Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome-Scale Metabolic Modeling
2.2. Bacterial Strains and Growth Conditions
2.3. Bioreactor Fermentations
2.4. HPLC Quantification of Metabolites
2.5. Gas Chromatography
3. Results
3.1. Co-culture Simulations Predict Higher Hydrogen Production than Both Monocultures
3.2. Metabolite Production by a Consortium of C. beijerinckii and Y. regensburgei
3.3. Y. regensburgei Cross-feeds Lactate to C. beijerinckii for Butyrate Production
3.4. C. beijerinckii Uses Lactate as a Carbon Source
3.5. Enhanced Metabolite Production by the Consortium Is Condition-Dependent
4. Discussion
4.1. Experimental Implementation of Genome-Scale Metabolic Modeling Predictions
4.2. Y. regensburgei Cross-feeding to C. beijerinckii
4.3. Varying Growth Conditions to Control Metabolic Output
4.4. Microbial Consortia with Distinct Mechanisms of Chemical Overproduction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste—Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnol. Adv. 2019. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.; Lesher, L.; Kramer, F.M.; Johnson, J.; Bordic, M.; Miller, H. An Analysis of Military Field Feeding Waste. In U. S. Army Natick Soldier Systems Center Technology Report Natick/Tr-00/021; U.S. Army Natick Soldier Systems Center: Natick, MA, USA, 2000. [Google Scholar]
- Knowlton, L.; Pickard, D.; Diebold, J.; Lasnik, L.; Lilley, A.; Browne, K. On-Site Field-Feeding Waste to Energy Converter. 2008. Available online: http://nsrdeec.natick.army.mil/LIBRARY/00-09/R08-105.pdf (accessed on 15 August 2019).
- Birgen, C.; Durre, P.; Preisig, H.A.; Wentzel, A. Butanol production from lignocellulosic biomass: Revisiting fermentation performance indicators with exploratory data analysis. Biotechnol. Biofuels 2019, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Cairns, T.C.; Zheng, X.; Zheng, P.; Sun, J.; Meyer, V. Moulding the mould: Understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. Biotechnol. Biofuels 2019, 12, 77. [Google Scholar] [CrossRef]
- Shin, H.D.; McClendon, S.; Vo, T.; Chen, R.R. Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl. Environ. Microbiol. 2010, 76, 8150–8159. [Google Scholar] [CrossRef]
- Zhang, H.; Pereira, B.; Li, Z.; Stephanopoulos, G. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. USA 2015, 112, 8266–8271. [Google Scholar] [CrossRef]
- Salmela, M.; Lehtinen, T.; Efimova, E.; Santala, S.; Mangayil, R. Metabolic pairing of aerobic and anaerobic production in a one-pot batch cultivation. Biotechnol. Biofuels 2018, 11, 187. [Google Scholar] [CrossRef]
- Kim, H.; Jeon, B.S.; Pandey, A.; Sang, B.I. New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production. Bioresour. Technol. 2018, 270, 498–503. [Google Scholar] [CrossRef]
- Wen, Z.; Minton, N.P.; Zhang, Y.; Li, Q.; Liu, J.; Jiang, Y.; Yang, S. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab. Eng. 2017, 39, 38–48. [Google Scholar] [CrossRef]
- Gomez-Flores, M.; Nakhla, G.; Hafez, H. Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. AMB Express 2017, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Roell, G.W.; Zha, J.; Carr, R.R.; Koffas, M.A.; Fong, S.S.; Tang, Y.J. Engineering microbial consortia by division of labor. Microb. Cell Fact. 2019, 18, 35. [Google Scholar] [CrossRef]
- Zhou, K.; Qiao, K.; Edgar, S.; Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 2015, 33, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, M.; Feng, S.; Soyer, O.S.; Jimenez, J.I. Cooperation in microbial communities and their biotechnological applications. Environ. Microbiol. 2017, 19, 2949–2963. [Google Scholar] [CrossRef] [PubMed]
- LaSarre, B.; McCully, A.L.; Lennon, J.T.; McKinlay, J.B. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J. 2017, 11, 337–348. [Google Scholar] [CrossRef]
- Charubin, K.; Papoutsakis, E.T. Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space. Metab. Eng. 2019, 52, 9–19. [Google Scholar] [CrossRef]
- Benomar, S.; Ranava, D.; Cardenas, M.L.; Trably, E.; Rafrafi, Y.; Ducret, A.; Hamelin, J.; Lojou, E.; Steyer, J.P.; Giudici-Orticoni, M.T. Nutritional stress induces exchange of cell material and energetic coupling between bacterial species. Nat. Commun. 2015, 6, 7283. [Google Scholar] [CrossRef]
- Kosina, S.M.; Danielewicz, M.A.; Mohammed, M.; Ray, J.; Suh, Y.; Yilmaz, S.; Singh, A.K.; Arkin, A.P.; Deutschbauer, A.M.; Northen, T.R. Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism. ACS Synth. Biol. 2016, 5, 569–576. [Google Scholar] [CrossRef]
- Smith, N.W.; Shorten, P.R.; Altermann, E.; Roy, N.C.; McNabb, W.C. The Classification and Evolution of Bacterial Cross-Feeding. Front. Ecol. Evol. 2019, 7. [Google Scholar] [CrossRef]
- Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665–694. [Google Scholar] [CrossRef]
- Keskin, T.; Abo-Hashesh, M.; Hallenbeck, P.C. Photofermentative hydrogen production from wastes. Bioresour. Technol. 2011, 102, 8557–8568. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.; Bestel-Corre, G.; Croux, C.; Riviere, A.; Meynial-Salles, I.; Soucaille, P. A Quantitative System-Scale Characterization of the Metabolism of Clostridium Acetobutylicum. mBio 2015, 6, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Masset, J.; Calusinska, M.; Hamilton, C.; Hiligsmann, S.; Joris, B.; Wilmotte, A.; Thonart, P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium Spp. Biotechnol. Biofuels 2012, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.F.; Ren, N.Q.; Xie, G.J.; Ding, J.; Guo, W.Q.; Xing, D.F. Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture. Bioresour. Technol. 2010, 101, 5325–5329. [Google Scholar] [CrossRef] [PubMed]
- Laurinavichene, T.; Laurinavichius, K.; Shastik, E.; Tsygankov, A. Long-term H2 photoproduction from starch by co-culture of Clostridium butyricum and Rhodobacter sphaeroides in a repeated batch process. Biotechnol. Lett. 2018, 40, 309–314. [Google Scholar] [CrossRef]
- Nasr, N.; Gupta, M.; Hafez, H.; El Naggar, M.H.; Nakhla, G. Mono- and co-substrate utilization kinetics using mono- and co-culture of Clostridium beijerinckii and Clostridium saccharoperbutylacetonicum. Bioresour. Technol. 2017, 241, 152–160. [Google Scholar] [CrossRef]
- Maeda, T.; Tran, K.T.; Yamasaki, R.; Wood, T.K. Current state and perspectives in hydrogen production by Escherichia coli: Roles of hydrogenases in glucose or glycerol metabolism. Appl. Microbiol. Biotechnol. 2018, 102, 2041–2050. [Google Scholar] [CrossRef]
- Seppälä, J.J.; Puhakka, J.A.; Yli-Harja, O.; Karp, M.T.; Santala, V. Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. Int. J. Hydrogen Energy 2011, 36, 10701–10708. [Google Scholar] [CrossRef]
- Schellenberger, J.; Que, R.; Fleming, R.M.; Thiele, I.; Orth, J.D.; Feist, A.M.; Zielinski, D.C.; Bordbar, A.; Lewis, N.E.; Rahmanian, S.; et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 2011, 6, 1290–1307. [Google Scholar] [CrossRef]
- Orth, J.D.; Thiele, I.; Palsson, B.O. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- McCloskey, D.; Palsson, B.O.; Feist, A.M. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol. Syst. Biol. 2013, 9, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, K.; Izallalen, M.; Mouser, P.; Richter, H.; Risso, C.; Mahadevan, R.; Lovley, D.R. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 2011, 5, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Stolyar, S.; Van Dien, S.; Hillesland, K.L.; Pinel, N.; Lie, T.J.; Leigh, J.A.; Stahl, D.A. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 2007, 3, 92. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.; Zimmermann, J.; Baldini, F.; Thiele, I.; Kaleta, C. BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 2017, 13, e1005544. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, W.R.; Riehl, W.J.; Dukovski, I.; Granger, B.R.; Betts, A.; Lang, A.H.; Bonilla, G.; Kar, A.; Leiby, N.; Mehta, P.; et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 2014, 7, 1104–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusdottir, S.; Heinken, A.; Kutt, L.; Ravcheev, D.A.; Bauer, E.; Noronha, A.; Greenhalgh, K.; Jager, C.; Baginska, J.; Wilmes, P.; et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 2016. [Google Scholar] [CrossRef]
- Perisin, M.A.; Sund, C.J. Human gut microbe co-cultures have greater potential than monocultures for food waste remediation to commodity chemicals. Sci. Rep. 2018, 8, 15594. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 24 September 2019).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Fritzemeier, C.J.; Gelius-Dietrich, G.; Alzoubi, D.; Habil, A. sybilSBML: SBML Integration in Package ‘Sybil’. 2017. Available online: https://cran.r-project.org/web/packages/sybilSBML/index.html (accessed on 24 September 2019).
- Gelius-Dietrich, G.; Desouki, A.A.; Fritzemeier, C.J.; Lercher, M.J. Sybil—Efficient constraint-based modelling in R. BMC Syst. Biol. 2013, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Fritzemeier, C.J.; Gelius-Dietrich, G.; Luangkesorn, L. glpkAPI: R Interface to C API of GLPK. 2015. Available online: https://cran.r-project.org/web/packages/glpkAPI/index.html (accessed on 24 September 2019).
- Heirendt, L.; Arreckx, S.; Pfau, T.; Mendoza, S.N.; Richelle, A.; Heinken, A.; Haraldsdottir, H.S.; Keating, S.M.; Vlasov, V.; Wachowiak, J.; et al. Creation and analysis of biochemical constraint-based models: The COBRA Toolbox v3.0. Nat. Protoc 2019, 14, 639–702. [Google Scholar] [CrossRef] [Green Version]
- Klitgord, N.; Segre, D. Environments that Induce Synthetic Microbial Ecosystems. PLoS Comput. Biol. 2010, 6, 1001002. [Google Scholar] [CrossRef] [Green Version]
- Roos, J.W.; McLaughlin, J.K.; Papoutsakis, E.T. The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum. Biotechnol. Bioeng. 1985, 27, 681–694. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.W.; Morris, J.G. The Ferredoxin-dependent reduction of chloramphenicol by clostridium acetobutylicum. J. Gen. Microbiol. 1971, 67, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, I.; Sherwood, K.J.; Wiedemann, B. Antimicrobial susceptibility patterns, beta-lactamases, and biochemical identification of Yokenella regensburgei strains. Diagn. Microbiol. Infect. Dis. 2004, 48, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Morita, M.; Hirano, S.; Ohmura, N.; Igarashi, Y. Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry. J. Biosci. Bioeng. 2009, 108, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Finch, A.S.; Mackie, T.D.; Sund, C.J.; Sumner, J.J. Metabolite analysis of Clostridium acetobutylicum: Fermentation in a microbial fuel cell. Bioresour. Technol. 2011, 102, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Kosako, Y.; Sakazaki, R.; Yoshizaki, E. Yokenella regensburgei gen. nov., sp. nov.: A new genus and species in the family Enterobacteriaceae. Jpn. J. Med. Sci. Biol. 1984, 37, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Detman, A.; Mielecki, D.; Chojnacka, A.; Salamon, A.; Błaszczyk, M.K.; Sikora, A. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Microb. Cell Fact. 2019, 18. [Google Scholar] [CrossRef]
- Yoshida, T.; Tashiro, Y.; Sonomoto, K. Novel high butanol production from lactic acid and pentose by Clostridium Saccharoperbutylacetonicum. J. Biosci. Bioeng. 2012, 114, 526–530. [Google Scholar] [CrossRef]
- Cabrol, L.; Marone, A.; Tapia-Venegas, E.; Steyer, J.-P.; Ruiz-Filippi, G.; Trably, E. Microbial ecology of fermentative hydrogen producing bioprocesses: Useful insights for driving the ecosystem function. FEMS Microbiol. Rev. 2017, 41, 158–181. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Zhao, X.; Condruz, S.; Chen, J.; Jolicoeur, M. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patakova, P.; Branska, B.; Sedlar, K.; Vasylkivska, M.; Jureckova, K.; Kolek, J.; Koscova, P.; Provaznik, I. Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, T.-Y.; Chen, J.; Hao, Y.-F.; Qi, X. Effects of Different Carbon Sources on Enzyme Production and Ultrastructure of Cellulosimicrobium cellulans. Curr. Microbiol. 2019, 76, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, M.P.; Maloney, V.; Mizrachi, E.; Myburg, A.A. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. Front. Plant. Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredi, P.; Renzi, F.; Mally, M.; Sauteur, L.; Schmaler, M.; Moes, S.; Jenö, P.; Cornelis, G.R. The genome and surface proteome of Capnocytophaga canimorsus reveal a key role of glycan foraging systems in host glycoproteins deglycosylation. Mol. Microbiol. 2011, 81, 1050–1060. [Google Scholar] [CrossRef]
- Kapke, P.A.; Brown, A.T.; Lillich, T.T. Carbon dioxide metabolism by Capnocytophaga ochracea: Identification, characterization, and regulation of a phosphoenolpyruvate carboxykinase. Infect. Immun. 1980, 27, 756–766. [Google Scholar]
Organism | Fold Hydrogen versus C. Beijerinckii Alone | Δ Biomass C. Beijerinckii | Δ Biomass Organism |
---|---|---|---|
Yokenella regensburgei ATCC 43003 | 2.25 | 0.58 | 0 |
Kluyvera ascorbata ATCC 33433 | 2.20 | 0.54 | 0 |
Hafnia alvei ATCC 51873 | 2.08 | 0.48 | 0 |
Yersinia rohdei ATCC 43380 | 2.07 | 0.49 | 0 |
Yersinia kristensenii ATCC 33638 | 2.07 | 0.49 | 0 |
Vibrio mimicus MB 451 | 2.06 | 0.43 | 0 |
Solobacterium moorei DSM 22971 | 2.06 | −0.34 | 0.51 |
Escherichia hermannii NBRC 105704 | 2.05 | 0.44 | 0 |
Vibrio parahaemolyticus RIMD 2210633 | 2.05 | 0.45 | 0 |
Capnocytophaga sputigena ATCC 33612 | 2.05 | 0.43 | 0.21 |
Lactococcus garvieae ATCC 49156 | 2.05 | −0.29 | 0.43 |
Trabulsiella guamensis ATCC 49490 | 2.01 | 0.42 | 0 |
Cellulosimicrobium cellulans J36 | 2.01 | 0.37 | 0.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwalm, N.D., III; Mojadedi, W.; Gerlach, E.S.; Benyamin, M.; Perisin, M.A.; Akingbade, K.L. Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste. Fermentation 2019, 5, 98. https://doi.org/10.3390/fermentation5040098
Schwalm ND III, Mojadedi W, Gerlach ES, Benyamin M, Perisin MA, Akingbade KL. Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste. Fermentation. 2019; 5(4):98. https://doi.org/10.3390/fermentation5040098
Chicago/Turabian StyleSchwalm, Nathan D., III, Wais Mojadedi, Elliot S. Gerlach, Marcus Benyamin, Matthew A. Perisin, and Katherine L. Akingbade. 2019. "Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste" Fermentation 5, no. 4: 98. https://doi.org/10.3390/fermentation5040098
APA StyleSchwalm, N. D., III, Mojadedi, W., Gerlach, E. S., Benyamin, M., Perisin, M. A., & Akingbade, K. L. (2019). Developing a Microbial Consortium for Enhanced Metabolite Production from Simulated Food Waste. Fermentation, 5(4), 98. https://doi.org/10.3390/fermentation5040098