Novel Fermentation Techniques for Improving Food Functionality: An Overview
Abstract
1. Introduction
2. Traditional Fermentation Processes
2.1. Alcoholic Fermentation
2.2. Lactic Acid Fermentation
2.3. Acetic Acid Fermentation
3. Novel Food Fermentation Technologies
3.1. Precision Fermentation
3.2. Microbial Consortia
3.3. Gene Engineering
Parameter | Traditional Fermentation | Novel Fermentation | References |
Process Control | Relies on natural conditions, leading to varied outcomes and potential off-flavors | controlled environments ensure consistency. | [34,35,36,37] |
Example: Acetic acid fermentation for vinegar, allowing for manual regulation of oxygen levels. | Example: Advanced AI and methods, like quorum sensing in precision brewing, improve microbial signal control and genetic engineering. | ||
Sustainability | Focuses on local resources but can demand significant water and energy, generating waste. | Sustainability goals aim for resource-efficient practices and waste reduction in production. | [38,39] |
Example: Alcoholic fermentation in wine exemplifies high water and energy demands | Example: Precision fermentation minimizes high water and energy demands. | ||
Production Consistency | Variability in flavor and texture results from reliance on natural fermentation and external factors, affecting product quality. | The fermentation processes tend to be better controlled by strain selection to reach higher reliability in product quality. | [40,41] |
Example: Swiss cheese from propionic acid fermentation tends to vary in texture and flavors. | Example: Precision fermentation standardizes dairy proteins across plant-based products. | ||
Fermentation Time | Can take longer (days to weeks). | The time of fermentation is shortened due to the improvement of the processes and active growth of the engineered strains. | [42] |
Example: The fermentation of cabbage into sauerkraut takes about 1 to 4 weeks through lactic acid fermentation. | Example: Precision fermentation optimizes production time for dairy proteins. | ||
Product Diversity | Conventional techniques produce diverse products influenced by microbial diversity, reflecting cultural heritage. | Novel technologies enable specific product qualities that traditional methods cannot achieve such as cultured meat proteins. | [42,43] |
Example: Saccharomyces cerevisiae in alcoholic beverages and various fermented foods like ‘fufu’ and ‘dosa’. | Example: Innovative methods, like synthetic biology and metabolic engineering, create diverse products, including lab-grown proteins and bioactive compounds. |
3.4. Synthetic Biology and Metabolic Engineering
3.5. Quorum Sensing Regulation
3.6. High-Pressure Processing (HPP)
3.7. Enzymatic Fermentation
3.8. Artificial Intelligence (AI)-Driven Fermentation Optimization
3.9. Immobilized Enzymes Fermentation
Innovation | Description | Nutritional/Functional Benefits | References |
Precision fermentation | Using microorganisms, like yeast, fungi, or bacteria, at the molecular level enables the production of proteins, enzymes, fats, and other complex compounds. | Benefits include controlling allergens and reducing cholesterol and saturated fats. | [90] |
Microbial consortia | This involves a structured microbial community (bacteria, fungi, algae, archaea) that coexists and interacts in a shared environment. | For producing probiotics and improving protein quality. | [91] |
Synthetic Biology and Metabolic engineering | Applying biological modifications for uses in healthcare, industry, agriculture, and environmental protection. | Enhanced production of essential nutrients, including vitamins, amino acids, and omega-3s. | [92] |
Genetic engineering | Genetically modifying microorganisms for targeted compound production. | Creating functional foods while enhancing flavor and extending shelf life. | [93] |
Quorum sensing regulation | It serves as a powerful tool for fine-tuning fermentation processes. | Enhanced bioavailability, community stability, and resistance mechanism. | [94] |
High-pressure processing (HPP) | A high-pressure method that preserves food by inactivating harmful microbes and enzymes without heat. | Maintains vitamins, bioactive compounds, flavor, aroma, and reduces enzyme activity, extending shelf life. | [95] |
Enzymatic fermentation | It is a biological process where enzymes (protein catalysts) convert organic compounds into simpler substances. | Enhances nutrient bioavailability, increases levels of vitamins, and reduces allergens and toxins. | [96] |
Artificial Intelligence (AI)-Driven Fermentation Optimization | AI technologies, like machine learning and data analytics, enhance fermentation in food and biotechnology. | Improved nutrient retention, higher probiotic content, consistent quality, and shorter fermentation times. | [97] |
Immobilized Enzymes Fermentation | Enzymes are immobilized on a solid support rather than suspended freely in the medium. | Enzyme reusability, cost savings, improved stability and activity, and better control over fermentation, resulting in increased yield and purity. | [98] |
4. Safety Issues and Risk Assessment of New Fermentation Technologies
5. Market Trends and Consumer Acceptance of Fermented Foods
6. Future Directions and Opportunities in Novel Fermentation Technologies
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ağagündüz, D.; Yılmaz, B.; Koçak, T.; Altıntaş Başar, H.B.; Rocha, J.M.; Özoğul, F. Novel Candidate Microorganisms for Fermentation Technology: From Potential Benefits to Safety Issues. Foods 2022, 11, 3074. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, C.E.; Olaniran, A.F.; Adeyi, O.; Adeyi, A.J.; Ojediran, J.O.; Adewumi, A.D.; Iranloye, Y.M.; Erinle, O.C. Drying characteristics of fermented-cooked cassava chips used in the production of complementary food: Mathematical and Gaussian process regression modeling approaches. J. Food Process Eng. 2021, 44, e13715. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Olojede, A.O.; Sanni, A.I.; Banwo, K.; Michael, T. Improvement of Texture, Nutritional Qualities, and Consumers’ Perceptions of Sorghum-Based Sourdough Bread Made with Pediococcus pentosaceus and Weissella confusa Strains. Fermentation 2022, 8, 32. [Google Scholar] [CrossRef]
- Galimberti, A.; Bruno, A.; Agostinetto, G.; Casiraghi, M.; Guzzetti, L.; Labra, M. Fermented food products in the era of globalization: Tradition meets biotechnology innovations. Curr. Opin. Biotechnol. 2021, 70, 36–41. [Google Scholar] [CrossRef]
- Mukherjee, A.; Gómez-Sala, B.; O’Connor, E.M.; Kenny, J.G.; Cotter, P.D. Global Regulatory Frameworks for Fermented Foods: A Review. Front. Nutr. 2022, 9, 902642. [Google Scholar] [CrossRef]
- Malomo, A.A.; Olawoye, B.; Olaniran, A.F.; Olaniyi, O.I.; Adedayo, A.; Adeniran, H.A.; Abiose, S.H. Evaluation of sugar and free amino acid during fermentation of ogi from maize, acha and sorghum. Food Sci. Appl. Biotechnol. 2021, 4, 111–118. [Google Scholar] [CrossRef]
- Perez, D.; Assof, M.; Bolcato, E.; Sari, S.; Fanzone, M. Combined effect of temperature and ammonium addition on fermentation profile and volatile aroma composition of Torrontes Riojano wines. LWT 2018, 87, 488–497. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez-Dodero, M.C.; Jurado, M.S.; Puertas, B.; Barroso, C.G.; Guillén, D.A. Analytical Characterization and Sensory Analysis of Distillates of Different Varieties of Grapes Aged by an Accelerated Method. Foods 2020, 9, 277. [Google Scholar] [CrossRef]
- Yang, Y.; Lan, G.; Tian, X.; He, L.; Li, C.; Zeng, X.; Wang, X. Effect of Fermentation Parameters on Natto and Its Thrombolytic Property. Foods 2021, 10, 2547. [Google Scholar] [CrossRef]
- Kłosowski, G.; Mikulski, D.; Pielech-Przybylska, K. Pyrazines Biosynthesis by Bacillus Strains Isolated from Natto Fermented Soybean. Biomolecules 2021, 11, 1736. [Google Scholar] [CrossRef]
- Handa, C.L.; Lima, F.S.; Guelfi, M.F.G.; Fernandes, M.S.; Georgetti, S.R.; Ida, E.I. Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity. Food Chem. 2019, 271, 274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, J.; Zhang, A.; Yang, S.T. Propionic acid fermentation. In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers; Wiley: Hoboken, NJ, USA, 2013; pp. 331–350. [Google Scholar]
- Tubb, C.; Seba, T. Rethinking food and agriculture 2020–2030: The second domestication of plants and animals, the disruption of the cow, and the collapse of industrial livestockfarming. Ind. Biotechnol. 2021, 17, 57–72. [Google Scholar] [CrossRef]
- Hassoun, A.A.; El-Din Bekhit, A.R.; Jambrak, J.M.; Regenstein, F.; Chemat, J.D.; Morton, M.; Gudjónsdóttir, M.; Carpena, M.A.; Prieto, P. The fourth industrial revolution in the foodindustry—Part II: Emerging food trends. Crit. Rev. Food Sci. Nutr. 2022, 64, 407–437. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.V. Chapter 19 Medical biotechnology: Techniques and applications. In Omics Technologies and Bio-Engineering; Barh, D., Azevedo, V., Eds.; Academic Press: San Diego, CA, USA; Cambridge, MA, USA, 2018; Volume 1, pp. 449–469. [Google Scholar] [CrossRef]
- Gomes, A.M.V.; Carmo, T.S.; Carvalho, L.S.; Bahia, F.M.; Parachin, N.S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018, 6, 38. [Google Scholar] [CrossRef]
- Teng, T.S.; Chin, Y.L.; Chai, K.F.; Chen, W.N. Fermentation for future food systems. EMBO Rep. 2021, 22, e52680. [Google Scholar] [CrossRef]
- Nestlé Joins Forces with Perfect Day on Animal-Free Dairy Project. Available online: https://www.just-food.com/news/nestle-joins-forces-with-perfect-day-on-animal-free-dairy-project/ (accessed on 27 September 2024).
- Cullen, L. 5 Precision Fermentation Startups that Have Closed Major Funding Rounds. 2022. Available online: https://provegincubator.com/5-precision-fermentation-startups-that-have-closed-major-funding-rounds/ (accessed on 26 August 2025).
- Terefe, N.S. Recent Developments in Fermentation Technology: Toward the Next Revolution in Food Production; Academic Press: Cambridge, MA, USA, 2022; Chapter 5. [Google Scholar]
- Olojede, A.O.; Oahimire, I.O.; Gbande, J.I.; Osondu-Igbokwe, A.D.; Thomas, R.M.; Olojede, D.S.; Banwo, K. Evaluation of acha flour in the production of gluten-free sourdough cookies. Int. J. Food Sci. 2023, 58, 3244–3251. [Google Scholar] [CrossRef]
- Verni, M.; Minisci, A.; Convertino, S.; Nionelli, L.; Rizzello, C.G. Wasted bread as substrate for the cultivation of starters for the food industry. Front. Microbiol. 2020, 11, 293. [Google Scholar] [CrossRef]
- Nishi, T.; Ito, Y.; Nakamura, Y.; Yamaji, T.; Hashiba, N.; Tamai, M.; Yasohara, Y.; Ishii, J.; Kondo, A. One-step in vivo assembly of multiple DNA fragments and genomic integration in Komagataella phaffii. ACS Synth. Biol. 2022, 11, 644–654. [Google Scholar] [CrossRef]
- Du, P.; Huiwei, Z.; Haoqian, Z.; Ruisha, W.; Jianyi, H.; Ye, T.; Chunbo, L. De novo design of an intercellular signaling toolbox for multi-channel cell–cell communication and biological computation. Nat. Commun. 2020, 11, 4226. [Google Scholar] [CrossRef]
- Duncker, K.E.; Holmes, Z.A.; You, L. Engineered microbial consortia: Strategies and applications. Microb. Cell Fact. 2021, 20, 211. [Google Scholar] [CrossRef] [PubMed]
- Dini, I.; Laneri, S. Spices, condiments, extra virgin olive oil and aromas as not only flavorings, but precious allies for our wellbeing. Antioxidants 2021, 10, 868. [Google Scholar] [CrossRef] [PubMed]
- Johnston, T.G. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation. Nat. Commun. 2020, 11, 563. [Google Scholar] [CrossRef] [PubMed]
- Lino, F.; Bajic, D.; Vila, J.; Sánchez, A.; Sommer, M. Complex yeast–bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 2021, 12, 1498. [Google Scholar] [CrossRef]
- Salazar-Cerezo, S.; Kun, R.S.; de Vries, R.P.; Garrigues, S. CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzym. Microb. Technol. 2020, 133, 109463. [Google Scholar] [CrossRef]
- Ku, S.; Yang, S.; Lee, H.H.; Choe, D.; Johnston, T.; Ji, G.E. Biosafety assessment of Bifidobacterium animalis subsp. lactis AD011 used for human consumption as a probiotic microorganism. Food Control 2020, 117, 106985. [Google Scholar] [CrossRef]
- Herman, L.; Chemaly, M.; Cocconcelli, P.S.; Fernandez, P.; Klein, G.; Peixe, L.; Prieto, M.; Querol, A.; Suarez, J.E.; Sundh, I. The qualified presumption of safety assessment and its role in EFSA risk evaluations: 15 years past. FEMS Microbiol. Lett. 2019, 366, fny260. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Deckers, M.; Papazova, N.; Roosens, N.H.C. Detection strategy targeting a chloramphenicol resistance gene from genetically modified bacteria in food and feed products. Food Control 2020, 108, 106873. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Appl. Food Res. 2023, 3, 100253. [Google Scholar] [CrossRef]
- Mota, J.; Vilela, A. Aged to Perfection: The Scientific Symphony behind Port Wine, Vinegar, and Acetic Acid Bacteria. Fermentation 2024, 10, 200. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Xin, X.; Liu, D.; Zhang, W. Comparative analysis of traditional and modern fermentation for Xuecai and correlations between volatile flavor compounds and bacterial community. Front. Microbiol. 2021, 12, 631054. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Hassoun, A.; Zouari, A.; Tülbek, M.Ç.; Mefleh, M.; Aït-Kaddour, A.; Castellari, M. Fermentation for designing novel plant-based meat and dairy alternatives. Foods 2023, 12, 1005. [Google Scholar] [CrossRef] [PubMed]
- Aworh, O.C. African traditional foods and sustainable food security. Food Control 2023, 145, 109393. [Google Scholar] [CrossRef]
- Michel, M.; Eldridge, A.L.; Hartmann, C.; Klassen, P.; Ingram, J.; Meijer, G.W. Benefits and challenges of food processing in the context of food systems, value chains and sustainable development goals. Trends Food Sci. Technol. 2024, 104, 703. [Google Scholar] [CrossRef]
- Antone, U.; Ciprovica, I.; Zolovs, M.; Scerbaka, R.; Liepins, J. Propionic acid fermentation—Study of substrates, strains, and antimicrobial properties. Fermentation 2022, 9, 26. [Google Scholar] [CrossRef]
- Boukid, F.; Ganeshan, S.; Wang, Y.; Tülbek, M.Ç.; Nickerson, M.T. Bioengineered enzymes and precision fermentation in the food industry. Int. J. Mol. Sci. 2023, 24, 10156. [Google Scholar] [CrossRef]
- Sionek, B.; Szydłowska, A.; Küçükgöz, K.; Kołożyn-Krajewska, D. Traditional and new microorganisms in lactic acid fermentation of food. Fermentation 2023, 9, 1019. [Google Scholar] [CrossRef]
- Bhalla, T.C.; Savitri. Yeasts and traditional fermented foods and beverages. Yeast Divers. Hum. Welf. 2017, 53, 82. [Google Scholar]
- Cameron, D.E.; Bashor, C.J.; Collins, J.J. A brief history of synthetic biology. Nat. Rev. Microbiol. 2016, 12, 381. [Google Scholar] [CrossRef]
- Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol. 2018, 1, 514–525. [Google Scholar] [CrossRef]
- Park, H.S.; Jun, S.C.; Han, K.H.; Hong, S.B.; Yu, J.H. Diversity, application, and synthetic biology of industrially important Aspergillus fungi. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 161–202. [Google Scholar] [CrossRef]
- Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Machine learning applications in systems metabolic engineering. Curr. Opin. Biotechnol. 2020, 64, 1–9. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, P.; Li, N.; Li, J.; Chen, J.; Zhou, J. Production of 2-keto-L-gulonic acid by metabolically engineered Escherichia coli. Bioresour. Technol. 2020, 318, 124069. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Mishra, S.; Zhao, H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab. Eng. 2018, 50, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Pyne, M.E.; Narcross, L.; Martin, V.J.J. Engineering plant secondary metabolism in microbial systems. Plant Physiol. 2019, 179, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Roell, G.W.; Zha, J.; Carr, R.R.; Koffas, M.A.; Fong, S.S.; Tang, Y.J. Engineering microbial consortia by division of labor. Microb. Cell Factor. 2019, 18, 35. [Google Scholar] [CrossRef]
- Sikdar, R.; Elias, M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances. Expert Rev. Anti-Infect. Ther. 2020, 18, 1221–1233. [Google Scholar] [CrossRef]
- Shivaprasad, D.P.; Taneja, N.K.; Lakra, A.; Sachdev, D. In vitro and in situ abrogation of biofilm formation in E. coli by vitamin C through ROS generation, disruption of quorum sensing, and exopolysaccharide production. Food Chem. 2021, 341, 128171. [Google Scholar] [CrossRef]
- Hossain, I.; Mizan, F.R.; Roy, P.K.; Nahar, S.; Toushik, S.H.; Ashrafudoulla, M.; Jahid, I.K.; Lee, J.; Ha, S.D. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res. Int. 2021, 148, 110–595. [Google Scholar] [CrossRef]
- Wei, Q.; Bhasme, P.; Wang, Z.; Wang, L.; Wang, S.; Zeng, Y.; Wang, Y.; Ma, L.Z.; Li, Y. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeruginosa. J. Ethnopharmacol. 2020, 248, 112272. [Google Scholar] [CrossRef]
- Fidalgo, L.G.; Moreira, S.A.; Ormando, P.; Pinto, C.A.; Queirós, R.P.; Saraiva, J.A. Chapter 6—High-pressure processing associated with other technologies to change enzyme activity. In Foundations and Frontiers in Enzymology: Effect of High-Pressure Technologies on Enzymes; de Castro Leite Júnior, B.R., Tribst, A.A.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 141–168. [Google Scholar] [CrossRef]
- Sidirokastritis, N.D.; Tsiantoulas, I.; Tananaki, C.; Vareltzis, P. The effect of high hydrostatic pressure on tetracycline hydrochloride and sulfathiazole residues in various food matrices—comparison with ultrasound and heat treatment. Food Addit. Contam. Part A 2022, 39, 687–698. [Google Scholar] [CrossRef]
- Ademosun, O.T.; Ajanaku, K.O.; Adebayo, A.H.; Oloyede, M.O.; Okere, D.U.; Akinsiku, A.A.; Ajayi, S.O.; Ajanaku, C.O.; Dokunmu, T.M.; Owolabi, A.O. Physico-chemical, microbial and organoleptic properties of yoghurt fortified with tomato juice. J. Food Nutr. Res. 2019, 7, 810–814. [Google Scholar] [CrossRef]
- Thakur, M.; Modi, V.K. Emerging Technologies in Food Science. Available online: https://www.springerprofessional.de/en/emerging-technologies-in-food-science/18042750 (accessed on 4 January 2025).
- Sevenich, R.; Mathys, A. Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: A review. Compreh. Rev. Food Sci. Food Saf. 2018, 17, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Raghubeer, E.V.; Phan, B.N.; Onuoha, E.; Diggins, S.; Aguilar, V.; Swanson, S.; Lee, A. The use of high-pressure processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L.) water. Int. J. Food Microbiol. 2020, 331, 108697. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, O.P. Non-Thermal Processing of Foods; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- McGillin, M.R.; deRiancho, D.L.; DeMarsh, T.A.; Hsu, E.D.; Alcaine, S.D. Selective survival of protective cultures during high-pressure processing by leveraging freeze-drying and encapsulation. Foods 2022, 11, 2465. [Google Scholar] [CrossRef] [PubMed]
- Asaithambi, N.; Singh, S.K.; Singha, P. Current status of non-thermal processing of probiotic foods: A review. J. Food Eng. 2021, 303, 110567. [Google Scholar] [CrossRef]
- Balamurugan, S.; Gemmell, C.; Tsun Yin Lau, A.; Arvaj, L.; Strange, P.; Gao, A. High pressure processing during the drying of fermented sausages can enhance safety and reduce time required to produce a dry fermented product. Food Control 2020, 113, 107224. [Google Scholar] [CrossRef]
- Huang, Y.L.; Tsai, Y.H. Extraction of chitosan from squid pen waste by high hydrostatic pressure: Effects on physicochemical properties and antioxidant activities of chitosan. Int. J. Biol. Macromol. 2020, 160, 677–687. [Google Scholar] [CrossRef]
- Gavahian, M.; Pallares, N.; Al Khawli, F.; Ferrer, E.; Barba, F.J. Recent advances in the application of innovative food processing technologies for mycotoxins and pesticide reduction in foods. Trends Food Sci. Technol. 2020, 106, 209–2018. [Google Scholar] [CrossRef]
- Vieira, P.; Ribeiro, C.; Pinto, C.A.; Saraiva, J.A.; Barba, F.J. Application of HPP in food fermentation processes. In Present and Future of High Pressure Processing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 329–351. [Google Scholar] [CrossRef]
- Koubaa, M.; Barba, F.J.; Roohinejad, S.; Saraiva, J.; Lorenzo, J.M. New challenges and opportunities of food fermentation processes: Application of conventional and innovative techniques. Food Res. Int. 2018, 114, 88–100. [Google Scholar] [CrossRef]
- Duffuler, P.; Giarratano, M.; Naderi, N.; Suwal, S.; Marciniak, A.; Perreault, V.; Pouliot, Y. High hydrostatic pressure induced extraction and selective transfer of β-phosvitin from the egg yolk granule to plasma fractions. Food Chem. 2020, 321, 126696. [Google Scholar] [CrossRef]
- Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). Enzyme Nomenclature. Available online: https://iubmb.qmul.ac.uk/enzyme/ (accessed on 10 October 2024).
- Fadel, M.; AbdEl-Halim, S.; Sharada, H.; Yehia, A.; Ammar, M. Production of glucoamylase, α-amylase and cellulase by Aspergillus oryzae F-923 cultivated on wheat bran under solid state fermentation. J. Adv. Biol. Biotechnol. 2020, 23, 8–22. [Google Scholar] [CrossRef]
- Ganeshan, S.; Kim, S.H.; Vujanovic, V. Scaling-up production of plant endophytes in bioreactors: Concepts, challenges and perspectives. Bioresour. Bioprocess. 2021, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Pistikopoulos, E.N.; Barbosa-Povoa, A.; Lee, J.H.; Misener, R.; Mitsos, A.; Reklaitis, G.V.; Venkatasubramanian, V.; You, F.; Gani, R. Process systems engineering—The generation next? Comput. Chem. Eng. 2021, 147, 107252. [Google Scholar] [CrossRef]
- Brindhadevi, K.; Shanmuganathan, R.; Pugazhendhi, A.; Gunasekar, P.; Manigandan, S. Biohydrogen production using horizontal and vertical continuous stirred tank reactor—A numerical optimization. Int. J. Hydrogen Energy 2021, 46, 11305–11312. [Google Scholar] [CrossRef]
- Urtubia, A.; León, R.; Vargas, M. Identification of chemical markers to detect abnormal wine fermentation using support vector machines. Comput. Chem. Eng. 2021, 145, 107158. [Google Scholar] [CrossRef]
- Sipos, A.; Florea, A.; Arsin, M.; Fiore, U. Using neural networks to obtain indirect information about the state variables in an alcoholic fermentation process. Processes 2021, 9, 74. [Google Scholar] [CrossRef]
- Guadalupe-Daqui, M.; Chen, M.; Thompson-Witrick, K.; MacIntosh, A. Yeast morphology assessment through automated image analysis during fermentation. Fermentation 2021, 7, 44. [Google Scholar] [CrossRef]
- Chu, R.Y.; Li, S.X.; Zhu, L.D.; Yin, Z.H.; Hu, D.; Liu, C.C.; Mo, F. A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment, and biofuel production. Renew. Sust. Energy Rev. 2021, 139, 110689. [Google Scholar] [CrossRef]
- Sawant, A.M.; Vamkudoth, K.R. Biosynthetic process and strain improvement approaches for industrial penicillin production. Biotechnol. Lett. 2022, 44, 179–192. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Protzel, A.; Green, T.; Figurnov, M.; Ronnebrger, O. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P.; Zhao, B.; Liu, S. AI-assisted food enzymes design and engineering: A critical review. Syst. Microb. BiOmanuf. 2023, 3, 75–87. [Google Scholar] [CrossRef]
- Mavani, N.R.; Ali, J.M.; Othman, S.; Hussain, M.A.; Hashim, H.; Rahman, N.A. Application of artificial intelligence in the food industry. Food Eng. Rev. 2022, 14, 134–175. [Google Scholar] [CrossRef]
- Kurzbaum, E.; Raizner, Y.; Kuc, M.E.; Kulikov, A.; Hakimi, B.; Kruh, L.I.; Menashe, O. Phenol biodegradation by bacterial cultures encapsulated in 3D microfiltration-membrane capsules. Environ. Technol. 2020, 41, 2875–2883. [Google Scholar] [CrossRef]
- Razzaghi, M.; Homaei, A.; Vianello, F.; Azad, T.; Sharma, T.; Nadda, A.K.; Stevanato, R.; Bilal, M.; Iqbal, H. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst. Eng. 2022, 45, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Sirohi, R.; Gaur, V.; Kumar, S.; Sharma, P.; Varjani, S.; Pandey, H.; Sindhu, R.; Madhavan, A.; Rajasekharan, R.; et al. Engineering interventions in enzyme production: Lab to industrial scale. Bioresour. Technol. 2021, 326, 124771. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Jafari, S.M.; Mahoonak, A.S.; Ghorbani, M. Liposomal/nanoliposomal encapsulation of food-relevant enzymes and their application in the food industry. Food Bioproc. Technol. 2021, 14, 23–38. [Google Scholar] [CrossRef]
- Bahri, S.; Homaei, A.; Mosaddegh, E. Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase. Colloids Surf. B Biointerfaces 2022, 218, 112754. [Google Scholar] [CrossRef]
- Hilgendorf, K.; Wang, Y.; Miller, M.J.; Jin, Y. Precision fermentation for improving the quality, flavor, safety, and sustainability of foods. Curr. Opin. Biotechnol. 2024, 86, 103084. [Google Scholar] [CrossRef]
- Muhammad, I.S.; Riaz, A.; Sajjad, H.; Arshad, M.; Azeem, K. Role of bacterial consortia in promoting plant growth and nutrients bioavailability. Pak. J. Agric. Res. 2020, 57, 211–1220. [Google Scholar] [CrossRef]
- Aboobacker, P.A.; Ragunathan, L.; Sanjeevi, T. Synthetic Biology’s Latest Trends in Antimicrobial Resistance and Biofilm. J. Pure Appl. Microbiol. 2023, 17, 23–34. [Google Scholar] [CrossRef]
- US Food and Drug Administration Website. Agricultural Biotechnology. Feed Your Mind. Available online: https://www.fda.gov/food/consumers/agricultural-biotechnology (accessed on 26 August 2025).
- Arvin, N.; Eric, D. Adaptive Significance of Quorum Sensing-Dependent Regulation of Rhamnolipids by Integration of Growth Rate in Burkholderia glumae: A Trade-Off between Survival and Efficiency. Front. Microbiol. 2016, 7, 1215. [Google Scholar] [CrossRef]
- Chandrakala, R.; Lakshmi, E.J.; Anjineyulu, K.; Pandiselvam, R.; Balasubramaniam, V.M. Influence of high-pressure pasteurization on nutritional, functional, and rheological characteristics of fruit and vegetable juices and purees—An updated review. Food Control 2023, 146, 109516. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed]
- Sak, J.; Suchodolska, M. Artificial Intelligence in Nutrients Science Research: A Review. Nutrients 2021, 13, 322. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.H.; Reyhaneh, S.; Fabio, V.; Roberto, S. Enzyme immobilization: An update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef]
- Mannaa, M.; Han, G.; Seo, Y.S.; Park, I. Evolution of food fermentation processes and the use of multi-omics in deciphering the roles of the microbiota. Foods 2021, 10, 2861. [Google Scholar] [CrossRef]
- Anyogu, A.; Olukorede, A.; Anumudu, C.K.; Onyeaka, H.; Areo, E.; Adewale, O.; Nwaiwu, O. Microorganisms and food safety risks associated with indigenous fermented foods from Africa. Food Control 2021, 129, 108227. [Google Scholar] [CrossRef]
- Bousquet, J.; Anto, J.M.; Czarlewski, W.; Haahtela, T.; Fonseca, S.C.; Iaccarino, G.; ARIA group. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021, 76, 735–750. [Google Scholar] [CrossRef]
- Kariyawasam, K.M.G.M.M.; Lee, N.K.; Paik, H.D. Fermented dairy products as delivery vehicles of novel probiotic strains isolated from traditional fermented Asian foods. J. Food Sci. Technol. 2021, 58, 2467–2478. [Google Scholar] [CrossRef]
- Gonzalez-Fandos, E.; Vazquez de Castro, M.; Martinez-Laorden, A. Behaviour of Listeria monocytogenes and natural microflora during the manufacture of Riojano chorizo (Spanish dry cured sausage). Microorganisms 2021, 9, 1963. [Google Scholar] [CrossRef]
- Boxman, I.L.A.; Jansen, C.C.C.; Zwartkruis-Nahuis, A.J.T.; Hägele, G.; Sosef, N.P.; Dirks, R.A.M. Detection and quantification of hepatitis E virus RNA in ready-to-eat raw pork sausages in The Netherlands. Int. J. Food Microbiol. 2020, 333, 108791. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.S.; El Sheikha, A.F.; Hammami, R.; Kumar, W. Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? J. Funct. Foods 2020, 70, 103971. [Google Scholar] [CrossRef]
- Capozzi, V.; Fragasso, M.; Russo, P. Microbiological safety and the management of microbial resources in artisanal foods and beverages: The need for a transdisciplinary assessment to conciliate actual trends and risks avoidance. Microorganisms 2020, 8, 306. [Google Scholar] [CrossRef]
- Campisi, V. What Are the Growth Prospects for Fermented Foods? The Food Institute. 2022. Available online: https://foodinstitute.com/focus/what-are-the-growth-prospects-for-fermented-foods/ (accessed on 26 August 2025).
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented foods, health and the gut microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Chai, K.F.; Chang, L.S.; Adzahan, N.M.; Karim, R.; Rukayadi, Y.; Ghazali, H.M. Physicochemical properties and toxicity of cocoa powder-like product from roasted seeds of fermented rambutan (Nephelium lappaceum L.) fruit. Food Chem. 2019, 271, 298–308. [Google Scholar] [CrossRef]
- Tan, Y.X.; Mok, W.K.; Lee, J.; Kim, J.; Chen, W.N. Solid state fermentation of brewers’ spent grains for improved nutritional profile using Bacillus subtilis WX-17. Fermentation 2019, 5, 52. [Google Scholar] [CrossRef]
- Linder, T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur. 2019, 11, 265–278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajanaku, P.O.; Olojede, A.O.; Ajanaku, C.O.; Egharevba, G.O.; Agaja, F.O.; Joseph, C.B.; Thomas, R.M. Novel Fermentation Techniques for Improving Food Functionality: An Overview. Fermentation 2025, 11, 509. https://doi.org/10.3390/fermentation11090509
Ajanaku PO, Olojede AO, Ajanaku CO, Egharevba GO, Agaja FO, Joseph CB, Thomas RM. Novel Fermentation Techniques for Improving Food Functionality: An Overview. Fermentation. 2025; 11(9):509. https://doi.org/10.3390/fermentation11090509
Chicago/Turabian StyleAjanaku, Precious O., Ayoyinka O. Olojede, Christiana O. Ajanaku, Godshelp O. Egharevba, Faith O. Agaja, Chikaodi B. Joseph, and Remilekun M. Thomas. 2025. "Novel Fermentation Techniques for Improving Food Functionality: An Overview" Fermentation 11, no. 9: 509. https://doi.org/10.3390/fermentation11090509
APA StyleAjanaku, P. O., Olojede, A. O., Ajanaku, C. O., Egharevba, G. O., Agaja, F. O., Joseph, C. B., & Thomas, R. M. (2025). Novel Fermentation Techniques for Improving Food Functionality: An Overview. Fermentation, 11(9), 509. https://doi.org/10.3390/fermentation11090509