Anti-Coronavirus Activity of Extracts from Scenedesmus acutus cf. acutus Meyen Cultivated in Innovative Photobioreactor Systems
Abstract
1. Introduction
- -
- Therefore, the scheme was checked out to produce high-value products (HVPs), which will be demonstrated below;
- -
- Applying such a hybrid PBR design, the researcher is able to use pH as a control parameter because this state parameter changes according to the amount of HCO3− in the liquid, helping to maintain acid–base balance;
- -
- If light illumination is controlled and different wavelengths are properly chosen of visible light by knowing the characteristics of hydrodynamics, one can search for optimal trajectories to obtain high-value secondary metabolites, which is not a singular act. It is a loop procedure where the experiment is planned and executed, and, further, the response of the system is analyzed. During decision making, the control parameters of the process are changing in order to improve PBR performance, and a new experiment with the changed parameters is executed, and so on, from the beginning.
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Microalgal Strain and Culture Medium
2.3. Photobioreactor Construction, Experimental Design of the Microalgae Culturing, and Cultural Conditions
2.4. Preparation of Biomass Samples for Analysis
2.5. Quantitative Determination of Polyphenols in S. acutus Biomass
2.6. Quantitative Determination of Flavonoids in S. acutus Biomass
2.7. Quantitative Determination of Chlorophylls and Carotenoids in S. acutus Biomass
2.8. Quantitative Determination of Lipids in S. acutus Biomass
2.9. LC–MS Profiling of S. acutus Dichloromethane Extracts
2.10. Beta Coronavirus 1 Strain
2.11. Cultivation of MDBK Cells
2.12. Evaluation of the In Vitro Cytotoxicity of PBR1 and K1 Extracts
2.13. Mathematical Model for the Calculation of Median Antiviral Effect
2.14. Propagation of Bovine Coronavirus in MDBK Cells
2.15. Determination of the Bovine Coronavirus Titer in PBR1- and K1-Treated Samples with ddPCR
2.16. Determination of the Antiviral Activity of PBR1 and K1 Extracts with a Cell Viability Assay
2.17. Statistical Evaluation
3. Results
3.1. Culture Conditions of the Microalgal Strain
3.2. Phytochemical Content and LC–MS Profiling of Biomass from S. acutus
3.3. In Vitro Cytotoxicity of PBR1 and K1 Extracts on MDBK Cells
3.4. Antiviral Activity of Dichloromethane Extracts from Tetradesmus Acutus Evaluated with MTT Assay
3.5. Inhibition of the CPE of BCoV in MDBK Cells by PBR1 and K1 Extracts
3.6. Quantitative Analysis of Virus Particles by ddPCR After Treatment with PBR1 and K1 Extracts
4. Discussion
- -
- Firstly, as a proven system for purification of waste gases with high CO2 content in the gas phase and for the achievement of maximum biomass concentration;
- -
- Secondly, the system (in the sense of PBR as a system) was checked out to produce HVPs with antiviral potential;
- -
- Many hypotheses wherein the initial conditions are changed can demonstrate the potential of PBR1 and K1 design for the accumulation of different amount of biomass, as proven by the experimentally measured biomass concentrations in the current work (PBR1 = 7.4 g/L; K1 = 3.9 g/L);
- -
- It must be noticed that a hybrid PBR design of this kind where dynamics of the processes is high enough, the researcher can use pH to control the load of CO2. In this way, well known pH-stat can be very successfully applied by automatically added CO2 or base in order to maintain pH in the set point;
- -
- In order to achieve high synthesis of internal HVP, light conditions must be optimized by choosing proper different wavelengths of visible light;
- -
- Notably optimal results from the two-steps optimization procedure, as was explained above, is a loop procedure, not a single action.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BCoV | Bovine coronavirus |
| PBR1 | Photobioreactor 1 |
| K1 | Photobioreactor K1 |
| CPE | Cytopathic effect |
| IC50 | Median inhibitory concentration |
| MNC | Maximal non-toxic concentration |
| EC50 | Effective concentration 50% |
| SI | Selectivity index |
| CFD | Computational fluid dynamics |
References
- Kroumov, A.; Gacheva, G.; Iliev, I.; Alexandrov, S.; Pilarski, P.; Petkov, G. Analysis of Sf/V Ratio of Photobioreactors Linked with Algal Physiology. Genet. Plant Physiol. 2013, 3, 55–64. [Google Scholar]
- Zaharieva, M.M.; Scheufele, F.B.; Kroumov, A.D.; Najdenski, H. Flashing Light Effect as a Stress to Maximize Microalgae Growth. In Microalgae Biotechnology and Sustainable Development; Khan, A., Alzahrani, K.A., Eds.; Springer Nature: Singapore, 2026; pp. 1–14. ISBN 9789819525973. [Google Scholar]
- Hinterholz, C.L.; Trigueros, D.E.G.; Módenes, A.N.; Borba, C.E.; Scheufele, F.B.; Schuelter, A.R.; Kroumov, A.D. Computational Fluid Dynamics Applied for the Improvement of a Flat-Plate Photobioreactor Towards High-Density Microalgae Cultures. Biochem. Eng. J. 2019, 151, 107257. [Google Scholar] [CrossRef]
- Scheufele, F.B.; Hinterholz, C.L.; Zaharieva, M.M.; Najdenski, H.M.; Módenes, A.N.; Trigueros, D.E.G.; Borba, C.E.; Espinoza-Quiñones, F.R.; Kroumov, A.D. Complex Mathematical Analysis of Photobioreactor System. Eng. Life Sci. 2019, 19, 844–859. [Google Scholar] [CrossRef]
- Schuelter, A.R.; Kroumov, A.D.; Hinterholz, C.L.; Fiorini, A.; Trigueros, D.E.G.; Vendruscolo, E.G.; Zaharieva, M.M.; Módenes, A.N. Isolation and Identification of New Microalgae Strains with Antibacterial Activity on Food-Borne Pathogens. Engineering Approach to Optimize Synthesis of Desired Metabolites. Biochem. Eng. J. 2019, 144, 28–39. [Google Scholar] [CrossRef]
- Kroumov, A.D.; Módenes, A.N.; Trigueros, D.E.G.; Espinoza-Quiñones, F.R.; Borba, C.E.; Scheufele, F.B.; Hinterholz, C.L. A Systems Approach for CO2 Fixation from Flue Gas by Microalgae—Theory Review. Process Biochem. 2016, 51, 1817–1832. [Google Scholar] [CrossRef]
- Hinterholz, C.; Schuelter, A.; Módenes, A.; Trigueros, D.; Espinoza-Quiñones, F.; Kroumov, A. Microalgae Flat Plate-Photobioreactor (FP-PBR) System Development: Computational Tools to Improve Experimental Results. Acta Microbiol. Bulg. 2017, 33, 119–124. [Google Scholar]
- Kaffarov, V.V.; Vinarov, A.J.; Gordeev, L.S. Modeling Biochemical Reactors; Lesnaya Promishlenost (Forrest Industry): Moscow, Russia, 1979; p. 344. [Google Scholar]
- Kaffarov, V.V.; Vinarov, A.J.; Gordeev, L.S. Modeling and System Analysis of Biochemical Industrial Production; Lesnaya Promishlenost (Forrest Industry): Moscow, Russia, 1985; p. 280. [Google Scholar]
- Chronopoulou, S.; Tsochantaridis, I.; Tokamani, M.; Kokkinopliti, K.D.; Tsomakidis, P.; Giannakakis, A.; Galanis, A.; Pappa, A.; Sandaltzopoulos, R. Expression and Purification of Human Interferon Alpha 2a (IFNα2a) in the Methylotrophic Yeast Pichia Pastoris. Protein Expr. Purif. 2023, 211, 106339. [Google Scholar] [CrossRef]
- Boyadjieva, N.; Yakimova, K. Pharmacology and Toxicology; Arso Medical Publishing House: Varna, Bulgaria, 2014. [Google Scholar]
- Seley-Radtke, K.L.; Yates, M.K. The Evolution of Nucleoside Analogue Antivirals: A Review for Chemists and Non-Chemists. Part 1: Early Structural Modifications to the Nucleoside Scaffold. Antivir. Res. 2018, 154, 66–86. [Google Scholar] [CrossRef]
- Bello-Morales, R.; Andreu, S.; Ruiz-Carpio, V.; Ripa, I.; López-Guerrero, J.A. Extracellular Polymeric Substances: Still Promising Antivirals. Viruses 2022, 14, 1337. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Qiu, Y.; Jia, N.; Wu, Y.; Nie, Q.; Wen, J.; Zhao, C.; Zhai, Y. Recent Advances of Edible Marine Algae-Derived Sulfated Polysaccharides in Antiviral Treatments: Challenges vs. Opportunities. Front. Nutr. 2025, 12, 1561119. [Google Scholar] [CrossRef]
- Sahoo, A.; Mandal, A.K.; Kumar, M.; Dwivedi, K.; Singh, D. Prospective Challenges for Patenting and Clinical Trials of Anticancer Compounds from Natural Products: Coherent Review. Recent Pat. Anti-Cancer Drug Discov. 2023, 18, 470–494. [Google Scholar] [CrossRef] [PubMed]
- Paller, C.J.; Denmeade, S.R.; Carducci, M.A. Challenges of Conducting Clinical Trials of Natural Products to Combat Cancer. Clin. Adv. Hematol. Oncol. HO 2016, 14, 447–455. [Google Scholar]
- Ovcharenko, D.; Mukhin, D.; Ovcharenko, G. Alternative Cancer Therapeutics: Unpatentable Compounds and Their Potential in Oncology. Pharmaceutics 2024, 16, 1237. [Google Scholar] [CrossRef]
- Wei, Q.; Fu, G.; Wang, K.; Yang, Q.; Zhao, J.; Wang, Y.; Ji, K.; Song, S. Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds. Pharmaceuticals 2022, 15, 581. [Google Scholar] [CrossRef]
- Chekunova, E.M.; Virolainen, P.A. Microalgae as Production Systems of Bioactive Compounds. Bioengineering Approaches. Ecol. Genet. 2023, 21, 38–39. [Google Scholar] [CrossRef]
- Xia, D.; Qiu, W.; Wang, X.; Liu, J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar. Drugs 2021, 19, 703. [Google Scholar] [CrossRef] [PubMed]
- Osathanunkul, M.; Thanaporn, S.; Karapetsi, L.; Nteve, G.M.; Pratsinakis, E.; Stefanidou, E.; Lagiotis, G.; Avramidou, E.; Zorxzobokou, L.; Tsintzou, G.; et al. Diversity of Bioactive Compounds in Microalgae: Key Classes and Functional Applications. Mar. Drugs 2025, 23, 222. [Google Scholar] [CrossRef]
- Carbone, D.A.; Pellone, P.; Lubritto, C.; Ciniglia, C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics 2021, 10, 746. [Google Scholar] [CrossRef]
- Eze, C.N.; Onyejiaka, C.K.; Ihim, S.A.; Ayoka, T.O.; Aduba, C.C.; Ndukwe, J.K.; Nwaiwu, O.; Onyeaka, H. Bioactive Compounds by Microalgae and Potentials for the Management of Some Human Disease Conditions. AIMS Microbiol. 2023, 9, 55–74. [Google Scholar] [CrossRef]
- Karkos, P.D.; Leong, S.C.; Karkos, C.D.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in Clinical Practice: Evidence-Based Human Applications. Evid.-Based Complement. Altern. Med. ECAM 2011, 2011, 531053. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.; Kim, M.-Y.; Cho, J.Y. Chlorella Vulgaris, a Representative Edible Algae as Integrative and Alternative Medicine. Integr. Med. Res. 2026, 15, 101228. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.-R.; Ayazi-Nasrabadi, R. Astaxanthin Protective Barrier and Its Ability to Improve the Health in Patients with COVID-19. Iran. J. Microbiol. 2021, 13, 434–441. [Google Scholar] [CrossRef]
- Metwally, M.H.; Ibrahim, Z.A.M.; Ismail, I.E.; El-Kholy, M.S. Effect of Dietary Supplementation with Dunaliella salina on Early Growth Performance of Pekin Ducklings. Zagazig J. Agric. Res. 2025, 52, 593–601. [Google Scholar] [CrossRef]
- Morita, M.; Kuba, K.; Ichikawa, A.; Nakayama, M.; Katahira, J.; Iwamoto, R.; Watanebe, T.; Sakabe, S.; Daidoji, T.; Nakamura, S.; et al. The Lipid Mediator Protectin D1 Inhibits Influenza Virus Replication and Improves Severe Influenza. Cell 2013, 153, 112–125. [Google Scholar] [CrossRef]
- Leu, G.-Z.; Lin, T.-Y.; Hsu, J.T.A. Anti-HCV Activities of Selective Polyunsaturated Fatty Acids. Biochem. Biophys. Res. Commun. 2004, 318, 275–280. [Google Scholar] [CrossRef]
- Bays, H.E.; Tighe, A.P.; Sadovsky, R.; Davidson, M.H. Prescription Omega-3 Fatty Acids and Their Lipid Effects: Physiologic Mechanisms of Action and Clinical Implications. Expert Rev. Cardiovasc. Ther. 2008, 6, 391–409. [Google Scholar] [CrossRef]
- Kannan, N.; Rao, A.S.; Nair, A. Microbial Production of Omega-3 Fatty Acids: An Overview. J. Appl. Microbiol. 2021, 131, 2114–2130. [Google Scholar] [CrossRef]
- Ludwig, M.; Enzenhofer, E.; Schneider, S.; Rauch, M.; Bodenteich, A.; Neumann, K.; Prieschl-Grassauer, E.; Grassauer, A.; Lion, T.; Mueller, C.A. Efficacy of a Carrageenan Nasal Spray in Patients with Common Cold: A Randomized Controlled Trial. Respir. Res. 2013, 14, 124. [Google Scholar] [CrossRef]
- Fritzsche, S.; Blenk, P.; Christian, J.; Castiglione, K.; Becker, A.M. Inhibitory Properties of Crude Microalgal Extracts on the in Vitro Replication of Cyprinid Herpesvirus 3. Sci. Rep. 2021, 11, 23134. [Google Scholar] [CrossRef] [PubMed]
- Afify, A.E.-M.M.R.; El Baroty, G.S.; El Baz, F.K.; Abd El Baky, H.H.; Murad, S.A. Scenedesmus Obliquus: Antioxidant and Antiviral Activity of Proteins Hydrolyzed by Three Enzymes. J. Genet. Eng. Biotechnol. 2018, 16, 399–408. [Google Scholar] [CrossRef]
- Wang, K.; Xu, X.; Wei, Q.; Yang, Q.; Zhao, J.; Wang, Y.; Li, X.; Ji, K.; Song, S. Application of Fucoidan as Treatment for Cardiovascular and Cerebrovascular Diseases. Ther. Adv. Chronic Dis. 2022, 13, 20406223221076891. [Google Scholar] [CrossRef] [PubMed]
- Teleshova, N.; Keller, M.J.; Fernández Romero, J.A.; Friedland, B.A.; Creasy, G.W.; Plagianos, M.G.; Ray, L.; Barnable, P.; Kizima, L.; Rodriguez, A.; et al. Results of a Phase 1, Randomized, Placebo-Controlled First-in-Human Trial of Griffithsin Formulated in a Carrageenan Vaginal Gel. PLoS ONE 2022, 17, e0261775. [Google Scholar] [CrossRef] [PubMed]
- Brand, R. A Randomized, Double-Blind Phase 1 Safety and Pharmacokinetic Study of Q-Griffithsin Enema Administered Rectally to HIV-1 Seronegative Adults. 2023. Available online: https://clinicaltrials.gov/ (accessed on 27 November 2025).
- Rinaldi, K.L.; Senhorinho, G.N.A.; Laamanen, C.A.; Scott, J.A. A Review of Extremophilic Microalgae: Impacts of Experimental Cultivation Conditions for the Production of Antimicrobials. Algal Res. 2024, 78, 103427. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Suresh, S.; Kanwal, S.; Ramadoss, G.; Ramprakash, B.; Incharoensakdi, A. Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int. J. Mol. Sci. 2022, 23, 2623. [Google Scholar] [CrossRef] [PubMed]
- Bratchkova, A.; Kroumov, A. Microalgae as Producers of Biologically Active Compounds with Antibacterial, Antiviral, Antifungal, Antialgal, Antiprotozoal, Antiparasitic and Anticancer Activity. ACTA Microbiol. Bulg. 2020, 36, 79–89. [Google Scholar]
- Algae Base: Listing the World’s Algae. Available online: https://www.algaebase.org/ (accessed on 26 November 2025).
- Singab, A.N.; Ibrahim, N.; Elsayed, A.E.; El-Senousy, W.; Aly, H.; Abd Elsamiae, A.; Matloub, A. Antiviral, Cytotoxic, Antioxidant and Anti-Cholinesterase Activities of Polysaccharides Isolated from Microalgae Spirulina Platensis, Scenedesmus Obliquus and Dunaliella Salina. Arch. Pharm. Sci. Ain Shams Univ. 2018, 2, 121–137. [Google Scholar] [CrossRef]
- Turner, R.B. The Treatment of Rhinovirus Infections: Progress and Potential. Antiviral Res. 2001, 49, 1–14. [Google Scholar] [CrossRef]
- Graci, J.D.; Cameron, C.E. Mechanisms of Action of Ribavirin against Distinct Viruses. Rev. Med. Virol. 2006, 16, 37–48. [Google Scholar] [CrossRef]
- Nakayama, T.; Urano, T.; Osano, M.; Hayashi, Y.; Sekine, S.; Ando, T.; Makinom, S. Outbreak of Herpangina Associated with Coxsackievirus B3 Infection. Pediatr. Infect. Dis. J. 1989, 8, 495–498. [Google Scholar] [CrossRef]
- Choi, H.J.; Lim, C.H.; Song, J.H.; Baek, S.H.; Kwon, D.H. Antiviral Activity of Raoulic Acid from Raoulia Australis Against Picornaviruses. Phytomedicine 2009, 16, 35–39. [Google Scholar] [CrossRef]
- Kroumov, A.; Módenes, A.; Trigueros, D. A Complex Theoretical Approach for Algal Medium Optimization for CO2 Fixation from Flue Gas. Acta Microbiol. Bulg. 2015, 31, 61–70. [Google Scholar]
- Carvalho, A.P.; Silva, S.O.; Baptista, J.M.; Malcata, F.X. Light Requirements in Microalgal Photobioreactors: An Overview of Biophotonic Aspects. Appl. Microbiol. Biotechnol. 2011, 89, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Zaharieva, M.M.; Zheleva-Dimitrova, D.; Rusinova-Videva, S.; Ilieva, Y.; Brachkova, A.; Balabanova, V.; Gevrenova, R.; Kim, T.C.; Kaleva, M.; Georgieva, A.; et al. Antimicrobial and Antioxidant Potential of Scenedesmus Obliquus Microalgae in the Context of Integral Biorefinery Concept. Molecules 2022, 27, 519. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia. European Pharmacopoeia 8th Edition, A. Tannins in Herbal Drugs. European Directorate for the Quality of Medicines & HealthCare (EDQM); European Pharmacopoeia: Strasbourg, France, 2013; pp. 275–276. [Google Scholar]
- European Pharmacopoeia. European Pharmacopoeia 8th Edition, B. Safflower Flower. European Directorate for the Quality of Medicines & HealthCare (EDQM); European Pharmacopoeia: Strasbourg, France, 2013; pp. 1371–1372. [Google Scholar]
- Gonçalves, V.D.; Fagundes-Klen, M.R.; Trigueros, D.E.G.; Schuelter, A.R.; Kroumov, A.D.; Módenes, A.N. Combination of Light Emitting Diodes (LEDs) for Photostimulation of Carotenoids and Chlorophylls Synthesis in Tetradesmus sp. Algal Res. 2019, 43, 101649. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Carpio, R.B.; Leon, R.L.D.; Martinez-Goss, M.R. Growth, Lipid Content, and Lipid Profile of The Green Alga, Chlorella Vulgaris Beij., Under Different Concentrations of Fe and CO2. J. Eng. Sci. Technol. 2015, 1, 19–30. [Google Scholar]
- Ma, Y.; Lei, M.; Chen, H.; Huang, P.; Sun, J.; Sun, Q.; Hu, Y.; Shi, J. Susceptibility of Bovine to SARS-CoV-2 Variants of Concern: Insights from ACE2, AXL, and NRP1 Receptors. Virol. J. 2023, 20, 276. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009. Available online: https://www.iso.org/standard/36406.html (accessed on 15 April 2025).
- Zaharieva, M.M.; Foka, P.; Karamichali, E.; Kroumov, A.D.; Philipov, S.; Ilieva, Y.; Kim, T.C.; Podlesniy, P.; Manasiev, Y.; Kussovski, V.; et al. Photodynamic Inactivation of Bovine Coronavirus with the Photosensitizer Toluidine Blue O. Viruses 2023, 16, 48. [Google Scholar] [CrossRef]
- Chou, T.-C.; Martin, N. A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 Values. In CompuSyn for Drug Combinations: PC Software and Useres Guide; ComboSynInc: Paramus, NJ, USA, 2005. [Google Scholar]
- Zaharieva, M.; Trochopoulos, A.; Dimitrova, L.; Berger, M.; Najdenski, H.; Konstantinov, S.; Kroumov, A. New Insights in Routine Procedure for Mathematical Evaluation of In Vitro Cytotoxicity Data from Cancer Cell Lines. Int. J. Bioautomation 2018, 22, 87–106. [Google Scholar] [CrossRef]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of In-Vitro Bioassay Methods: Application in Herbal Drug Research. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 273–307. [Google Scholar] [CrossRef]
- Çiçek, S.S.; Mangoni, A.; Hanschen, F.S.; Agerbirk, N.; Zidorn, C. Essentials in the Acquisition, Interpretation, and Reporting of Plant Metabolite Profiles. Phytochemistry 2024, 220, 114004. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Sadeer, N.B.; Zengin, G.; Cziáky, Z.; Jekő, J.; Diuzheva, A.; Sinan, K.I.; Palaniveloo, K.; Kim, D.H.; Rengasamy, K.R.R.; et al. In Vitro Enzyme Inhibitory Properties, Secondary Metabolite Profiles and Multivariate Analysis of Five Seaweeds. Mar. Drugs 2020, 18, 198. [Google Scholar] [CrossRef]
- Budiyanto, F.; Sari, M.; Widyaningrum, S.R.; Putra, A.B.N.; Palupi, K.D.; Rachman, F.; Untari, F.; Handayani, T.; Rasyid, A. Profiling and Antiproliferative Activity of Tropical Seaweed Extracts Using LC-HRMS and in Silico Approaches. Algal Res. 2025, 90, 104181. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Contreras, M.M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Reversed-Phase Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization-Quadrupole-Time-of-Flight Mass Spectrometry as a Powerful Tool for Metabolic Profiling of Vegetables: Lactuca Sativa as an Example of Its Application. J. Chromatogr. A 2013, 1313, 212–227. [Google Scholar] [CrossRef]
- Liang, Y.; Yan, G.-Y.; Wu, J.-L.; Zong, X.; Liu, Z.; Zhou, H.; Liu, L.; Li, N. Qualitative and Quantitative Analysis of Lipo-Alkaloids and Fatty Acids in Aconitum Carmichaelii Using LC–MS and GC–MS. Phytochem. Anal. 2018, 29, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.-H.; Yun, J.-H.; Heo, J.; Lee, I.-K.; Lee, Y.-J.; Bae, S.; Yun, B.-S.; Kim, H.-S. Identification of Loliolide with Anti-Aging Properties from Scenedesmus Deserticola JD052. J. Microbiol. Biotechnol. 2023, 33, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Grabarczyk, M.; Wińska, K.; Mączka, W.; Potaniec, B.; Anioł, M. Loliolide—The Most Ubiquitous Lactone. Acta Univ. Lodz. Folia Biol. Oecologica 2015, 11, 1–8. [Google Scholar] [CrossRef]
- Yasuhara-Bell, J.; Lu, Y. Marine Compounds and Their Antiviral Activities. Antiviral Res. 2010, 86, 231–240. [Google Scholar] [CrossRef]
- Commercial Production of Microalgae: Ponds, Tanks, and Fermenters. In Progress in Industrial Microbiology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 35, pp. 313–321.
- Kroumov, A.D.; Scheufele, F.B.; Trigueros, D.E.G.; Modenes, A.N.; Zaharieva, M.; Najdenski, H. Modeling and Technoeconomic Analysis of Algae for Bioenergy and Coproducts. In Algal Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 201–241. [Google Scholar]
- Rivera, S.M.; Christou, P.; Canela-Garayoa, R. Identification of Carotenoids Using Mass Spectrometry. Mass Spectrom. Rev. 2014, 33, 353–372. [Google Scholar] [CrossRef]
- de Oliveira, P.; Cunha, K.; Neves, P.; Muniz, M.; Gatto, G.; Salgado Filho, N.; Guedes, F.; Silva, G. Renal Morphology in Coronavirus Disease: A Literature Review. Med. Kaunas Lith. 2021, 57, 258. [Google Scholar] [CrossRef]
- Goc, A.; Niedzwiecki, A.; Rath, M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci. Rep. 2021, 11, 5207. [Google Scholar] [CrossRef] [PubMed]
- Asnawi, A.; Aligita, W.; Febrina, E.; Kurnia, D.; Andriansyah, I.; Aman, O. Molecular docking and molecular dynamics study of PUFAs from Navicula salinicola: Prospective antiviral strategies targeting the SARS-CoV-2 spike protein. Silico Pharmacol. 2025, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.; Jung, K.; Zhu, L.; Xie, H.; Lee, K.H.; Chen, C.H.; Huang, L. Phenolic diterpenoid derivatives as anti-influenza a virus agent. ACS Med. Chem. Lett. 2015, 6, 355–358. [Google Scholar] [CrossRef] [PubMed]







| Photobioreactor | Flavonoids (g/100 g dw) | Polyphenols (g/100 g dw) | Chlorophyll a mg/g dw | Chlorophyll b mg/g dw | Total Carotenoids mg/g dw | Lipids (g/100 g dw) |
|---|---|---|---|---|---|---|
| K1 | 0.40 ± 0.02 | 2.08 ± 0.62 | 6.68 ± 0.51 | 2.96 ± 0.09 | 1.27 ± 0.08 | 21.57 ± 0.75 |
| PBR1 | 0.23 ± 0.01 | 1.38 ± 0.12 | 4.62 ± 0.32 | 1.79 ± 0.71 | 0.35 ± 0.01 | 18.87 ± 0.43 |
| N | Tentatively Annotated Compound | Molecular Formula | Accurate Mass [M-H]− | Fragmentation Pattern (Relative Abundance) | tR (min) | Δ ppm | Relative Content in PBR1 [%] | Relative Content in K1 [%] | Level of Confidence * |
|---|---|---|---|---|---|---|---|---|---|
| 1. | methyladipic acid | C7H12O4 | 159.0663 | 159.0652 (29.5), 141.0544 (2.6), 115.0751 (36.5), 97.0644 (100), 83.0487 (4.9), 69.0331 (0.7) | 3.59 | −6.489 | 0.31 | 1.11 | C |
| 2. | phenyllactic acid | C9H10O3 | 165.0557 | 165.0546 (24.4), 147.0439 (100), 119.0488 (37.8), 101.0301 (2.6), 72.9915 (31.2) | 4.89 | −6.589 | 0.05 | 0.55 | C |
| 3. | hydroxyphenyllactic acid | C9H10O4 | 181.0506 | 181.0498 (56.4), 163.0390 (100), 135.0439 (70.9), 119.0488 (43.3), 107.0487 (5.2), 93.0333 (3.3), 72.9915 (31.9) | 2.58 | −4.762 | 0.085 | 1.91 | C |
| 4. | azelaic acid | C9H16O4 | 187.0976 | 187.0968 (38.5), 169.0858 (2.4), 143.1066 (1.6), 125.0958 (100), 97.0644 (7.2), 83.0486 (0.9), 57.0331 (3.1) | 6.29 | −4.234 | 3.655 | 5.10 | C |
| 5. | hydroxyhexadecatetraenoic acid I | C16H24O3 | 263.1653 | 263.1653 (69.8), 245.1548 (24.2), 219.1750 (14.9), 205.1223 (35.3), 201.1643 (100), 173.1322 (9.6), 161.1325 (86.3), 147.1168 (33.5), 133.1013 (10.8), 119.0851 (4.8), 107.0850 (39.6), 71.0487 (52.7), 59.0123 (71.8) | 12.10 | 0.160 | 4.73 | 2.72 | D1 |
| 6. | hydroxyhexadecatetraenoic acid II | C16H24O3 | 263.1653 | 263.1653 (14.1), 245.1544 (0.8), 219.1744 (5.1), 201.1643 (2.0), 163.1112 (0.5), 153.0909 (100), 151.1122 (0.6), 135.0804 (4.3), 125.0959 (3.4), 111.0799 (1.9), 102.1348 (0.5), 83.0486 (0.7), 69.1991 (1.7), 59.0123 (17.4) | 12.31 | 0.274 | 3.253 | 1.44 | D1 |
| 7. | hydroxyhexadecatetraenoic acid III | C16H24O3 | 263.1653 | 263.1653 (26.9), 245.1549 (3.6), 219.1742 (4.5), 201.1643 (39.4), 193.0863 (9.4), 165.0911 (19.9), 153.0912 (21.1), 149.0959 (38.5), 147.1170 (20.6), 121.1009 (100), 119.0852 (23.1), 111.0799 (4.4), 97.0645 (18.4), 95.0486 (4.1), 69.1179 (9.7), 59.0123 (58.8) | 12.46 | 0.274 | 2.38 | 0.76 | D1 |
| 8. | hydroxyhexadecatetraenoic acid IV | C16H24O3 | 263.1653 | 263.1662 (3.1), 219.1757 (1.3), 201.1639 (2.9), 191.2182 (0.7), 163.1118 (9.0), 137.0955 (2.4), 121.1006 (1.1), 109.0644 (100), 91.0539 (3.5), 85.0643 (1.1), 69.0330 (3.8), 57.0330 (3.0) | 12.74 | 3.542 | 1.278 | 1.47 | D1 |
| 9. | hydroxyhexadecatetraenoic acid V | C16H24O3 | 263.1653 | 263.1654 (67.9), 245.1546 (4.3), 219.1750 (17.4), 201.1644 (13.6), 191.1068 (5.4), 179.1066 (3.1), 161.1327 (1.7), 147.1167 (5.5), 135.1168 (5.7), 123.1168 (4.2), 115.0387 (14.6), 101.0230 (34.9), 97.0643 (16.4), 83.0486 (3.2), 71.0487 (100), 59.0123 (6.3) | 13.27 | 0.388 | 0.818 | 0.48 | D1 |
| 10. | hydroxyhexadecatrienoic acid I | C16H26O3 | 265.1809 | 265.1810 (89.4), 247.1702 (68.1), 207.1386 (100), 203.1802 (16.2), 203.1802 (16.2), 189.1279 (1.3), 181.1227 (0.9), 163.1482 (5.8), 149.1329 (5.8), 71.0486 (11.3), 59.0123 (17.4) | 12.67 | 0.309 | 2.12 | 3.57 | D1 |
| 11. | hydroxyhexadecatrienoic acid II | C16H26O3 | 265.1809 | 265.1811 (100), 247.1699 (15.4), 237.1861 (3.3), 203.1803 (2.9), 183.1019 (15.6), 155.1067 (68.5), 137.0960 (0.8), 109.0644 (4.7), 59.0122 (0.9) | 12.80 | 0.536 | 1.34 | 2.36 | D1 |
| 12. | hydroxyhexadecatrienoic acid III | C16H26O3 | 265.1809 | 265.1810 (100), 247.1703 (27.7), 203.1797 (5.5), 195.1020 (14.1), 177.0906 (1.2), 167.57.5), 151.1114 (2.4), 143.0699 (8.4), 121.1010 (4.2), 97.0644 (2.3), 83.0485 (0.6), 59.0122 (6.8) | 12.93 | 0.423 | 0.96 | 1.68 | D1 |
| 13. | hydroxyhexadecadienoic acid I | C16H28O3 | 267.1966 | 267.1967 (100), 249.1860 (42.6), 223.2069 (0.7), 205.1952 (1.9), 167.1067 (68.9), 149.0961 (3.6), 113.0956 (2.1), 59.0123 (8.3) | 13.93 | 0.569 | 1.07 | 1.04 | D1 |
| 14. | hydroxyhexadecadienoic acid II | C16H28O3 | 267.1966 | 267.1966 (100), 249.1859 (7.0), 223.2.57 (1.9), 205.1957 (1.5), 167.1064 (1.7), 151.1112 (2.1), 143.0701 (41.9), 113.0957 (6.2), 59.0122 (2.3), 57.0330 (3.8) | 14.16 | −0.030 | 0.38 | 0.36 | D1 |
| 15. | octadecatetraenoic acid | C18H28O2 | 275.2017 | 275.2016 (100), 257.1907 (1.1), 231.2115 (8.4), 203.1798 (0.3), 177.1639 (2.1), 163.0755 (0.4), 127.0746 (0.2), 59.0123 (4.5) | 14.70 | −0.194 | 0.38 | 0.27 | D1 |
| 16. | dihydroxyhexadecapentaenoic acid | C16H22O4 | 277.1445 | 277.1446 (66.0), 259.1336 (6.6), 233.1544 (3.3), 221.1180 (40.1), 215.1435 (4.8), 191.1433 (1.7), 1,771,276 (54.4), 161.0961 (14.4), 149.0959 (15.5), 135.0803 (100), 121.0645 (23.2), 107.0489 (9.7), 97.0644 (63.6), 71.0487 (33.2), 59.0123 (23.1) | 9.96 | 0.208 | 0.43 | 0.40 | D1 |
| 17. | dihydroxyhexadecatetraenoic acid | C16H24O4 | 279.1602 | 279.1612 (10.8), 261.1497 (11.7), 243.1388 (1.8), 217.1599 (4.3), 207.1021 (70.9), 181.0861 (24.9), 157.0859 (58.9), 139.0752 (6.8), 121.0645 (51.0), 107.0487 (1.2), 97.0644 (100), 71.0487 (25.6), 65.0381 (29.8), 59.0123 (12.9) | 9.14 | 3.502 | 0.60 | 1.68 | D1 |
| 18. | hydroxyoctadecatrienoic acid I | C18H30O3 | 293.2122 | 293.2125 (79.1), 275.2017 (100), 235.1700 (80.9), 201.1827 (10.6), 171.1016 (0.7), 59.0124 (4.5) | 14.71 | 0.825 | 10.19 | 10.18 | D1 |
| 19. | hydroxyoctadecatrienoic acid II | C18H30O3 | 293.2122 | 293.2126 (100), 275.2018 (35.5), 235.1700 (2.6), 211.1331 (6.5), 183.1383 (19.9), 171.1018 (18.6), 109.0645 (1.0), 59.0123 (0.5) | 14.79 | 1.473 | 9.52 | 8.89 | D1 |
| 20. | hydroxyoctadecatrienoic acid II | C18H30O3 | 293.2122 | 293.2126 (100), 275.2017 (11.4), 223.1336 (15.0), 211.1335 (2.2), 195.1384 (12.8), 181.1224 (2.9), 165.1402 (0.4), 111.0797 (0.5) | 14.95 | 1.268 | 5.64 | 5.57 | D1 |
| 21. | hydroxyoctadecadienoic acid | C18H32O3 | 295.2279 | 295.2278 (100), 277.2172 (21.4), 286.1098 (0.3), 259.2103 (0.3), 251.2393 (0.4), 195.1384 (18.2), 179.1436 (1.1), 155.1064 (0.3), 113.0956 (1.4), 59.0123 (1.2) | 15.90 | −0.095 | 6.92 | 6.04 | D1 |
| 22. | dihydroxyoctadecapentaenoic acid | C18H26O4 | 305.1758 | 305.1761 (89.8), 287.1651 (7.2), 263.1646 (2.9), 249.1496 (63.2), 243.1757 (0.4), 205.1595 (5.2), 185.1179 (3.3), 151.1117 (1.9), 135.0802 (100), 125.0958 (21.8), 97.0643 (16.2), 79.0537 (10.6), 59.0121 (1.7), 57.0330 (2.1) | 11.92 | 0.942 | 0.71 | 0.78 | D1 |
| 23. | dihydroxyoctadecatetraenoic acid | C18H28O4 | 307.1915 | 307.1918 (32.7), 289.1807 (18.9), 235.1337 (100), 217.1243 (1.0), 211.1334 (34.1), 209.1176 (35.1), 185.1174 (87.9), 151.1121 (0.6), 125.0958 (33.2), 121.0645 (92.2), 97.0644 (62.5), 71.0487 (29.6), 65.0381 (45.9) | 11.12 | 1.033 | 3.34 | 3.23 | D1 |
| 24. | dihydroxyoctadecatrienoic acid I | C18H30O4 | 309.2071 | 309.2075 (100), 291.1968 (79.4), 273.1866 (2.2), 251.1650 (20.6), 237.1499 (4.9), 219.1390 (3.8), 207.1390 (2.1), 185.1174 (10.5), 171.1017 (66.5), 137.0959 (25.6), 97.0642 (3.9), 83.0488 (0.8), 71.0487 (20.1) | 10.87 | 1.059 | 6.03 | 4.43 | D1 |
| 25. | dihydroxyoctadecatrienoic acid II | C18H30O4 | 309.2071 | 309.2075 (79.8), 291.1967 (56.0), 273.1849 (10.7), 251.1652 (63.7), 233.1699 (26.7), 209.1541 (100), 197.1177 (19.8), 135.1161 (1.3), 111.0797 (8.9), 71.0487 (8.1), 59.0122 (6.5) | 12.89 | 1.156 | 2.14 | 1.74 | D1 |
| 26. | dihydroxyoctadecaenoic acid | C18H32O4 | 311.2228 | 311.2232 (100), 293.2126 (20.7), 275.2015 (3.8), 211.1333 (13.8), 197.1181 (7.3), 185.1171 (5.1), 171.1017 (38.4), 139.1118 (4.9), 129.0910 (5.6), 113.0958 (2.8), 57.0329 (1.2) | 13.97 | 1.373 | 2.06 | 1.53 | D1 |
| 27. | dihydroxyoctadecenoic acid I | C18H34O4 | 313.2384 | 313.2387 (100), 295.2280 (12.4), 277.2169 (4.9), 213.1501 (0.5), 195.1385 (3.4), 183.1382 (28.9), 129.0908 (20.0), 99.0801 (12.4), 58.0045 (2.5) | 13.00 | 0.981 | 1.40 | 2.09 | D1 |
| 28. | dihydroxyoctadecenoic acid II | C18H34O4 | 313.2384 | 313.2389 (100), 295.2281 (8.7), 277.2183 (2.6), 195.1384 (2.9), 183.1382 (30.5), 129.0908 (17.9), 99.0800 (11.4) | 13.42 | 1.364 | 0.88 | 1.41 | D1 |
| 29. | dihydroxyoctadecenoic acid II | C18H34O4 | 313.2384 | 313.2389 (100), 295.2281 (6.2), 277.2177 (5.9), 201.1127 (48.1), 171.1017 (6.1), 155.1065 (1.9), 137.0957 (0.4), 127.1116 (4.5), 58.0044 (1.1) | 13.69 | 1.460 | 0.60 | 0.93 | D1 |
| 30. | trihydroxyoctadecatetraenoic acid I | C18H28O5 | 323.1864 | 323.1866 (28.5), 305.1761 (39.8), 287.1655 (8.0), 265.1447 (19.9), 237.1494 (100), 223.1335 (11.7), 193.1592 (4.2), 177.1276 (2.9), 171.1017 (36.8), 151.0753 (34.3), 135.0800 (2.5), 123.0801 (6.3), 81.0330 (34.4), 59.0124 (0.9) | 7.80 | 0.658 | 1.29 | 1.33 | D1 |
| 31. | trihydroxyoctadecatetraenoic acid II | C18H28O5 | 323.1864 | 323.1867 (69.9), 305.1760 (100), 287.1654 (15.8), 243.1751 (1.0), 223.1340 (3.7), 195.1016 (9.4), 185.1175 (35.1), 161.0599 (3.6), 149.0962 (2.6), 135.0802 (29.4), 125.0595 (7.0), 106.0410 (15.4), 59.0122 (3.1) | 8.87 | 0.968 | 0.83 | 0.88 | D1 |
| 32. | trihydroxyoctadecatrienoic acid I | C18H30O5 | 325.2020 | 325.2024 (100), 307.1912 (2.2), 289.1802 (3.5), 263.1663 (0.4), 249.1493 (0.6), 237.1503 (0.5), 209.1184 (2.4), 193.1228 (0.4), 181.1225 (31.2), 141.0907 (4.7), 125.0595 (2.2), 109.0642 (0.6), 85.0279 (13.5), 59.0123 (2.6) | 8.70 | 0.962 | 2.69 | 3.05 | D1 |
| 33. | trihydroxyoctadecadienoic acid | C18H32O5 | 327.2177 | 327.2180 (100), 309.2065 (1.1), 291.1964 (1.9), 269.1759 (3.5), 251.1649 (6.2), 223.1705 (1.8), 211.1335 (2.8), 195.1387 (0.6), 183.1382 (20.5), 125.0592 (0.5), 109.0643 (0.3), 85.0279 (13.5), 59.0124 (0.3) | 9.31 | 0.803 | 3.56 | 2.55 | D1 |
| 34. | trihydroxyoctadecenoic acid | C18H34O5 | 329.2333 | 329.2336 (100), 311.2233 (1.2), 293.2133 (0.8), 229.1442 (7.7), 211.1333 (10.5), 183.1378 (0.8), 171.1017 (20.8), 157.1223 (0.9), 139.1115 (7.0), 127.1115 (1.9), 99.0800 (13.9), 57.0330 (0.8) | 9.76 | 0.889 | 7.66 | 5.17 | D1 |
| N | Tentatively Annotated Compound | Molecular Formula | Accurate Mass [M+H]+ | Fragmentation Pattern (Relative Abundance) | tR (min) | Δ ppm | Level | ||
| 35. | loliolide/isoliolide | C11H18O3 | 197.1172 | 197.1170 (80.4), 179.1065 (100), 161.0959 (28.0), 151.1119 (4.1), 137.0959 (3.6), 135.1168 (59.6), 133.1011 (47.8), 119.0855 (5.6), 107.0858 (48.5), 93.0703 (18.2), 81.0705 (4.3), 67.0549 (4.3) | 5.19 | −1.121 | 1.88 | 1.99 | C |
| 36. | loliolide/isoliolide | C11H18O3 | 197.1172 | 197.1170 (89.9), 179.1064 (100), 161.0960 (24.7), 151.1118 (5.4), 135.1168 (55.6), 133.1011 (42.7), 119.0857 (5.3), 107.0859 (43.2), 93.0703 (15.4), 81.0706 (3.3), 67.0549 (3.6) | 5.68 | −1.121 | 8.73 | 11.31 | C |
| Parameters and Time of Incubation | PBR1 | K1 |
|---|---|---|
| 24 h exposure time: | ||
| IC50 [mg/mL] | 0.238 [0.2083 to 0.2689] | 0.586 [0.4115 to 0.6309] |
| Hill slope (m) | −1.880 [−2.476 to −1.492] | −5.970 [−6.005 to −4.167] |
| R2 | 0.958 | 0.961 |
| MNC [mg/mL] | 0.158 | 0.513 |
| 48 h exposure time: | ||
| IC50 [mg/mL] | 0.103 [0.07966 to 0.1315] | 0.223 [0.1879 to 0.2644] |
| Hill slope (m) | −0.9260 [−1.156 to −0.7441] | −1.050 [−1.274 to −0.8727] |
| R2 | 0.924 | 0.938 |
| MNC [mg/mL] | 0.042 | 0.100 |
| 72 h exposure time: | ||
| IC50 [mg/mL] | 0.136 [0.1210 to 0.1527] | 0.261 [0.2334 to 0.2911] |
| Hill slope (m) | −1.206 [−1.376 to −1.062] | −1.696 [−2.056 to −1.421] |
| R2 | 0.972 | 0.972 |
| MNC [mg/mL] | 0.068 | 0.158 |
| EC50 [mg/mL] | IC50 [mg/mL] | Hill Slope | R2 | SI (IC50/EC50) | |
|---|---|---|---|---|---|
| PBR1 | 0.136 | 0.136 | 2.4 | 0.98 | 1 |
| K1 | 0.127 | 0.261 | 11.35 | 0.994 | 2.055 |
| Sample/Dilution of the cDNA | BCoV cDNA Concentration/Reaction * | BCoV cDNA Concentration/mL | Δlog cDNA/mL vs. Virus Control |
|---|---|---|---|
| Virus control [reference]: | |||
| Dilution 10−4 | 9.5 × 103 | 1.3 × 1010 | - |
| Dilution 10−5 | 8.9 × 102 | ||
| Dilution 10−6 | 9.6 × 101 | ||
| K1 50 µg/mL: | |||
| Sample 1 | 9.58 × 103 | 1.98 × 106 | 6.57 × 103 |
| Sample 2 | 9.34 × 103 | ||
| K1 100 µg/mL: | |||
| Sample 1 | 9.70 × 102 | 1.95 × 105 | 6.67 × 104 |
| Sample 2 | 8.74 × 102 | ||
| K1 150 µg/mL: | |||
| Sample 1 | 9.8 × 101 | 1.88 × 104 | 6.91 × 105 |
| Sample 2 | 8.0 × 101 | ||
| K1 200 µg/mL: | |||
| Sample 1 | 1.52 × 101 | 2.87 × 103 | 4.53 × 106 |
| Sample 2 | 1.2 × 101 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zaharieva, M.M.; Zheleva-Dimitrova, D.; Foka, P.; Karamichali, E.; Kim, T.C.; Balabanova-Bozushka, V.; Ilieva, Y.; Brachkova, A.; Gevrenova, R.; Philipov, S.; et al. Anti-Coronavirus Activity of Extracts from Scenedesmus acutus cf. acutus Meyen Cultivated in Innovative Photobioreactor Systems. Fermentation 2026, 12, 85. https://doi.org/10.3390/fermentation12020085
Zaharieva MM, Zheleva-Dimitrova D, Foka P, Karamichali E, Kim TC, Balabanova-Bozushka V, Ilieva Y, Brachkova A, Gevrenova R, Philipov S, et al. Anti-Coronavirus Activity of Extracts from Scenedesmus acutus cf. acutus Meyen Cultivated in Innovative Photobioreactor Systems. Fermentation. 2026; 12(2):85. https://doi.org/10.3390/fermentation12020085
Chicago/Turabian StyleZaharieva, Maya Margaritova, Dimitrina Zheleva-Dimitrova, Pelagia Foka, Erini Karamichali, Tanya Chan Kim, Vessela Balabanova-Bozushka, Yana Ilieva, Anna Brachkova, Reneta Gevrenova, Stanislav Philipov, and et al. 2026. "Anti-Coronavirus Activity of Extracts from Scenedesmus acutus cf. acutus Meyen Cultivated in Innovative Photobioreactor Systems" Fermentation 12, no. 2: 85. https://doi.org/10.3390/fermentation12020085
APA StyleZaharieva, M. M., Zheleva-Dimitrova, D., Foka, P., Karamichali, E., Kim, T. C., Balabanova-Bozushka, V., Ilieva, Y., Brachkova, A., Gevrenova, R., Philipov, S., Naydenska, S., Georgopoulou, U., Kroumov, A., & Najdenski, H. (2026). Anti-Coronavirus Activity of Extracts from Scenedesmus acutus cf. acutus Meyen Cultivated in Innovative Photobioreactor Systems. Fermentation, 12(2), 85. https://doi.org/10.3390/fermentation12020085

