Pullulan Production from Lignocellulosic Plant Biomass or Starch-Containing Processing Coproduct Hydrolysates
Abstract
1. Introduction
2. Production and Applications of Pullulan
3. Lignocellulosic Plant Biomass Used for Pullulan Production
4. Pullulan Production from Starch-Containing Processing Coproducts
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zajic, J.E.; LeDuy, A. Flocculant and chemical properties of polysaccharide from Pullularia pullulans. Appl. Microbiol. 1973, 25, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Kaura, N.; Rana, V.; Kennedy, J.F. Pullulan: A novel molecule for biomedical applications. Carbohydr. Polym. 2017, 171, 102–121. [Google Scholar] [CrossRef]
- Ueda, S.; Fujita, K.; Komatsu, K.; Nakashima, Z. Polysaccharide produced by the genus Pullularia. l. Production of polysaccharide by growing cells. Appl. Microbiol. 1963, 11, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Leal-Serrano, G.; Ruperez, P.; Leal, J.A. Acidic polysaccharide from Aureobasidium pullulans. Trans. Brit. Mycol. Soc. 1980, 75, 57–62. [Google Scholar] [CrossRef]
- West, T.P.; Strohfus, B. A pullulan-degrading activity of Aureobasidium pullulans. J. Basic Microbiol. 1996, 5, 377–380. [Google Scholar] [CrossRef]
- Bouveng, H.O.; Kiessling, H.; Lindberg, B.; McKay, J. Polysaccharides elaborated by Pullularia pullulans. l. The neutral glucan synthesized from sucrose solutions. Acta Chem. Scand. 1962, 16, 615–622. [Google Scholar] [CrossRef]
- Sowa, W.; Blackwood, A.C.; Adams, G.A. Neutral extracellular glucan of Pullularia pullulans (de Bary) Berkhout. Can. J. Chem. 1963, 41, 2314–2319. [Google Scholar] [CrossRef]
- Catley, B.J. Pullulan, a relationship between molecular weight and fine structure. FEBS Lett. 1970, 10, 190–193. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Ability of Aureobasidium pullulans to synthesize pullulan upon selected sources of carbon and nitrogen. Microbios 1991, 67, 117–124. [Google Scholar]
- West, T.P.; Reed-Hamer, B. Polysaccharide production by a reduced pigmentation mutant of the fungus Aureobasidium pullulans. FEMS Microbiol. Lett. 1993, 113, 345–349. [Google Scholar] [CrossRef][Green Version]
- West, T.P.; Reed-Hamer, B. Elevated polysaccharide production by mutants of the fungus Aureobasidium pullulans. FEMS Microbiol. Lett. 1994, 124, 167–172. [Google Scholar] [CrossRef]
- Catley, B.J. Role of pH and nitrogen limitation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Appl. Microbiol. 1971, 22, 650–654. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Effect of pH on pullulan production relative to carbon source and yeast extract composition of growth medium. Microbios 1993, 75, 75–82. [Google Scholar]
- Catley, B.J. The rate of elaboration of the extracellular polysaccharide, pullulan, during growth of Pullularia pullulans. J. Gen. Microbiol. 1973, 78, 33–38. [Google Scholar] [CrossRef]
- Reed-Hamer, B.; West, T.P. Effect of complex nitrogen sources on pullulan production relative to carbon source. Microbios 1994, 80, 83–90. [Google Scholar]
- West, T.P.; Reed-Hamer, B. Pullulan production by Aureobasidium pullulans grown on corn steep solids as a nitrogen source. Microbios 1997, 92, 7–18. [Google Scholar]
- West, T.P.; Reed-Hamer, B. Effect of nitrogen source on pullulan production by Aureobasidium pullulans grown in a batch bioreactor. Microbios 1999, 99, 147–159. [Google Scholar]
- Wang, D.; Chen, F.; Wei, G.; Jiang, M.; Dong, M. The mechanism of improved pullulan production by nitrogen limitation in batch culture of Aureobasidium pullulans. Carbohydr. Polym. 2015, 127, 325–331. [Google Scholar] [CrossRef] [PubMed]
- West, T.P.; Reed-Hamer, B. Effect of temperature on pullulan production in relation to carbon source. Microbios 1993, 75, 261–268. [Google Scholar]
- He, C.; Zhang, Z.; Zhang, Y.; Wang, G.; Wang, C.; Wang, D.; Wei, G. Efficient pullulan production by Aureobasidium pullulans using cost-effective substrates. Int. J. Biol. Macromol. 2021, 186, 544–553. [Google Scholar] [CrossRef]
- Reeslev, M.; Nielsen, J.C.; Olsen, J.; Jensen, B.; Jacobsen, T. Effect of pH and the initial concentration of yeast extract on regulation of dimorphism and exopolysaccharide formation of Aureobasidium pullulans in batch culture. Mycol. Res. 1991, 95, 220–226. [Google Scholar] [CrossRef]
- West, T.P.; Reed-Hamer, B. Influence of vitamins and mineral salts upon pullulan synthesis by Aureobasidium pullulans. Microbios 1992, 71, 115–123. [Google Scholar]
- West, T.P. Fungal production of the polysaccharide pullulan from a plant hydrolysate. Z. Naturforsch. C 2017, 72, 491–496. [Google Scholar] [CrossRef]
- Kennedy, D.E., II; West, T.P. Effect of yeast extract addition to a mineral salts medium containing hydrolyzed plant xylan on fungal pullulan production. Z. Naturforsch. C 2018, 73, 319–323. [Google Scholar] [CrossRef]
- Hilares, R.T.; Resende, J.; Orsi, C.A.; Ahmed, M.A.; Lacerda, T.M.; DaSilva, S.S.; Santos, J.C. Exopolysaccharide (pullulan) production from sugarcane bagasse hydrolysate aiming to favor the development of biorefineries. Int. J. Biol. Macromol. 2019, 127, 169–177. [Google Scholar] [CrossRef]
- West, T.P.; Strohfus, B. Effect of manganese on polysaccharide production and cellular pigmentation in the fungus Aureobasidium pullulans. World J. Microbiol. Biotechnol. 1997, 13, 233–235. [Google Scholar] [CrossRef]
- Rho, D.; Mulchandsani, A.; Luong, J.H.T.; LeDuy, A. Oxygen requirement in pullulan fermentation. Appl. Microbiol. Biotechnol. 1988, 28, 361–366. [Google Scholar] [CrossRef]
- Wecker, A.; Onken, U. Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans. Biotechnol. Lett. 1991, 13, 155–160. [Google Scholar] [CrossRef]
- West, T.P. Impact of Aureobasidium species strain improvement on the production of the polysaccharide pullulan. Polysaccharides 2024, 5, 305–319. [Google Scholar] [CrossRef]
- Pollock, T.J.; Thorne, L.; Armentrout, R.W. Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 1992, 58, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Youssef, F.; Roukas, T.; Biliaderis, C.G. Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem. 1999, 34, 355–366. [Google Scholar] [CrossRef]
- Kang, B.-K.; Yang, H.-J.; Choi, N.-S.; Ahn, K.-H.; Park, C.-S.; Yoon, B.-D.; Kim, M.-S. Production of pure β-glucan by Aureobasidium pullulans after pullulan synthetase gene disruption. Biotechnol. Lett. 2010, 32, 137–142. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, J.; Zhang, L.; Diao, M.; Ling, P.; Wang, F. Correlation between the synthesis of pullulan and melanin in Aureobasidium pullulans. Int. J. Biol. Macromol. 2021, 177, 252–260. [Google Scholar] [CrossRef]
- Li, B.-X.; Zhang, N.; Peng, Q.; Yin, T.; Guan, F.-F.; Wang, G.-L.; Li, Y. Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl. Microbiol. Biotechnol. 2009, 84, 293–300. [Google Scholar] [CrossRef]
- Zheng, W.; Campbell, B.S.; McDougall, B.M.; Seviour, R.J. Effects of melanin on the accumulation of exopolysaccharides by Aureobasidium pullulans grown on nitrate. Bioresour. Technol. 2008, 99, 7480–7486. [Google Scholar] [CrossRef]
- West, T.P.; Strohfus, B. Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1. Lett. Appl. Microbiol. 2001, 33, 169–172. [Google Scholar] [CrossRef]
- Tarabasz-Szymafiska, L.; Galas, E. Two-step mutagenesis of Pullularia pullulans leading to clones producing pure pullulan with high yield. Enzym. Microb. Technol. 1993, 15, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Moscovici, M.; Ionescu, C.; Oniscu, C.; Fotea, O.; Hanganu, L.D. Exopolysaccharide biosynthesis by a fast-producing strain of Aureobasidium pullulans. Biotechnol. Lett. 1993, 15, 1167–1172. [Google Scholar] [CrossRef]
- Singh, R.S.; Saini, G.K. Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour. Technol. 2008, 99, 3896–3899. [Google Scholar] [CrossRef]
- Yadav, K.L.; Rahi, D.K.; Soni, S.K. An indigenous hyperproductive species of Aureobasidium pullulans RYLF-10: Influence of fermentation conditions on exopolysaccharide (EPS) production. Appl. Biochem. Biotechnol. 2014, 172, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhong, H.; Gao, J.; Song, H.; Bai, W. High-level production of pullulan and its biosynthesis regulation in Aureobasidium pullulans BL06. Front. Bioeng. Biotechnol. 2023, 11, 1131875. [Google Scholar] [CrossRef]
- Li, X.; Zhao, S.; Chen, L.; Zhou, Q.; Qui, J.; Xin, X.; Zhang, Y.; Yuan, W.; Tian, C.; Yang, J.; et al. High-level production of pullulan from high concentration of glucose by mutagenesis and adaptive laboratory evolution of Aureobasidium pullulans. Carbohydr. Polym. 2023, 302, 120426, Correction in Carbohydr. Polym. 2023, 120552. https://doi.org/10.1016/j.carbpol.2023.120552. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.-C.; Demirici, A.; Catchmark, J.M. Pullulan: Biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 2011, 92, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Liu, C.; Tong, Q.; Ma, M. Central metabolic pathways of Aureobasidium pullulans CGMCC1234 for pullulan production. Carbohydr. Polym. 2015, 134, 333–336. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.-Q.; Liu, N.-N.; Liu, G.-L.; Chi, Z.; Chi, Z.-M. A glycosyltransferase gene responsible for pullulan biosynthesis in Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2017, 95, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-J.; Liu, G.-L.; Wei, X.; Wang, K.; Huc, Z.; Chi, Z.; Chi, Z.-M. A multidomain α-glucan synthetase 2 (AmAgs2) is the key enzyme for pullulan biosynthesis in Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2020, 150, 1037–1045. [Google Scholar] [CrossRef]
- Wei, X.; Liu, G.-L.; Jia, S.-L.; Chi, Z.; Hu, Z.; Chi, Z.-M. Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr. Polym. 2021, 251, 117076. [Google Scholar]
- Yuen, S. Pullulan and its applications. Process Biochem. 1974, 9, 7–9. [Google Scholar]
- Leathers, T.D. Biotechnological production and applications of pullulan. Appl. Microbiol. Biotechnol. 2003, 62, 468–473. [Google Scholar] [CrossRef]
- Shingel, K.I. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydr. Res. 2004, 339, 447–460. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Khanda, S.M. Pullulan: An exopolysaccharide and its various applications. Carbohydr. Polym. 2013, 95, 540–549. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Ponnusami, V. Review on production, downstream processing and characterization of microbial pullulan. Carbohydr. Polym. 2017, 173, 573–591. [Google Scholar] [CrossRef]
- Badhwar, P.; Kumar, P.; Dubey, K.K. Extractive fermentation for process integration and amplified pullulan production by A. pullulans in aqueous two phase systems. Sci. Rep. 2019, 9, 32. [Google Scholar] [CrossRef]
- Prasongsuk, S.; Lotrakul, P.; Ali, I.; Bankeeree, W.; Punnapayak, H. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol. 2018, 63, 129–140. [Google Scholar] [CrossRef]
- Wang, P.; Jia, S.-L.; Liu, G.-L.; Chi, Z.; Chi, Z.-M. Aureobasidium spp. and their applications in biotechnology. Process Biochem. 2022, 116, 72–83. [Google Scholar] [CrossRef]
- Aquinas, N.; Chithra, C.H.; Bhat, M.R. Progress in bioproduction, characterization and applications of pullulan: A review. Polym. Bull. 2024, 81, 12347–12382. [Google Scholar] [CrossRef]
- Chang, J.; Li, W.; Liu, Q.; Chen, X.; Lyu, Q.; Liu, G. Preparation, properties, and structural characterization of β-glucan/pullulan blend films. Int. J. Biol. Macromol. 2019, 140, 1269–1276. [Google Scholar] [CrossRef]
- Oguzhan, P.; Yangilar, F. Pullulan: Production and usage in food industry. Afr. J. Food Sci. Technol. 2013, 4, 57–63. [Google Scholar]
- Farris, S.; Unalan, I.U.; Introzzi, L.; Fuentes-Alventosa, J.M.; Cozzolino, C.A. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. J. Appl. Polym. Sci. 2014, 131, 40539. [Google Scholar] [CrossRef]
- Ghosh, T.; Priyadarshi, R.; de Souza, C.K.; Angioletti, B.L.; Rhim, J.-W. Advances in pullulan utilization for sustainable applications in food packaging and preservation: A mini-review. Trends Food Sci. Technol. 2022, 125, 43–53. [Google Scholar] [CrossRef]
- Autissier, A.; Letourneur, D.; Le Visage, C. Pullulan-based hydrogel for smooth muscle cell culture. J. Biomed. Mater. Res. A 2007, 82A, 336–342. [Google Scholar] [CrossRef]
- Mishra, B.; Vuppu, S.; Rath, K. The role of microbial pullulan, a biopolymer in pharmaceutical approaches: A review. J. Appl. Pharm. Sci. 2011, 1, 45–50. [Google Scholar]
- Kumar, D.; Saini, N.; Pandit, V.; Ali, S. An insight to pullulan: A biopolymer in pharmaceutical approaches. Int. J. Basic Appl. Sci. 2012, 1, 202–219. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Kennedy, J.F. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr. Polym. 2015, 123, 190–207. [Google Scholar] [CrossRef]
- Bulman, S.E.; Coleman, C.M.; Murphy, J.M.; Medcalf, N.; Ryan, A.E.; Barry, F. Pullulan: A new cytoadhesive for cell-mediated cartilage repair. Curr. Stem Cell Res. Ther. 2015, 6, 34. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Recent insights on applications of pullulan in tissue engineering. Carbohydr. Polym. 2016, 153, 455–462. [Google Scholar] [CrossRef]
- Grigoras, A.G. Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. Environ. Chem. Lett. 2019, 17, 1209–1223. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Hassan, M.; Kennedy, J.F. Pullulan in biomedical research and development—A review. Int. J. Biol. Macromol. 2021, 166, 694–706. [Google Scholar] [CrossRef]
- Ganie, S.A.; Rather, L.I.; Li, Q. A review on anticancer applications of pullulan and pullulan derivative nanoparticles. Carbohydr. Polym. Technol. Appl. 2021, 2, 100115. [Google Scholar] [CrossRef]
- Shaat, F.; Pavaloiu, R.-D.; Hlevca, C. Current status of the applications of pullulan and its derivatives in biomedical field. Sci. Bull./Ser. F. Biotechnol. 2022, 26, 125–132. [Google Scholar]
- Coltelli, M.-B.; Dant, S.; De Clerck, K.; Lazzeri, A.; Morganti, P. Pullulan for advanced sustainable body- and skin-contact applications. J. Funct. Biomater. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Kaur, N.; Singh, D.; Purewal, S.S.; Kennedy, J.F. Pullulan in pharmaceutical and cosmeceutical formulations: A review. Int. J. Biol. Macromol. 2023, 231, 123353. [Google Scholar] [CrossRef]
- Ghaimici, L.; Constantin, M. A review of the use of pullulan derivatives in wastewater purification. React. Funct. Polym. 2020, 149, 104510. [Google Scholar] [CrossRef]
- Wani, S.M.; Mir, S.A.; Khanday, F.A.; Masoodi, F.A. Advances in pullulan production from agro-based wastes Aureobasidium pullulans and its applications. Innov. Food Sci. Emerg. Technol. 2021, 74, 102846. [Google Scholar] [CrossRef]
- Boa, J.M.; LeDuy, A. Peat hydrolysate medium optimization for pullulan production. Appl. Environ. Microbiol. 1984, 48, 26–30. [Google Scholar] [CrossRef]
- Radulovic, M.D.; Cvetkovic, O.G.; Vrvic, M.M.; Polic, P.S.; Jakovljevic, D.M. Peat (Vlasina Lake, Yugoslavia) as a substrate for pullulan synthesis with Aureobasidium pullulans strain CH-1. J. Environ. Prot. Ecol. 2002, 3, 205–209. [Google Scholar]
- Radulovic, M.D.; Cvetkovic, O.G.; Nikolic, S.D.; Dordevic, D.S.; Jakovljevic, D.M.; Vrvic, M.M. Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate. Bioresour. Technol. 2008, 99, 6673–6677. [Google Scholar] [CrossRef]
- Hilares, R.T.; Orsi, C.A.; Ahmed, M.A.; Marcelino, P.F.; Menegatti, C.R.; da Silva, S.S.; dos Santos, J.C. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. Bioresour. Technol. 2017, 230, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, J.; Li, F.; Liu, M.; Zhang, X.; Guo, X.; Xiao, D. Production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82 with pH control and DL-dithiothreitol addition. Biotechnol. Bioprocess Eng. 2014, 19, 282–288. [Google Scholar] [CrossRef]
- Tagne, R.F.T.; Cruz-Santos, M.M.; Antunes, F.A.F.; Shibukawa, V.P.; Miano, S.B.; Kenfack, J.A.A.; da Silva, S.S.; Ngomade, S.B.L.; Santos, J.C. Pullulan production from sugarcane bagasse hemicellulosic hydrolysate by Aureobasidium pullulans ATCC 42023 in bubble column reactor. Fermentation 2024, 10, 322. [Google Scholar] [CrossRef]
- Ortiz Silos, N.; Guevara Soto, V.I.; Colina Andrade, G.J.; Pacheco Tanaka, D.A.; Santos, J.C.; Terán Hilares, R. Exopolysaccharide pullulan production from enzymatic hydrolysate of quinoa stalks via citric acid–assisted hydrothermal pretreatment. Biomass Convers. Biorefin. 2025, 15, 16059–16071. [Google Scholar] [CrossRef]
- Wang, D.; Ju, X.; Zhou, D.; Wei, G. Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresour. Technol. 2014, 164, 12–19. [Google Scholar] [CrossRef]
- Oktay, B.A.; Bozdemir, M.T.; Ozbas, Z.Y. Evaluation of some agro-industrial wastes as fermentation medium for pullulan production by Aureobasidium pullulans AZ-6. Curr. Microbiol. 2022, 79, 93. [Google Scholar] [CrossRef]
- Oktay, B.A.; Bozdemir, T.M.; Ozbas, Z.Y. Optimization of hazelnut husk medium for pullulan production by a domestic A. pullulans strain. Prep. Biochem. Biotechnol. 2023, 53, 317–330. [Google Scholar] [CrossRef]
- Najari, Z.; Khodaiyan, F.; Yarmand, M.S.; Hosseini, S.S. Almond hulls waste valorization towards sustainable agricultural development: Production of pectin, phenolics, pullulan, and single cell protein. Waste Manag. 2022, 141, 208–219. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Zhang, X.; Zhang, Z.; Wang, C.; Wang, D.; Wei, G. Whole-crop biorefinery of corn biomass for pullulan production by Aureobasidium pullulans. Bioresour. Technol. 2023, 370, 128517. [Google Scholar] [CrossRef] [PubMed]
- Roukas, T.; Biliaderis, C.G. Evaluation of carb pod as a substrate for pullulan production by Aureobasidium pullulans. Appl. Biochem. Biotechnol. 1995, 55, 27–44. [Google Scholar] [CrossRef]
- Haghighatpanah, N.; Khodaiyan, P.; Kennedy, J.F.; Hosseini, S.S. Optimization and characterization of pullulan from corn bran hydrolysates by Aerobasidium pullulan KY767024. Biocatal. Agric. Biotechnol. 2021, 33, 101959. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N. Understanding response surface optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans. Food Sci. Biotechnol. 2019, 28, 1507–1520. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Pandey, A.; Kennedy, J.F. Hyper-production of pullulan from de-oiled rice bran by Aureobasidium pullulans in a stirred tank reactor and its characterization. Bioresour. Technol. Rep. 2020, 11, 100494. [Google Scholar]
- Sharmila, G.; Muthukumaran, C.; Nayan, G.; Nidhi, B. Extracellular biopolymer production by Aureobasidium pullulans MTCC 2195 using jackfruit seed powder. J. Environ. Polym. Degrad. 2013, 21, 487–494. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Sindhu, R.V.; Sukanya, S.; Aiswarya, N.; Ponnusami, V. Statistical studies on high molecular weight pullulan production in solid state fermentation using jack fruit seed. Carbohydr. Polym. 2013, 98, 854–860. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Shobana, P.; Balaji, P.M.; Ponnusami, V.; Gowdhaman, D. Statistical optimization of pullulan production from Asian palm kernel and evaluation of its properties. Int. J. Biol. Macromol. 2014, 66, 229–235. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Ponnusami, V. Conventional optimization of aqueous extraction of pullulan in solid-state fermentation of cassava bagasse and Asian palm kernel. Biocatal. Agric. Technol. 2017, 10, 204–208. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Jothi, P.; Ponnusami, V. Bioconversion of industrial solid waste-cassava bagasse for pullulan production in solid state fermentation. Carbohydr. Polym. 2014, 99, 22–30. [Google Scholar] [CrossRef]
- Viveka, R.; Varjani, S.; Ekambaram, N. Valorization of cassava waste for pullulan production by Aureobasidium pullulans MTCC 1991. Energy Environ. 2021, 32, 1086–1102. [Google Scholar] [CrossRef]
- Barnett, C.; Smith, A.; Scanlon, B.; Israilides, C.J. Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. Carbohydr. Polym. 1998, 38, 203–209. [Google Scholar] [CrossRef]
- Göksungura, Y.; Uzunogulları, P.; Dagbaglı, S. Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohydr. Polym. 2011, 83, 1330–1337. [Google Scholar] [CrossRef]
- An, C.; Ma, S.; Chang, F.; Xue, W. Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose. Braz. J. Microbiol. 2017, 48, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lu, M.; Chen, J.; Fang, Y.; Wu, L.; Xu, Y.; Yang, S. Production of pullulan from raw potato starch hydrolysates by a new strain of Aureobasidium pullulans. Int. J. Biol. Macromol. 2016, 82, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhang, K.; Zhao, S.; Wang, W.; Ru, X.; Song, J.; Cong, H.; Yang, Q. Screening and identification of a strain of Aureobasidium pullulans and its application in potato starch industrial waste. Environ. Res. 2022, 214, 113947. [Google Scholar] [CrossRef]

| Lignocellulosic Plant Biomass | Aureobasidium pullulans Strain | Growth Conditions | Pullulan Level (g/L) | Biomass Level (g/L) | References |
|---|---|---|---|---|---|
| Peat | 140B | 72 h, 25 °C | 160 | 14.0 | [75] |
| 142 | 168 h, 25 °C | 150 | 12.0 | [75] | |
| 2552 | 168 h, 25 °C | 16.0 | 12.0 | [75] | |
| CH-1 | 144 h, 26 °C | 6.9 | 5.6 | [76,77] | |
| Prairie cordgrass | ATCC 42023 | 120 h, 30 °C | 9.0 | 5.2 | [23] |
| ATCC 42023 | 144 h, 30 °C | 10.5 | 5.4 | [23] | |
| ATCC 42023 | 168 h, 30 °C | 11.3 | 6.0 | [23] | |
| Sugarcane bagasse | LB83 | 96 h, 25 °C | 12.7 | NR | [25,78] |
| AY82 | 168 h, 28 °C | 18.6 | 10.5 | [79] | |
| ATCC 42023 | 120 h, 26 °C | 28.6 | NR | [80] | |
| Quinoa stalks | ATCC 42023 | 96 h, 25 °C | 8.9 | NR | [81] |
| Rice hull | CCTCC M 2012259 | 60 h, 30 °C | 15.1 | 8.1 | [82] |
| Chestnut shell | AZ-6 | 200 h, 28 °C | 22.2 | 2.5 | [83] |
| Hazelnut shell | AZ-6 | 50 h, 28 °C | 10.1 | 2.3 | [83,84] |
| Almond hulls | KY767024 | 168 h, 27 °C | 34.3 | 19.3 | [85] |
| Corn straw | CCTCC M 2012259 | 72 h, 30 °C | 14.7 | 7.1 | [86] |
| Corn cob | CCTCC M 2012259 | 72 h, 30 °C | 14.8 | 7.4 | [86] |
| Carob pods | SU No. M18 | 72 h, 30 °C | 6.0 | 6.2 | [87] |
| Processing Coproduct | Aureobasidium pullulans Strain | Growth Conditions | Pullulan Level (g/L) | Biomass Level (g/L) | References |
|---|---|---|---|---|---|
| Corn starch | CCTCC M 2012259 | 72 h, 30 °C | 21.9 | 10.0 | [86] |
| Corn bran | KY767024 | 96 h, 30 °C | 19.5 | NR | [88] |
| Rice bran | MTCC 6994 | 168 h, 30 °C | 59.2 | 8.9 | [89] |
| MTCC 6994 | 192 h, 30 °C | 81.5 | 9.9 | [90] | |
| Jackfruit seed | MTCC 2195 | 168 h, 30 °C | 18.0 | 20.1 | [91] |
| NCIM 1049 | 30 °C | 0.6 | NR | [92] | |
| Palm kernel | MTCC 2670 | 26 °C | 0.3 | NR | [93] |
| Cassava bagasse | MTCC 2670 | 96 h, 30 °C | 0.2 | NR | [93,94] |
| MTCC 1991 | 168 h, 30 °C | 6.5 | NR | [95] | |
| CCTCC 2012259 | 72 h, 30 °C | 25.9 | 9.7 | [96] | |
| Potato starch | NRRLY-6220 | 168 h, 29 °C | 56.0 | 26.0 | [97] |
| P56 | 96 h, 28 °C | 20.6 | 7.2 | [98] | |
| ATCC 201253 | 100 h,28 °C | 34.0 | 14.0 | [99] | |
| CJ001 | 96 h, 28 °C | 20.6 | 8.0 | [100] | |
| HIT-LCY3T | 120 h, 26 °C | 23.5 | NR | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
West, T.P. Pullulan Production from Lignocellulosic Plant Biomass or Starch-Containing Processing Coproduct Hydrolysates. Fermentation 2026, 12, 84. https://doi.org/10.3390/fermentation12020084
West TP. Pullulan Production from Lignocellulosic Plant Biomass or Starch-Containing Processing Coproduct Hydrolysates. Fermentation. 2026; 12(2):84. https://doi.org/10.3390/fermentation12020084
Chicago/Turabian StyleWest, Thomas P. 2026. "Pullulan Production from Lignocellulosic Plant Biomass or Starch-Containing Processing Coproduct Hydrolysates" Fermentation 12, no. 2: 84. https://doi.org/10.3390/fermentation12020084
APA StyleWest, T. P. (2026). Pullulan Production from Lignocellulosic Plant Biomass or Starch-Containing Processing Coproduct Hydrolysates. Fermentation, 12(2), 84. https://doi.org/10.3390/fermentation12020084
