | 0.72 | 0.8 | 2.7 | 5.48 |
Aspartic acid | 1.12 | 0.41 | 0.7 | 1.6 | 4.32 | 1.18 | 0.49 | 0.6 | 1.9 | 4.38 |
Proline | 1.08 | 0.38 | 0.4 | 1.4 | 4.19 | 1.07 | 0.46 | 0.4 | 1.6 | 3.97 |
Ornithine | 0.98 | 0.39 | 0.5 | 1.5 | 3.8 | 0.85 | 0.31 | 0.3 | 1.2 | 3.14 |
Arginine | 0.9 | 0.17 | 0.7 | 1 | 3.48 | 1.4 | 1.4 | 1.4 | 5.18 | |
Asparagine | 0.86 | 0.25 | 0.6 | 1.1 | 3.33 | 0.7 | 0.29 | 0.4 | 1.1 | 2.59 |
Serine | 0.6 | 0.19 | 0.3 | 0.8 | 2.32 | 0.6 | 0.15 | 0.4 | 0.8 | 2.22 |
Glutamine | 0.43 | 0.15 | 0.3 | 0.6 | 1.68 | 0.2 | 0.2 | 0.2 | 0.74 | |
Total FAA | 25.85 | 8.1 | 27.03 | 10.63 |
Free Fatty Acid (FFA) | FS | FG | |||||||
---|---|---|---|---|---|---|---|---|---|
mean | Sd | min | max | mean | sd | min | max | ||
Butyric acid | C4:0 | 10.5 | 1.8 | 8.6 | 12.8 | 9.7 | 2.2 | 7.0 | 13.6 |
Capronic acid | C6:0 | 5.4 | 1.9 | 2.7 | 8.6 | 8.7 | 2.6 | 5.1 | 13.1 |
Caprylic acid | C8:0 | 4.4 | 2.1 | 1.6 | 7.9 | 7.5 | 2.6 | 4.7 | 10.9 |
Capric acid | C10:0 | 12.3 | 6.2 | 4.1 | 23.3 | 22.6 | 9.4 | 10.8 | 34.2 |
Lauric acid | C12:0 | 7.9 | 3.0 | 4.4 | 13.3 | 10.0 | 2.7 | 6.9 | 13.0 |
Myristic acid | C14:0 | 30.3 | 7.6 | 20.4 | 42.2 | 28.8 | 7.0 | 18.6 | 40.0 |
Palmitic acid | C16:0 | 79.5 | 5.6 | 73.4 | 88.5 | 80.3 | 12.6 | 55.9 | 90.2 |
Palmitoleic acid | C16:1c9 | 4.5 | 0.7 | 3.7 | 5.4 | 3.4 | 1.5 | 2.1 | 5.9 |
Stearic acid | C18:0 | 33.7 | 10.2 | 20.6 | 48.2 | 40.9 | 9.2 | 26.2 | 53.9 |
Oleic acid | C18:1c9 | 74.6 | 9.4 | 61.9 | 85.6 | 74.0 | 13.8 | 47.5 | 85.8 |
Linoleic acid | C18:2n6 | 8.0 | 0.9 | 7.4 | 9.7 | 8.4 | 1.0 | 7.4 | 9.7 |
Linolenic acid | C18:3n3 | 2.7 | 0.6 | 1.9 | 3.5 | 2.4 | 0.3 | 1.9 | 2.8 |
Total FFA | 273.9 | 23.6 | 295.6 | 43.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murgia, M.A.; Deiana, P.; Nudda, A.; Correddu, F.; Montanari, L.; Mangia, N.P. Assessment of Microbiological Quality and Physicochemical Parameters of Fruhe Made by Ovine and Goat Milk: A Sardinian (Italy) Cheese. Fermentation 2020, 6, 119. https://doi.org/10.3390/fermentation6040119
Murgia MA, Deiana P, Nudda A, Correddu F, Montanari L, Mangia NP. Assessment of Microbiological Quality and Physicochemical Parameters of Fruhe Made by Ovine and Goat Milk: A Sardinian (Italy) Cheese. Fermentation. 2020; 6(4):119. https://doi.org/10.3390/fermentation6040119
Chicago/Turabian StyleMurgia, Marco A., Pietrino Deiana, Anna Nudda, Fabio Correddu, Luigi Montanari, and Nicoletta P. Mangia. 2020. "Assessment of Microbiological Quality and Physicochemical Parameters of Fruhe Made by Ovine and Goat Milk: A Sardinian (Italy) Cheese" Fermentation 6, no. 4: 119. https://doi.org/10.3390/fermentation6040119
APA StyleMurgia, M. A., Deiana, P., Nudda, A., Correddu, F., Montanari, L., & Mangia, N. P. (2020). Assessment of Microbiological Quality and Physicochemical Parameters of Fruhe Made by Ovine and Goat Milk: A Sardinian (Italy) Cheese. Fermentation, 6(4), 119. https://doi.org/10.3390/fermentation6040119