Integrated Enzymatic and Fermentative Pathways for Next-Generation Biosurfactants: Advances in Process Design, Functionalization, and Industrial Scale-Up
Abstract
1. Introduction
2. Fundamentals and Classification of Biosurfactants: Physicochemical Properties and Interfacial Applications
2.1. Glycolipids
2.2. Lipopeptides, Phospholipids, Polymeric and Particulate Forms
2.3. Physicochemical Properties, Structure–Function Relationship, and Bioreactor Production Implications
3. Process Design for Enzymatic/Microbial Production of Glycolipids
3.1. Bioprocess Design Considerations for Glycolipid Production
3.1.1. Rhamnolipids (RLs)
3.1.2. Sophorolipids (SLs)
3.1.3. Mannosylerythritol Lipids (MELs)
3.1.4. Trehalolipids (TLs)
3.2. Enzymatic Tools for Microbial Biosurfactant Processes: Production and Integration
Roles of Glycosyltransferases, Acetyltransferases, and Lipases in Glycolipid Biosynthesis
4. Bioengineering and Enzymatic Modification of Biosurfactants
4.1. Catalytic Strategies for the Structural Diversification of Amphiphilic Biomolecules
4.2. Enzymatic Production and Functionalization of Biosurfactants
4.3. Enzymatic Functionalization for Advanced Surfactant Synthesis
5. Integration of Production and Modification: Towards Tailor-Made Biosurfactants
6. Scalability and Green Economy: Industrial Feasibility of Microbial Surfactants
Regulatory, Safety, and Economic Considerations in Biosurfactant Commercialization
7. Conclusions and Outlooks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| RLs | rhamnolipids |
| SLs | sophorolipids |
| MELs | mannosylerythritol lipids |
| TLs | trehalolipids |
| STR | stirred-tank reactor |
| SSF | solid-state fermentation |
| ISPR | in situ product recovery |
| WCO | waste cooking oil |
| UDP-Glc | uridine diphosphate glucose |
| dTDP-Rha | deoxythymidine diphosphate rhamnose |
| GTs | glycosyltransferases |
| Lipases | enzymes catalyzing hydrolysis of lipids |
| Acyl/acetyltransferases | enzymes transferring acyl or acetyl groups |
| CAR | carboxylic acid reductase |
| CDH | cellobiose dehydrogenase |
| LPMOs | lytic polysaccharide monooxygenases |
| CDAs | chitin deacetylases |
| LCA | Life Cycle Assessment |
| TEA | Techno-Economic Analysis |
| ω-TA | ω-transaminase |
| ATP | adenosine triphosphate |
| NADPH | nicotinamide adenine dinucleotide phosphate (reduced form) |
| ML | machine learning |
| DFT | density functional theory |
| MD | molecular dynamics |
| GH | Glycoside Hydrolases |
| CRISPR | clustered regularly interspaced short palindromic repeats |
| pH | potential of hydrogen |
| C16-C18 oils | long-chain fatty acids (palmitic, stearic) |
| TWG | treated waste glycerol |
| Yₚ/ₛ | product yield per substrate |
| Hydrophilic carbon source | glucose, molasses |
| Fed-batch | semi-continuous microbial cultivation mode |
| Foam fractionation | in situ foam-based product recovery |
References
- Simões, C.R.; da Silva, M.W.P.; de Souza, R.F.M.; Hacha, R.R.; Merma, A.G.; Torem, M.L.; Silvas, F.P.C. Biosurfactants: An Overview of Their Properties, Production, and Application in Mineral Flotation. Resources 2024, 13, 81. [Google Scholar] [CrossRef]
- Nikolova, C.; Gutierrez, T. Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives. Front. Bioeng. Biotechnol. 2021, 9, 626639. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Hu, X.H.; Kumar, V.; Solanki, M.K.; Kaushik, A.; Singh, V.K.; Singh, S.K.; Yadav, P.; Singh, R.P.; Bhardwaj, N.; et al. Microbially Derived Surfactants: An Ecofriendly, Innovative, and Effective Approach for Managing Environmental Contaminants. Front. Bioeng. Biotechnol. 2024, 12, 1398210. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Singha, L.P.; Shukla, P. Biotechnological Potential of Microbial Bio-Surfactants, Their Significance, and Diverse Applications. FEMS Microbes 2023, 4, xtad015. [Google Scholar] [CrossRef]
- Kugaji, M.; Ray, S.K.; Parvatikar, P.; Raghu, A.V. Biosurfactants: A Review of Different Strategies for Economical Production, Their Applications and Recent Advancements. Adv. Colloid Interface Sci. 2025, 337, 103389. [Google Scholar] [CrossRef]
- Miao, Y.; To, M.H.; Siddiqui, M.A.; Wang, H.; Lodens, S.; Chopra, S.S.; Kaur, G.; Roelants, S.L.K.W.; Lin, C.S.K. Sustainable Biosurfactant Production from Secondary Feedstock—Recent Advances, Process Optimization and Perspectives. Front. Chem. 2024, 12, 1327113. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Anjum, A.; Eddy, N.O.; Watandost, H. Comprehensive Review of the Synthesis and Sustainable Applications of Biosurfactants. Discov. Appl. Sci. 2025, 7, 1168. [Google Scholar] [CrossRef]
- Shalini, D.; Benson, A.; Gomathi, R.; John Henry, A.; Jerritta, S.; Melvin Joe, M. Isolation, Characterization of Glycolipid Type Biosurfactant from Endophytic Acinetobacter sp. ACMS25 and Evaluation of Its Biocontrol Efficiency against Xanthomonas oryzae. Biocatal. Agric. Biotechnol. 2017, 11, 252–258. [Google Scholar] [CrossRef]
- Agger, J.W.; Zeuner, B. Bio-Based Surfactants: Enzymatic Functionalization and Production from Renewable Resources. Curr. Opin. Biotechnol. 2022, 78, 102842. [Google Scholar] [CrossRef]
- Valkenburg, A.D.; Ncube, M.Z.; Teke, G.M.; van Rensburg, E.; Pott, R.W.M. A Review on the Upstream Production and Downstream Purification of Mannosylerythritol Lipids. Biotechnol. Bioeng. 2024, 121, 853–876. [Google Scholar] [CrossRef]
- Solomon, A.A.; Vishnu, D. Integrated Strategies for Biosurfactant Production and Scale-up: Advances in Fermentation Engineering and Computational Modelling. Results Eng. 2025, 27, 106853. [Google Scholar] [CrossRef]
- Bjerk, T.R.; Severino, P.; Jain, S.; Marques, C.; Silva, A.M.; Pashirova, T.; Souto, E.B. Biosurfactants: Properties and Applications in Drug Delivery, Biotechnology and Ecotoxicology. Bioengineering 2021, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Bustos-Vázquez, M.G.; Rodríguez-Durán, L.V.; Pichardo-Sánchez, M.A.; Rodríguez-Durán, N.R.; Rodríguez-Durán, N.A.; Trujillo-Ramírez, D.; Torres-de los Santos, R. Recent Advances in Biosurfactant Production in Solid-State Fermentation. Fermentation 2025, 11, 592. [Google Scholar] [CrossRef]
- Handore, A.V.; Khandelwal, S.R.; Karmakar, R.; Gupta, D.L.; Jagtap, V.S. Applications and Future Prospects of Biosurfactants. In Microbial Surfactants; Sayyed, R.Z., Boca Raton, F.C.P., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Jimoh, A.A.; Lin, J. Biosurfactant: A New Frontier for Greener Technology and Environmental Sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef]
- de Oliveira Schmidt, V.K.; de Souza Carvalho, J.; de Oliveira, D.; de Andrade, C.J. Biosurfactant Inducers for Enhanced Production of Surfactin and Rhamnolipids: An Overview. World J. Microbiol. Biotechnol. 2021, 37, 21. [Google Scholar] [CrossRef]
- Matosinhos, R.D.; Cesca, K.; Carciofi, B.A.M.; de Oliveira, D.; de Andrade, C.J. Mannosylerythritol Lipids as Green Pesticides and Plant Biostimulants. J. Sci. Food Agric. 2023, 103, 37–47. [Google Scholar] [CrossRef]
- Das, R.P.; Sahoo, S.; Paidesetty, S.K.; Ahmad, I.; Sahoo, B.; Jayabaskaran, C.; Patel, H.; Arakha, M.; Pradhan, A.K. Isolation, Characterization, and Multimodal Evaluation of Novel Glycolipid Biosurfactant Derived from Bacillus Species: A Promising Staphylococcus aureus Tyrosyl-TRNA Synthetase Inhibitor through Molecular Docking and MD Simulations. Int. J. Biol. Macromol. 2024, 261, 129848. [Google Scholar] [CrossRef]
- Kiran, G.S.; Sabarathnam, B.; Selvin, J. Biofilm Disruption Potential of a Glycolipid Biosurfactant from Marine Brevibacterium casei. FEMS Immunol. Med. Microbiol. 2010, 59, 432–438. [Google Scholar] [CrossRef]
- Howe, J.; Bauer, J.; Andrä, J.; Schromm, A.B.; Ernst, M.; Rössle, M.; Zähringer, U.; Rademann, J.; Brandenburg, K. Biophysical Characterization of Synthetic Rhamnolipids. FEBS J. 2006, 273, 5101–5112. [Google Scholar] [CrossRef]
- Andrä, J.; Rademann, J.; Koch, M.H.J.; Heine, H.; Zähringer, U.; Brandenburg, K. Endotoxin-like Properties of a Rhamnolipid Exotoxin from Burkholderia (Pseudomonas) plantarii: Immune Cell Stimulation and Biophysical Characterization. Biol. Chem. 2006, 387, 301–310. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Cui, W.; Su, Y.; Sun, S.; Zhao, C.; Liu, Q. Performance Evaluation of Rhamnolipid Biosurfactant Produced by Pseudomonas aeruginosa and Its Effect on Marine Oil-Spill Remediation. Arch. Microbiol. 2024, 206, 183. [Google Scholar] [CrossRef]
- Thaniyavarn, J.; Chianguthai, T.; Sangvanich, P.; Roongsawang, N.; Washio, K.; Morikawa, M.; Thaniyavarn, S. Production of Sophorolipid Biosurfactant by Pichia anomala. Biosci. Biotechnol. Biochem. 2008, 72, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Price, N.P.J.; Ray, K.J.; Kuo, T.M. Production of Sophorolipid Biosurfactants by Multiple Species of the Starmerella (Candida) bombicola Yeast Clade. FEMS Microbiol. Lett. 2010, 311, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Msanne, J.; Ashby, R.D.; Harron, A.; Czerhoniak, A. Sustainable Production of Sophorolipid Biosurfactants Using Renewable Cellulose-Derived Feedstocks. J. Surfactants Deterg. 2024, 27, 781–791. [Google Scholar] [CrossRef]
- Kitamoto, D.; Akiba, S.; Hioki, C.; Tabuchi, T. Extracellular Accumulation of Mannosylerythritol Lipids by a Strain of Candida antarctica. Agric. Biol. Chem. 1990, 54, 31–36. [Google Scholar] [CrossRef]
- Fukuoka, T.; Morita, T.; Konishi, M.; Imura, T.; Kitamoto, D. A Basidiomycetous Yeast, Pseudozyma tsukubaensis, Efficiently Produces a Novel Glycolipid Biosurfactant. The Identification of a New Diastereomer of Mannosylerythritol Lipid-B. Carbohydr. Res. 2008, 343, 555–560. [Google Scholar] [CrossRef]
- dos Reis, C.B.L.; Morandini, L.M.B.; Bevilacqua, C.B.; Bublitz, F.; Ugalde, G.; Mazutti, M.A.; Jacques, R.J.S. First Report of the Production of a Potent Biosurfactant with α,β-Trehalose by Fusarium fujikuroi under Optimized Conditions of Submerged Fermentation. Braz. J. Microbiol. 2018, 49, 185–192. [Google Scholar] [CrossRef]
- Andreolli, M.; Villanova, V.; Zanzoni, S.; D’Onofrio, M.; Vallini, G.; Secchi, N.; Lampis, S. Characterization of Trehalolipid Biosurfactant Produced by the Novel Marine Strain Rhodococcus sp. SP1d and Its Potential for Environmental Applications. Microb. Cell Factories 2023, 22, 126. [Google Scholar] [CrossRef]
- Morais, I.M.C.; Cordeiro, A.L.; Teixeira, G.S.; Domingues, V.S.; Nardi, R.M.D.; Monteiro, A.S.; Alves, R.J.; Siqueira, E.P.; Santos, V.L. Biological and Physicochemical Properties of Biosurfactants Produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microb. Cell Factories 2017, 16, 155. [Google Scholar] [CrossRef]
- Ramani, K.; Jain, S.C.; Mandal, A.B.; Sekaran, G. Microbial Induced Lipoprotein Biosurfactant from Slaughterhouse Lipid Waste and Its Application to the Removal of Metal Ions from Aqueous Solution. Colloids Surf. B Biointerfaces 2012, 97, 254–263. [Google Scholar] [CrossRef]
- Ghasemi, A.; Moosavi-Nasab, M.; Setoodeh, P.; Mesbahi, G.; Yousefi, G. Biosurfactant Production by Lactic Acid Bacterium Pediococcus dextrinicus SHU1593 Grown on Different Carbon Sources: Strain Screening Followed by Product Characterization. Sci. Rep. 2019, 9, 5287. [Google Scholar] [CrossRef] [PubMed]
- González-Jaramillo, L.M.; Aranda, F.J.; Teruel, J.A.; Villegas-Escobar, V.; Ortiz, A. Antimycotic Activity of Fengycin C Biosurfactant and Its Interaction with Phosphatidylcholine Model Membranes. Colloids Surf. B Biointerfaces 2017, 156, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Hathout, Y.; Ho, Y.P.; Ryzhov, V.; Demirev, P.; Fenselau, C. Kurstakins: A New Class of Lipopeptides Isolated from Bacillus thuringiensis. J. Nat. Prod. 2000, 63, 1492–1496. [Google Scholar] [CrossRef] [PubMed]
- Adamu, A.; Ijah, U.J.J.; Riskuwa, M.L.; Ismail, H.Y.; Ibrahim, U.B. Study on Biosurfactant Production by Two Bacillus Species. Int. J. Sci. Res. Knowl. 2015, 3, 13–20. [Google Scholar] [CrossRef]
- Cirigliano, M.C.; Carman, G.M. Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1985, 50, 846–850. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. High- and Low-Molecular-Mass Microbial Surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Zosim, Z.; Gottlieb, A.; Legmann, R.; Carmeli, S.; Ron, E.Z.; Rosenberg, E. Alasan, a New Bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 1995, 61, 3240–3244. [Google Scholar] [CrossRef]
- Rasheed, H.G.; Haydar, N.H. Purification, Characterization and Evaluation of Biological Activity of Mannoprotein Produced from Saccharomyces cerevisiae By. Iraqi J. Agric. Sci. 2023, 54, 347–359. [Google Scholar] [CrossRef]
- Kappeli, O.; Finnerty, W.R. Partition of Alkane by an Extracellular vesicle Derived from Hexadecane-Grown Acinetobacter. J. Bacteriol. 1979, 140, 707–712. [Google Scholar] [CrossRef]
- Liu, D.; Liu, G.; Liu, S. Promising Application, Efficient Production, and Genetic Basis of Mannosylerythritol Lipids. Biomolecules 2024, 14, 557. [Google Scholar] [CrossRef]
- Qin, R.; Xu, T.; Jia, X. Engineering Pseudomonas putida To Produce Rhamnolipid Biosurfactants for Promoting Phenanthrene Biodegradation by a Two-Species Microbial consortium. Microbiol. Spectr. 2022, 10, e0091022. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Glycolipid Biosurfactants: Main Properties and Potential Applications in Agriculture and Food Industry. J. Sci. Food Agric. 2016, 96, 4310–4320. [Google Scholar] [CrossRef] [PubMed]
- Eslami, P.; Hajfarajollah, H.; Bazsefidpar, S. Recent Advancements in the Production of Rhamnolipid Biosurfactants By Pseudomonas aeruginosa. RSC Adv. 2020, 10, 34014–34032. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Chatterjee, N.; Das, A.K.; McClements, D.J.; Dhar, P. Sophorolipids: A Comprehensive Review on Properties and Applications. Adv. Colloid Interface Sci. 2023, 313, 102856. [Google Scholar] [CrossRef] [PubMed]
- Jezierska, S.; Claus, S.; Van Bogaert, I. Yeast Glycolipid Biosurfactants. FEBS Lett. 2018, 592, 1312–1329. [Google Scholar] [CrossRef]
- Long, W.; Zhao, W.; He, L.; Khan, T.A.; Lai, X.; Sun, Y.; Huang, W.; Yi, G.; Xia, L. Streptomyces Enissocaesilis L-82 Has Broad-Spectrum Antibacterial Activity and Promotes Growth for Carassius auratus. Appl. Microbiol. Biotechnol. 2024, 108, 220. [Google Scholar] [CrossRef]
- Jarvis, F.G.; Johnson, M.J.; Jarvis, B.F.G. A Glycolipide Produced by Pseudomonas aeruginosa1 A Glyco-Lipide. J. Am. Chem. Soc. 1949, 71, 4124–4126. [Google Scholar] [CrossRef]
- Bertuso, P.d.C.; Marangon, C.A.; Nitschke, M. Susceptibility of Vegetative Cells and Endospores of Bacillus cereus to Rhamnolipid Biosurfactants and Their Potential Application in Dairy. Microorganisms 2022, 10, 1860. [Google Scholar] [CrossRef]
- Adu, S.A.; Twigg, M.S.; Naughton, P.J.; Marchant, R.; Banat, I.M. Characterisation of Cytotoxicity and Immunomodulatory Effects of Glycolipid Biosurfactants on Human Keratinocytes. Appl. Microbiol. Biotechnol. 2023, 107, 137–152. [Google Scholar] [CrossRef]
- Onlamool, T.; Saimmai, A.; Maneerat, S. Antifungal Activity of Rhamnolipid Biosurfactant Produced by Pseudomonas aeruginosa A4 against Plant Pathogenic fungi. Trends Sci. 2023, 20, 6524. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Camilios-neto, D.; Baldo, C.; Magri, A.; Celligoi, M.A.P.C. Biosynthesis and Production of Sophorolipids. Int. J. Sci. Technol. Res. 2014, 3, 133–143. [Google Scholar]
- Celligoi, M.A.P.C.; Silveira, V.A.I.; Hipólito, A.; Caretta, T.O.; Baldo, C. Sophorolipids: A Review on Production and Perspectives of Application in Agriculture. Span. J. Agric. Res. 2020, 18, e03R01. [Google Scholar] [CrossRef]
- Claus, S.; Van Bogaert, I.N.A. Sophorolipid Production by Yeasts: A Critical Review of the Literature and Suggestions for Future Research. Appl. Microbiol. Biotechnol. 2017, 101, 7811–7821. [Google Scholar] [CrossRef] [PubMed]
- Kazemzadeh, S.; Emami-Karvani, Z.; Naghavi, N.S.; Emtiazi, G. Production of Surface-Active Sophorolipid Biosurfactant and Crude Oil Degradability by Novel Rhodotorula mucilaginosa Strain SKF2. J. Surfactants Deterg. 2022, 25, 439–454. [Google Scholar] [CrossRef]
- Daverey, A.; Dutta, K.; Joshi, S.; Daverey, A. Sophorolipid: A Glycolipid Biosurfactant as a Potential Therapeutic Agent against COVID-19. Bioengineered 2021, 12, 9550–9560. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Li, Q.; Ushimaru, K.; Hirota, M.; Morita, T.; Fukuoka, T. Isolation and Characterization of Novel Naturally Occurring Sophorolipid Glycerides. Bioresour. Technol. Rep. 2023, 22, 101399. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Ivshina, I.B. Production of Trehalolipid Biosurfactants by Rhodococcus. In Biology of Rhodococcus; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 271–298. [Google Scholar] [CrossRef]
- Khandare, V.C.; Madankar, C.S. An Overview on Trehalolipids: A Promising Eco-Friendly Bio-Surfactant. Tenside Surfactants Deterg. 2024, 61, 92–104. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Z.; Zeng, G.; Zhong, H.; Liu, Y.; Jiang, Y.; Li, M.; He, X.; He, Y. Characteristics of Mannosylerythritol Lipids and Their Environmental Potential. Carbohydr. Res. 2015, 407, 63–72. [Google Scholar] [CrossRef]
- Beck, A.; Haitz, F.; Thier, I.; Siems, K.; Jakupovic, S.; Rupp, S.; Zibek, S. Novel Mannosylerythritol Lipid Biosurfactant Structures from Castor Oil Revealed by Advanced Structure Analysis. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab042. [Google Scholar] [CrossRef]
- Chen, W.C.; Juang, R.S.; Wei, Y.H. Applications of a Lipopeptide Biosurfactant, Surfactin, Produced by Microorganisms. Biochem. Eng. J. 2015, 103, 158–169. [Google Scholar] [CrossRef]
- Varnava, C.K.; Grenni, P.; Mariani, L.; Caracciolo, A.B.; Hadjipakkou, H.; Lefkaritis, G.; Pinakoulaki, E.; Chronakis, N.; Kalogerakis, N.; Tsipa, A. Characterization, Production Optimization and Ecotoxicity of a Lipopeptide Biosurfactant by Pseudomonas citronellolis Using Oily Wastewater. Biochem. Eng. J. 2024, 205, 109257. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Extraction, Separation and Characterization of Lipopeptides and Phospholipids from Corn Steep Water. Sep. Purif. Technol. 2020, 248, 117076. [Google Scholar] [CrossRef]
- Anidu, F.N.; Uba, B.O.; Ezemba, C.C.; Okoye, E.L.; Dokubo, C.U. Study on Optimization, Degreasing and Destaining Potentials of Glycophospholipid Biosurfactant Produced by Bacillus anthracis S62A. Dutse J. Pure Appl. Sci. 2023, 9, 29–43. [Google Scholar] [CrossRef]
- Khanna, A.; Handa, S.; Rana, S.; Suttee, A.; Puri, S.; Chatterjee, M. Biosurfactant from Candida: Sources, Classification, and Emerging Applications. Arch. Microbiol. 2023, 205, 149. [Google Scholar] [CrossRef]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef]
- Venkataraman, S.; Rajendran, D.S.; Vaidyanathan, V.K. An Insight into the Utilization of Microbial Biosurfactants Pertaining to Their Industrial Applications in the Food Sector. Food Sci. Biotechnol. 2024, 33, 245–273. [Google Scholar] [CrossRef]
- de Andrade, C.J.; de Andrade, L.M.; Rocco, S.A.; Sforça, M.L.; Pastore, G.M.; Jauregi, P. A Novel Approach for the Production and Purification of Mannosylerythritol Lipids (MEL) by Pseudozyma tsukubaensis Using Cassava Wastewater as Substrate. Sep. Purif. Technol. 2017, 180, 157–167. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.K.; Kant, C.; Verma, H.; Kumar, D.; Singh, P.P.; Modi, A.; Droby, S.; Kesawat, M.S.; Alavilli, H.; et al. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants 2021, 10, 1472. [Google Scholar] [CrossRef]
- Wongsirichot, P.; Winterburn, J. Recent Fermentation Developments for Improved Rhamnolipid Production. Appl. Microbiol. Biotechnol. 2025, 109, 145. [Google Scholar] [CrossRef]
- Xu, N.; Liu, S.; Xu, L.; Zhou, J.; Xin, F.; Zhang, W.; Qian, X.; Li, M.; Dong, W.; Jiang, M. Enhanced Rhamnolipids Production Using a Novel Bioreactor System Based on Integrated Foam-Control and Repeated Fed-Batch Fermentation Strategy. Biotechnol. Biofuels 2020, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.M.; Smith, L.K. Exploring the Undulating Plateau: The Future of Global Oil Supply. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120491. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.-P.; Minas, W.; Schmidhalter, D. Industrial-Scale Fermentation. In Industrial Biotechnology: Products and Processes; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Humbird, D.; Davis, R.; McMillan, J.D. Aeration Costs in Stirred-Tank and Bubble Column Bioreactors. Biochem. Eng. J. 2017, 127, 161–166. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, D.; Niu, J.; Jin, M.; Long, X. Extremely High-Performance Production of Rhamnolipids by Advanced Sequential Fed-Batch Fermentation with High Cell Density. J. Clean. Prod. 2021, 326, 129382. [Google Scholar] [CrossRef]
- Treinen, C.; Claassen, L.; Hoffmann, M.; Lilge, L.; Henkel, M.; Hausmann, R. Evaluation of an External Foam Column for in Situ Product Removal in Aerated Surfactin Production Processes. Front. Bioeng. Biotechnol. 2023, 11, 1264787. [Google Scholar] [CrossRef]
- Lan, G.; Fan, Q.; Liu, Y.; Chen, C.; Li, G.; Liu, Y.; Yin, X. Rhamnolipid Production from Waste Cooking Oil Using Pseudomonas SWP-4. Biochem. Eng. J. 2015, 101, 44–54. [Google Scholar] [CrossRef]
- Hirata, Y.; Igarashi, K.; Ueda, A.; Quan, G.L. Enhanced Sophorolipid Production and Effective Conversion of Waste Frying Oil Using Dual Lipophilic Substrates. Biosci. Biotechnol. Biochem. 2021, 85, 1763–1771. [Google Scholar] [CrossRef]
- De Graeve, M.; De Maeseneire, S.L.; Roelants, S.L.K.W.; Soetaert, W. Starmerella bombicola, an Industrially Relevant, yet Fundamentally Underexplored Yeast. FEMS Yeast Res. 2018, 18, foy072. [Google Scholar] [CrossRef]
- Diao, Z.; Roelants, S.L.K.W.; Luyten, G.; Goeman, J.; Vandenberghe, I.; Van Driessche, G.; De Maeseneire, S.L.; Soetaert, W.K.; Devreese, B. Revision of the Sophorolipid Biosynthetic Pathway in Starmerella bombicola Based on New Insights in the Substrate Profile of Its Lactone Esterase. Biotechnol. Biofuels Bioprod. 2024, 17, 89. [Google Scholar] [CrossRef]
- Wang, H.; Gao, R.; Song, X.; Yuan, X.; Chen, X.; Zhao, Y. Study on the Production of Sophorolipid by Starmerella bombicola Yeast Using Fried Waste Oil Fermentation. Biosci. Rep. 2024, 44, BSR20230345. [Google Scholar] [CrossRef] [PubMed]
- Becker, F.; Stehlik, T.; Linne, U.; Bölker, M.; Freitag, J.; Sandrock, B. Engineering Ustilago Maydis for Production of Tailor-Made Mannosylerythritol Lipids. Metab. Eng. Commun. 2021, 12, e00165. [Google Scholar] [CrossRef] [PubMed]
- Tiefenbacher, J.; Linne, U.; Freitag, J.; Sandrock, B. Two Gene Clusters Are Required for Mannosylerythritol Lipid Biosynthesis in Sporisorium reilianum. mBio 2025, 16, e0089925. [Google Scholar] [CrossRef]
- Nascimento, M.F.; Coelho, T.; Reis, A.; Gouveia, L.; Faria, N.T.; Ferreira, F.C. Production of Mannosylerythritol Lipids Using Oils from Oleaginous Microalgae: Two Sequential Microorganism Culture Approach. Microorganisms 2022, 10, 2390. [Google Scholar] [CrossRef]
- Bages-Estopa, S.; White, D.A.; Winterburn, J.B.; Webb, C.; Martin, P.J. Production and Separation of a Trehalolipid Biosurfactant. Biochem. Eng. J. 2018, 139, 85–94. [Google Scholar] [CrossRef]
- Jardim Pacheco, G.; Mara Prioli Ciapina, E.; de Barros Gomes, E.; Pereira Junior, N. Biosurfactant Production by Rhodococcus Erythropolis and Its Application to Oil Removal. Braz. J. Microbiol. 2010, 41, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Han, C.; Guo, X.; Luo, D.; Leng, F.; Zhuang, Y.; Gao, P.; Zhao, P.; Zhou, K.; Chen, J.; et al. Developing a Bioprocess for a Novel Trehalose Tetraester Biosurfactant from Rhodococcus Erythropolis KB1 and Evaluating Its Efficacy in PAH Bioremediation. Bioresour. Technol. 2026, 439, 133347. [Google Scholar] [CrossRef]
- Marie, A. Biocatalysis in Organic Synthesis: Enzymatic Pathways to Green Chemistry. Chem. Sci. J. 2024, 15. [Google Scholar] [CrossRef]
- RCSB Protein Data Bank Glycosyltransferases. Available online: https://www.rcsb.org/structure/6EJI (accessed on 20 November 2025).
- Bank RCSB Protein Data Lipase. Available online: https://www.rcsb.org/structure/1LBS (accessed on 20 November 2025).
- RCSB Protein Data Bank Acyl/Acetyltransferases. Available online: https://www.rcsb.org/structure/5LKT (accessed on 20 November 2025).
- Freitag, J.; Ast, J.; Linne, U.; Stehlik, T.; Martorana, D.; Bölker, M.; Sandrock, B. Peroxisomes Contribute to Biosynthesis of Extracellular Glycolipids in Fungi. Mol. Microbiol. 2014, 93, 24–36. [Google Scholar] [CrossRef]
- Damaso, M.C.; Passianoto, M.A.; de Freitas, S.C.; Freire, D.M.; Lago, R.C.; Couri, S. Utilization of Agroindustrial Residues for Lipase Production by Solid-State Fermentation. Braz. J. Microbiol. 2008, 39, 676–681. [Google Scholar] [CrossRef]
- Valkenburg, A.D.; Teke, G.M.; Pott, R.W.M.; van Rensburg, E. The Fed-Batch Production of Mannosylerythritol Lipids by Ustilago Maydis DSM 4500 from Hydrophilic Carbon Sources. Bioprocess Biosyst. Eng. 2024, 47, 2043–2054. [Google Scholar] [CrossRef]
- López Hernández, M.; Otzen, D.E.; Pedersen, J.S. Investigating the Interactions between an Industrial Lipase and Anionic (Bio)Surfactants. J. Colloid Interface Sci. 2025, 679, 294–306. [Google Scholar] [CrossRef]
- Wang, L.; Queneau, Y. Carbohydrate-Based Amphiphiles: Resource for Bio-Based Surfactants. In Green Chemistry and Chemical Engineering; Springer: New York, NY, USA, 2019; pp. 349–383. [Google Scholar] [CrossRef]
- Pallister, E.; Gray, C.J.; Flitsch, S.L. Enzyme Promiscuity of Carbohydrate Active Enzymes and Their Applications in Biocatalysis. Curr. Opin. Struct. Biol. 2020, 65, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Gea, T.; Font, X. Sophorolipids Production from Oil Cake by Solid-State Fermentation. Inventory for Economic and Environmental Assessment. Front. Chem. Eng. 2021, 3, 632752. [Google Scholar] [CrossRef]
- Buckley, B.R. Carboxylic Esters and Lactones. In Comprehensive Organic Functional Group Transformations II; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 5, pp. 127–174. [Google Scholar] [CrossRef]
- Naseef, H.H.; Tulaimat, R.H. Transesterification and Esterification for Biodiesel Production: A Comprehensive Review of Catalysts and Palm Oil Feedstocks. Energy Convers. Manag. X 2025, 26, 100931. [Google Scholar] [CrossRef]
- Séverac, E.; Galy, O.; Turon, F.; Pantel, C.A.; Condoret, J.S.; Monsan, P.; Marty, A. Selection of CalB Immobilization Method to Be Used in Continuous Oil Transesterification: Analysis of the Economical Impact. Enzym. Microb. Technol. 2011, 48, 61–70. [Google Scholar] [CrossRef]
- Fournet, M.; Bonté, F.; Desmoulière, A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis. 2018, 9, 880–900. [Google Scholar] [CrossRef]
- Liu, M.; Huang, J.; Ma, S.; Yu, G.; Liao, A.; Pan, L.; Hou, Y. Allergenicity of Wheat Protein in Diet: Mechanisms, Modifications and Challenges. Food Res. Int. 2023, 169, 112913. [Google Scholar] [CrossRef]
- Wu, T.; Gu, J.; Sun, Y.; Ye, P. The Role of Protein Glycosylation in Colorectal Cancer: From Molecular Pathways to Clinical Applications. Biochim. Et Biophys. Acta (BBA) Rev. Cancer 2025, 1880, 189438. [Google Scholar] [CrossRef]
- Schjoldager, K.T.; Narimatsu, Y.; Joshi, H.J.; Clausen, H. Global View of Human Protein Glycosylation Pathways and Functions. Nat. Rev. Mol. Cell Biol. 2020, 21, 729–749. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in Health and Disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, X.; Ding, Y.; Li, S.; Jiang, Y.; Chen, Y. The Selective Oxidation of Thioanisole to Sulfoxide Using a Highly Efficient Electroenzymatic Cascade System. Green Chem. 2024, 26, 6039–6045. [Google Scholar] [CrossRef]
- Jadhao, A.R.; Patel, H.; Kodam, K.M.; Gupte, A.; Waghmode, S.B. Selective Oxidation of Benzylic Alcohols by Laccase from White-Rot Mushroom Tricholoma giganteum AGHP: Total Synthesis of Taccabulin A, Taccabulin D and Taccabulin E. Tetrahedron 2022, 128, 133114. [Google Scholar] [CrossRef]
- Takei, T.; Akita, T.; Nakamura, I.; Fujitani, T.; Okumura, M.; Okazaki, K.; Huang, J.; Ishida, T.; Haruta, M. Heterogeneous Catalysis by Gold. In Advances in Catalysis; Academic Press Inc.: Orlando, FL, USA, 2012; Volume 55, pp. 1–126. [Google Scholar]
- Zeuner, B.; Jers, C.; Mikkelsen, J.D.; Meyer, A.S. Methods for Improving Enzymatic Trans-Glycosylation for Synthesis of Human Milk Oligosaccharide Biomimetics. J. Agric. Food Chem. 2014, 62, 9615–9631. [Google Scholar] [CrossRef]
- Adlercreutz, P. Comparison of Lipases and Glycoside Hydrolases as Catalysts in Synthesis Reactions. Appl. Microbiol. Biotechnol. 2016, 101, 513–519. [Google Scholar] [CrossRef]
- Milliasseau, D.; Jeftić, J.; Pessel, F.; Plusquellec, D.; Benvegnu, T. Transformation of Pectins into Non-Ionic or Anionic Surfactants Using a One-Pot and Cascade Mode Process. Molecules 2021, 26, 1956. [Google Scholar] [CrossRef]
- Ngo, N.T.N.; Linares-Pastén, J.A.; Grey, C.; Adlercreutz, P. Synthesis of Novel Oligomeric Anionic Alkyl Glycosides Using Laccase/TEMPO Oxidation and Cyclodextrin glucanotransferase (CGTase)-Catalyzed Transglycosylation. Biotechnol. Bioeng. 2021, 118, 2548–2558. [Google Scholar] [CrossRef]
- Ngo, N.T.N.; Grey, C.; Adlercreutz, P. Efficient Laccase/TEMPO Oxidation of Alkyl Glycosides: Effects of Carbohydrate Group and Alkyl Chain Length. J. Biotechnol. 2020, 324, 100026. [Google Scholar] [CrossRef]
- Hayes, D.G.; Smith, G.A. Biobased Surfactants: Overview and Industrial State of the Art. In Biobased Surfactants: Synthesis, Properties, and Applications; Academic Press: New York, NY, USA; AOCS Press: Champaign, IL, USA, 2019; pp. 3–38. [Google Scholar] [CrossRef]
- Ribeiro, M.H.L.; Carvalho, P.; Martins, T.S.; Faustino, C.M.C. Lipoaminoacids Enzyme-Based Production and Application as Gene Delivery Vectors. Catalysts 2019, 9, 977. [Google Scholar] [CrossRef]
- Müller, H.; Godehard, S.P.; Palm, G.J.; Berndt, L.; Badenhorst, C.P.S.; Becker, A.K.; Lammers, M.; Bornscheuer, U.T. Discovery and Design of Family VIII Carboxylesterases as Highly Efficient Acyltransferases. Angew. Chem. Int. Ed. 2021, 60, 2013–2017. [Google Scholar] [CrossRef]
- Godehard, S.P.; Müller, H.; Badenhorst, C.P.S.; Stanetty, C.; Suster, C.; Mihovilovic, M.D.; Bornscheuer, U.T. Efficient Acylation of Sugars and Oligosaccharides in Aqueous Environment Using Engineered Acyltransferases. ACS Catal. 2021, 11, 2831–2836. [Google Scholar] [CrossRef]
- Reis, P.; Malmsten, M.; Nydén, M.; Folmer, B.; Holmberg, K. Interactions between Lipases and Amphiphiles at Interfaces. J. Surfactants Deterg. 2019, 22, 1047–1058. [Google Scholar] [CrossRef]
- Patti, A.; Sanfilippo, C. Stereoselective Promiscuous Reactions Catalyzed by Lipases. Int. J. Mol. Sci. 2022, 23, 2675. [Google Scholar] [CrossRef] [PubMed]
- Jocquel, C.; Muzard, M.; Plantier-Royon, R.; Rémond, C. An Integrated Enzymatic Approach to Produce Pentyl Xylosides and Glucose/Xylose Laurate Esters from Wheat Bran. Front. Bioeng. Biotechnol. 2021, 9, 647442. [Google Scholar] [CrossRef]
- Gérard, D.; Méline, T.; Muzard, M.; Deleu, M.; Plantier-Royon, R.; Rémond, C. Enzymatically-Synthesized Xylo-Oligosaccharides Laurate Esters as Surfactants of Interest. Carbohydr. Res. 2020, 495, 108090. [Google Scholar] [CrossRef]
- Gaber, Y.; Törnvall, U.; Orellana-Coca, C.; Ali Amin, M.; Hatti-Kaul, R. Enzymatic Synthesis of N-Alkanoyl-N-Methylglucamide Surfactants: Solvent-Free Production and Environmental Assessment. Green Chem. 2010, 12, 1817–1825. [Google Scholar] [CrossRef]
- Lubberink, M.; Finnigan, W.; Schnepel, C.; Baldwin, C.R.; Turner, N.J.; Flitsch, S.L. One-Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation. Angew. Chem. Int. Ed. 2022, 61, e202205054. [Google Scholar] [CrossRef]
- Laborda, P.; Lyu, Y.-M.; Parmeggiani, F.; Lu, A.-M.; Wang, W.-J.; Huang, Y.-Y.; Huang, K.; Guo, J.; Liu, L.; Flitsch, S.L.; et al. An Enzymatic N-Acylation Step Enables the Biocatalytic Synthesis of Unnatural Sialosides. Angew. Chem. 2020, 132, 5346–5349. [Google Scholar] [CrossRef]
- Linhorst, M.; Wattjes, J.; Moerschbacher, B.M. Chitin Deacetylase as a Biocatalyst for the Selective N-Acylation of Chitosan Oligo- and Polymers. ACS Catal. 2021, 11, 14456–14466. [Google Scholar] [CrossRef]
- Ke, F.; Xu, Y.; Zhu, S.; Lin, X.; Lin, C.; Zhou, S.; Su, H. Electrochemical N-Acylation Synthesis of Amides under Aqueous Conditions. Green Chem. 2019, 21, 4329–4333. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Castro, V.; Rodríguez, H.; Albericio, F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS Comb. Sci. 2015, 18, 1–14. [Google Scholar] [CrossRef]
- Agger, J.W.; Isaksen, T.; Várnai, A.; Vidal-Melgosa, S.; Willats, W.G.T.; Ludwig, R.; Horn, S.J.; Eijsink, V.G.H.; Westereng, B. Discovery of LPMO Activity on Hemicelluloses Shows the Importance of Oxidative Processes in Plant Cell Wall Degradation. Proc. Natl. Acad. Sci. USA 2014, 111, 6287–6292. [Google Scholar] [CrossRef] [PubMed]
- Westereng, B.; Arntzen, M.T.; Aachmann, F.L.; Várnai, A.; Eijsink, V.G.H.; Agger, J.W. Simultaneous Analysis of C1 and C4 Oxidized Oligosaccharides, the Products of Lytic Polysaccharide Monooxygenases Acting on Cellulose. J. Chromatogr. A 2016, 1445, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Westereng, B.; Kračun, S.K.; Leivers, S.; Arntzen, M.; Aachmann, F.L.; Eijsink, V.G.H. Synthesis of Glycoconjugates Utilizing the Regioselectivity of a Lytic Polysaccharide Monooxygenase. Sci. Rep. 2020, 10, 13197. [Google Scholar] [CrossRef] [PubMed]
- Koskela, S.; Wang, S.; Fowler, P.M.P.; Tan, F.; Zhou, Q. Structure and Self-Assembly of Lytic Polysaccharide Monooxygenase-Oxidized Cellulose Nanocrystals. ACS Sustain. Chem. Eng. 2021, 9, 11331–11341. [Google Scholar] [CrossRef]
- Karnaouri, A.; Chorozian, K.; Zouraris, D.; Karantonis, A.; Topakas, E.; Rova, U.; Christakopoulos, P. Lytic Polysaccharide Monooxygenases as Powerful Tools in Enzymatically Assisted Preparation of Nano-Scaled Cellulose from Lignocellulose: A Review. Bioresour. Technol. 2022, 345, 126491. [Google Scholar] [CrossRef]
- Mathieu, Y.; Cleveland, M.E.; Brumer, H. Active-Site Engineering Switches Carbohydrate Regiospecificity in a Fungal Copper Radical Oxidase. ACS Catal. 2022, 12, 10264–10275. [Google Scholar] [CrossRef]
- Ribeaucourt, D.; Saker, S.; Navarro, D.; Bissaro, B.; Drula, E.; Correia, L.O.; Haon, M.; Grisel, S.; Lapalu, N.; Henrissat, B.; et al. Identification of Copper-Containing Oxidoreductases in the Secretomes of Three Colletotrichum Species with a Focus on Copper Radical Oxidases for the Biocatalytic Production of Fatty Aldehydes. Appl. Environ. Microbiol. 2021, 87, e01526-21. [Google Scholar] [CrossRef]
- Ngo, N.T.N.; Grey, C.; Adlercreutz, P. Chemoenzymatic Synthesis of the PH Responsive Surfactant Octyl β-D-Glucopyranoside Uronic Acid. Appl. Microbiol. Biotechnol. 2019, 104, 1055–1062. [Google Scholar] [CrossRef]
- Méline, T.; Muzard, M.; Deleu, M.; Rakotoarivonina, H.; Plantier-Royon, R.; Rémond, C. D-Xylose and l-Arabinose Laurate Esters: Enzymatic Synthesis, Characterization and Physico-Chemical Properties. Enzym. Microb. Technol. 2018, 112, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Guan, A.; Hou, Y.; Yang, R.; Qin, J. Enzyme Engineering for Functional Lipids Synthesis: Recent Advance and Perspective. Bioresour. Bioprocess. 2024, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Helleckes, L.M.; Hemmerich, J.; Wiechert, W.; von Lieres, E.; Grünberger, A. Machine Learning in Bioprocess Development: From Promise to Practice. Trends Biotechnol. 2023, 41, 817–835. [Google Scholar] [CrossRef] [PubMed]
- Qi, N.; Liu, J.; Song, W.; Liu, J.; Gao, C.; Chen, X.; Guo, L.; Liu, L.; Wu, J. Rational Design of Phospholipase D to Improve the Transphosphatidylation Activity for Phosphatidylserine Synthesis. J. Agric. Food Chem. 2022, 70, 6709–6718. [Google Scholar] [CrossRef]
- Kim, Y.J.; Siziya, I.N.; Hong, S.; Lee, G.Y.; Seo, M.J.; Kim, Y.R.; Yoo, S.H.; Park, C.S.; Seo, D.H. Biosynthesis of Glyceride Glycoside (Nonionic Surfactant) by Amylosucrase, a Powerful Glycosyltransferase. Food Sci. Biotechnol. 2021, 30, 267–276. [Google Scholar] [CrossRef]
- Harahap, A.F.P.; Treinen, C.; Van Zyl, L.J.; Williams, W.T.; Conrad, J.; Pfannstiel, J.; Klaiber, I.; Grether, J.; Hiller, E.; Vahidinasab, M.; et al. Glucoselipid Biosurfactant Biosynthesis Operon of Rouxiella badensis DSM 100043T: Screening, Identification, and Heterologous Expression in Escherichia coli. Microorganisms 2025, 13, 1664. [Google Scholar] [CrossRef]
- Vares, C.A.; Agostinho, S.P.; Fred, A.L.N.; Faria, N.T.; Rodrigues, C.A.V. Machine Learning Strategies for Forecasting Mannosylerythritol Lipid Production Through Fermentation: A Proof-of-Concept. Appl. Sci. 2025, 15, 3709. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, W.; Lin, L.; Wang, T.; Wei, P.; Ledesma-Amaro, R.; Zhang, A.H.; Ji, X.J. A Robust Soft Sensor Based on Artificial Neural Network for Monitoring Microbial Lipid Fermentation Processes Using Yarrowia lipolytica. Biotechnol. Bioeng. 2023, 120, 1015–1025. [Google Scholar] [CrossRef]
- Al-Wahaibi, Y.; Al-Hadrami, H.; Al-Bahry, S.; Elshafie, A.; Al-Bemani, A.; Joshi, S. Injection of Biosurfactant and Chemical Surfactant Following Hot Water Injection to Enhance Heavy Oil Recovery. Pet. Sci. 2016, 13, 100–109. [Google Scholar] [CrossRef]
- Bhardwaj, G.; Cameotra, S.S.; Chopra, H.K. Utilization of Oleo-Chemical Industry by-Products for Biosurfactant Production. AMB Express 2013, 3, 68. [Google Scholar] [CrossRef]
- Thakur, V.; Baghmare, P.; Verma, A.; Verma, J.S.; Geed, S.R. Recent Progress in Microbial Biosurfactants Production Strategies: Applications, Technological Bottlenecks, and Future Outlook. Bioresour. Technol. 2024, 408, 131211. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zu, Y.; Li, X.; Meng, Q.; Long, X. Recent Progress towards Industrial Rhamnolipids Fermentation: Process Optimization and Foam Control. Bioresour. Technol. 2020, 298, 122394. [Google Scholar] [CrossRef] [PubMed]
- Tiso, T.; Ihling, N.; Kubicki, S.; Biselli, A.; Schonhoff, A.; Bator, I.; Thies, S.; Karmainski, T.; Kruth, S.; Willenbrink, A.L.; et al. Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Front. Bioeng. Biotechnol. 2020, 8, 976. [Google Scholar] [CrossRef] [PubMed]
- Brito, H.A.; Napp, A.P.; Pereira, E.; Bach, E.; Borowski, J.V.B.; Passaglia, L.M.P.; Melo, V.M.M.; Moreira, R.; Foster, E.J.; Lopes, F.C.; et al. Enhanced Low-Cost Lipopeptide Biosurfactant Production by Bacillus velezensis from Residual Glycerin. Bioprocess Biosyst. Eng. 2024, 47, 1555–1570. [Google Scholar] [CrossRef]
- Begum, W.; Saha, B.; Mandal, U. A Comprehensive Review on Production of Bio-Surfactants by Bio-Degradation of Waste Carbohydrate Feedstocks: An Approach towards Sustainable Development. RSC Adv. 2023, 13, 25599–25615. [Google Scholar] [CrossRef]
- Dabaghi, S.; Ataei, S.A.; Taheri, A. Production of Rhamnolipid Biosurfactants in Solid-State Fermentation: Process Optimization and Characterization Studies. BMC Biotechnol. 2023, 23, 2. [Google Scholar] [CrossRef]
- Nascimento, M.F.; Keković, P.; Ribeiro, I.A.C.; Faria, N.T.; Ferreira, F.C. Novel Organic Solvent Nanofiltration Approaches for Microbial Biosurfactants Downstream Processing. Membranes 2023, 13, 81. [Google Scholar] [CrossRef]
- Najmi, Z.; Ebrahimipour, G.; Franzetti, A.; Banat, I.M. In Situ Downstream Strategies for Cost-Effective Bio/Surfactant Recovery. Biotechnol. Appl. Biochem. 2018, 65, 523–532. [Google Scholar] [CrossRef]
- de Andrade Bustamante, R.; de Oliveira, J.S.; dos Santos, B.F. Modeling Biosurfactant Production from Agroindustrial Residues by Neural Networks and Polynomial Models Adjusted by Particle Swarm Optimization. Environ. Sci. Pollut. Res. 2023, 30, 6466–6491. [Google Scholar] [CrossRef]
- Bongartz, P.; Karmainski, T.; Meyer, M.; Linkhorst, J.; Tiso, T.; Blank, L.M.; Wessling, M. A Novel Membrane Stirrer System Enables Foam-Free Biosurfactant Production. Biotechnol. Bioeng. 2023, 120, 1269–1287. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Villa, J.M.; Mateos-Díaz, J.C.; Rodríguez-González, J.A.; Camacho-Ruíz, R.M. Optimization of Lipopeptide Biosurfactant Production by Salibacterium sp. 4CTb in Batch Stirred-Tank Bioreactors. Microorganisms 2022, 10, 983. [Google Scholar] [CrossRef] [PubMed]
- Parthipan, P.; Elumalai, P.; Sathishkumar, K.; Sabarinathan, D.; Murugan, K.; Benelli, G.; Rajasekar, A. Biosurfactant and Enzyme Mediated Crude Oil Degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. 3 Biotech 2017, 7, 278. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.S.; Koul, Y.; Varjani, S.; Pandey, A.; Ngo, H.H.; Chang, J.S.; Wong, J.W.C.; Bui, X.T. A Critical Review on Various Feedstocks as Sustainable Substrates for Biosurfactants Production: A Way towards Cleaner Production. Microb. Cell Factories 2021, 20, 120. [Google Scholar] [CrossRef]
- Veenanadig, N.K.; Gowthaman, M.K.; Karanth, N.G.K. Scale up Studies for the Production of Biosurfactant in Packed Column Bioreactor. Bioprocess Eng. 2000, 22, 95–99. [Google Scholar] [CrossRef]
- Ceresa, C.; Fracchia, L.; Sansotera, A.C.; De Rienzo, M.A.D.; Banat, I.M. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023, 15, 2156. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, D.; Sukhbir-Singh, G.M.; Karamchandani, B.M.; Aseri, G.K.; Banat, I.M.; Satpute, S.K. Biosurfactants: Forthcomings and Regulatory Affairs in Food-Based Industries. Molecules 2023, 28, 2823. [Google Scholar] [CrossRef]
- Kabeil, S.S.A.; Darwish, A.M.G.; Abdelgalil, S.A.; Shamseldin, A.; Salah, A.; Taha, H.A.I.M.; Bashir, S.I.; Hafez, E.E.; El-Enshasy, H.A. Rhamnolipids Bio-Production and Miscellaneous Applications towards Green Technologies: A Literature Review. PeerJ 2025, 13, e18981. [Google Scholar] [CrossRef]
- Poveda-Giraldo, J.A.; Solarte-Toro, J.C.; Treinen, C.; Noll, P.; Henkel, M.; Hausmann, R.; Cardona Alzate, C.A. Assessing the Feasibility and Sustainability of a Surfactin Production Process: A Techno-Economic and Environmental Analysis. Environ. Sci. Pollut. Res. 2024, 32, 27699–27714. [Google Scholar] [CrossRef]
- Verma, R.; Sharma, S.; Kundu, L.M.; Maiti, S.K.; Pandey, L.M. Enhanced Production of Biosurfactant by Bacillus subtilis RSL2 in Semicontinuous Bioreactor Utilizing Molasses as a Sole Substrate. J. Biotechnol. 2023, 362, 24–35. [Google Scholar] [CrossRef]
- Makkar, R.S.; Cameotra, S.S.; Banat, I.M. Advances in Utilization of Renewable Substrates for Biosurfactant Production. AMB Express 2011, 1, 5. [Google Scholar] [CrossRef]
- Banat, I.M.; Satpute, S.K.; Cameotra, S.S.; Patil, R.; Nyayanit, N.V. Cost Effective Technologies and Renewable Substrates for Biosurfactants’ Production. Front. Microbiol. 2014, 5, 697. [Google Scholar] [CrossRef]



| General Category | Specific Biosurfactant | Molecular Weight | Representative Microorganisms | Biological Activities | Applications | References |
|---|---|---|---|---|---|---|
| Glycolipids | General group | Low-molecular-weight (LMW) | Bacillus megaterium, Shewanella algae, Lactobacillus acidophilus, Brevibacterium casei, Gordonia sp., Streptomyces enissocaesilis | Antimicrobial, antibiofilm, antiadhesive, biostimulant | Petroleum recovery, soap, healthcare, bioremediation, agriculture | [17,18,19] |
| Rhamnolipids | LMW | Pseudomonas aeruginosa, Burkholderia thailandensis, Burkholderia plantarii, B. pseudomallei, Achromobacter xylosoxidans | Antifungal, pro-apoptotic, anti-skin-cancer | Biomedical and pharmaceutical industries | [20,21,22] | |
| Sophorolipids | LMW | Starmerella bombicola, Candida albicans, C. glabrata, Metschnikowia churdharensis, Rhodotorula babjevae, Pichia anomala, R. mucilaginosa | Anticancer, antibacterial, antifungal, necrosis induction | Food emulsifiers, bioplastics, oil extraction | [23,24,25] | |
| Mannosyl-erythritol lipids | LMW | Candida antarctica, Ustilago maydis, Pseudozyma tsukubaensis | Antiaging, antioxidant, antidandruff, anticancer, biostimulant, antifungical | Cosmetics, skincare, pharma, agriculture | [26,27] | |
| Trehalolipids | LMW | Fusarium fujikuroi, Rhodococcus sp. | Hydrocarbon degradation, bioremediation | Environmental applications | [28,29] | |
| Lipopeptides/Lipoproteins | Glyco-lipoproteins | LMW | Lactobacillus jensenii, L. gasseri | Antimicrobial, antibiofilm | Medical and probiotic industries | [30] |
| Surfactin | LMW | Bacillus subtilis, Pediococcus dextrinicus, Streptomyces sp., Pseudomonas gessardii, B. pumilus, Geobacillus thermodenitrificans | Antiadhesive, antiviral, antitumoral, anticoagulant | Food, pharma, biotechnology | [31,32] | |
| Iturin and Fengycin | LMW | Bacillus subtilis | Potent antifungal activity | Agricultural biocontrol | [33] | |
| Kurstakins | LMW | Bacillus thuringiensis kurstaki | Antifungal | Biocontrol, crop protection | [34] | |
| Phospholipids/Fatty Acids | — | LMW | Thiobacillus thiooxidans, Rhodococcus erythropolis, Bacillus azotoformans, B. sphaericus, B. anthracis | Emulsifying and surfactant activity | Laundry, detergent, and textile industry | [35] |
| Polymeric surfactants | Liposan | High-molecular-weight (HMW) | Candida lipolytica | Emulsifying, biodegradable | Wastewater treatment, oil recovery | [36] |
| Emulsan | HMW | Acinetobacter calcoacetius | Oil removal, bioemulsification | Bioremediation, petrochemical | [37] | |
| Alasan | HMW | Acinetobacter radioresistens | Biodegradation enhancement | Environmental cleanup | [38] | |
| Mannoprotein | HMW | Saccharomyces cerevisiae | Immunological and antioxidant properties | Food, biopharma, vaccine adjuvants | [39] | |
| Particulate surfactants | Vesicles and Fimbriae | HMW | Acinetobacter calcoacetius | Hydrocarbon uptake, microemulsion formation | Environmental bioremediation | [40] |
| Product | Microbial Route Advantages | Microbial Route Disadvantages | Enzymatic Route Advantages | Enzymatic Route Disadvantages | References |
|---|---|---|---|---|---|
| RLs | Well-established fed-batch STR process; titers 40–50 g.·L−1, Yp/s ≈ 0.3–0.4; ISPR via foam facilitates pre-concentration; good scalability with external column; feasible use of glucose or glycerol. | Intense foam; biosafety concerns with P. aeruginosa; cost increase with antifoam; limited conversion of crude triglycerides without pretreatment. | In vitro/in vivo lipases enhance WCO assimilation; maintain reasonable titers with residual feed; lower raw material cost; reduced soap formation via pre-hydrolysis. | Cost of enzymatic step; variability of feedstock requires standardization; foam–enzyme synergy requires control; higher operational complexity. | [72,76,77,78,71] |
| SLs | High titers (>200 g·L−1); productivity >1 g·L−1. h−1; industrial TRL; co-feed of glucose/molasses + C16–C18 oils; robust STR process; compatible with ISPR (foam). | Acid/lactone mixture; high foam and viscosity; high cost of virgin oils. | WCO with endogenous/exogenous lipolysis maintains ~140 g·L−1 and ~70% yield; supports circular economy; lower overall cost; stable STR performance. | Compound profile may vary with residue; pretreatment/filtration needed; potential enzymatic cost. | [79,80,82] |
| MELs | Titers 100–165 g·L−1 in fed-batch; genetic toolbox allows A–C control; possible hydrophilic-carbon-only route simplifies upstream/downstream; demonstrated scalability. | Complex downstream with high oil content (viscosity/extraction); oil cost. | Endogenous or co-applied lipases enable consolidated routes (lipase + MEL) with oily residues; lower feed cost; comparable yields when optimized. | Enzyme integration increases process complexity and CIP; feedstock variability; excessive oil still complicates downstream; exogenous enzyme cost. | [83,41,79,85,95] |
| TLs | Utilizes challenging hydrophobic substrates (hexadecane, diesel, WCO); effective surface tension reduction; established batch/fed-batch STR. | Low titers (0.2–2 g·L−1; ~2.1 g·L−1 at 80 L); foam/toxicity from substrate; complex downstream; O2 transfer limitations. | Pre-hydrolysis with in vitro lipase can increase titers to ~7–8 g·L−1; lower feed cost; recovery facilitated via foam. | Lipase cost and management; higher residual feed variability; additional control loops for foam and enzyme. | [6,29,86] |
| Target Molecules | Enzymes Involved | Reaction Type | Substrate | Key Functionalization | References |
|---|---|---|---|---|---|
| Alkyl glycosides | GHs (β-mannanase, xylanase) | Glycosidic bond formation (transglycosylation/reverse hydrolysis) | Carbohydrates + fatty alcohols | Non-ionic, biodegradable surfactants | [109,111,112,113,114] |
| Amino acid-derived surfactants | Proteases | Peptide bond formation | Amino acids | Biodegradable, mild surfactants | [115,116] |
| Sugar esters | Acyltransferases (e.g., EstCE1) | Esterification | Glucose, maltose, maltotriose | Short-chain sugar esters | [117,118] |
| Fatty esters | Lipases (e.g., CALB) | Transesterification | Lignocellulosic C5 sugars + fatty acids | Laurate esters | [119,120,121,122,123] |
| MEGA surfactants | CAR (carboxylic acid reductase) | Adenylation + amide bond formation | Fatty acids + glucamide | Non-ionic, stable under alkaline conditions | [124,140] |
| Chitin/chitosan derivatives | CDAs | N-acylation | Chitin/chitosan | Functional groups for click chemistry | [125,126,127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Matosinhos, R.D.; Cascaes, J.M.; Gerloff, D.K.B.; de Oliveira, D.; Monteiro, A.R.; Calado, H.D.R.; Andrade, C.J.d. Integrated Enzymatic and Fermentative Pathways for Next-Generation Biosurfactants: Advances in Process Design, Functionalization, and Industrial Scale-Up. Fermentation 2026, 12, 31. https://doi.org/10.3390/fermentation12010031
Matosinhos RD, Cascaes JM, Gerloff DKB, de Oliveira D, Monteiro AR, Calado HDR, Andrade CJd. Integrated Enzymatic and Fermentative Pathways for Next-Generation Biosurfactants: Advances in Process Design, Functionalization, and Industrial Scale-Up. Fermentation. 2026; 12(1):31. https://doi.org/10.3390/fermentation12010031
Chicago/Turabian StyleMatosinhos, Renato Dias, Juliano Moura Cascaes, Djulienni Karoline Bin Gerloff, Debora de Oliveira, Alcilene Rodrigues Monteiro, Hállen Daniel Rezende Calado, and Cristiano José de Andrade. 2026. "Integrated Enzymatic and Fermentative Pathways for Next-Generation Biosurfactants: Advances in Process Design, Functionalization, and Industrial Scale-Up" Fermentation 12, no. 1: 31. https://doi.org/10.3390/fermentation12010031
APA StyleMatosinhos, R. D., Cascaes, J. M., Gerloff, D. K. B., de Oliveira, D., Monteiro, A. R., Calado, H. D. R., & Andrade, C. J. d. (2026). Integrated Enzymatic and Fermentative Pathways for Next-Generation Biosurfactants: Advances in Process Design, Functionalization, and Industrial Scale-Up. Fermentation, 12(1), 31. https://doi.org/10.3390/fermentation12010031

