Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation
Abstract
:1. Introduction
2. Traditional Silage Fermentation
3. Approaches to Lactic Acid Production
3.1. Lactic Acid-Producing Fermentation Strains
3.1.1. Lactic Acid Bacteria (LAB)
3.1.2. Bacillus
3.1.3. Escherichia coli
3.1.4. Filamentous Fungi
3.1.5. Yeast
3.2. Alternative Fermentation Substrates for Lactic Acid Production
3.2.1. Starch-Based Materials
3.2.2. Lignocellulose Materials
3.2.3. Organic Wastes
3.2.4. Glycerol
3.2.5. Microalgae and Cyanobacteria
Type | Substrate Name | Strengths | Weaknesses | Potential Recommendations for LA Production | Reference |
---|---|---|---|---|---|
Agricultural wastes | Alfalfa fiber | Rich in cellulose, can serve as a carbon source for lactic acid production | Low starch content, lower fermentation efficiency | Suitable for pre-treatment before fermentation to increase LA yield | [69] |
Bran and straw | Rich in cellulose and hemicellulose, suitable for microbial fermentation | Requires pre-treatment, may produce inhibitors affecting fermentation | Enzymatic pre-treatment before LA fermentation to improve efficiency | [70,71] | |
Non-fat rice bran | Contains residual sugars and cellulose, supports lactic acid bacteria growth | Fermentation efficiency may be limited | Can be directly used for lactic acid fermentation or mixed with other carbon sources | [72,73] | |
Food residue | High organic content, rich in carbon sources | Variable composition, inconsistent fermentation efficiency | Optimize processing methods to increase LA production | [74] | |
Corn straw and corn cob | Rich in cellulose and hemicellulose, potential for lactic acid production | Requires complex pre-treatment to release fermentable sugars | Used as a cellulose source after pre-treatment for LA fermentation | [75,76] | |
Barley bran husk | Contains fermentable cellulose and hemicellulose | Low starch content, may have lower fermentation efficiency | Can be used as auxiliary material in lactic acid fermentation | [75] | |
Sugarcane and cassava bagasse | Byproducts of the sugar and starch industries, rich in cellulose | Needs processing to remove components unfavorable to fermentation | Suitable as a fermentation substrate for lactic acid production | [77,78,79] | |
Pruned vine sprouts | Rich in cellulose, can be used for anaerobic fermentation to produce LA | Low starch content, requires pre-treatment | Used for LA fermentation after pre-treatment | [75] | |
Wine pruned waste | Rich in organic matter, suitable for fermentation | High phenolic content may inhibit fermentation | Optimize fermentation conditions to reduce inhibition and increase LA yield | [75] | |
Artichoke | Rich in carbohydrates and cellulose, suitable for fermentation | High moisture content may affect fermentation | Detailed chemical composition analysis is required to determine its feasibility as a substrate for lactic acid production | [80] | |
Broccoli | Rich in carbohydrates and cellulose, suitable as a substrate for lactic acid fermentation | Compared to other agricultural byproducts, broccoli may have less waste volume and higher pre-treatment and processing costs | It can be mixed with other carbon sources for lactic acid production | [80] | |
Olive mill waste | Rich in large amounts of organic material, including carbohydrates and oils, and is a good substrate for lactic acid fermentation | High levels of moisture and impurities may affect fermentation, and harmful substances may be produced during fermentation | Strengthen the pre-treatment process to remove water and impurities, optimize fermentation conditions, and reduce the production of odor and harmful substances | [81] | |
Date palm leaves | Rich in lactose and other fermentable sugars, and is a good substrate for lactic acid fermentation | Low conversion efficiency of cellulose and hemicellulose | Methods to improve the efficiency of cellulose and hemicellulose conversion, or mixed with other carbon sources | [82] | |
Deproteinised feta cheese waste | Rich in lactose and other fermentable sugars, and is a good substrate for lactic acid fermentation | The fermentation process may be disturbed by the original microorganisms in the dairy products | Optimize fermentation conditions to inhibit the growth of original microorganisms in dairy products, and strengthen the pre-treatment process | [83] | |
Apple pomace | Rich in sugars and pectin, suitable for lactic acid fermentation | LA production efficiency may be limited | Mainly used to ferment pectin and sugars for LA production | [84] | |
Banana waste | Rich in sugars, suitable for efficient lactic acid fermentation | High moisture content, prone to spoilage | Dried and then used for efficient lactic acid fermentation | [85] | |
Mussel processing waste | High in organic matter, rich in proteins | No starch, unsuitable for lactic acid fermentation | Not suitable for lactic acid production | [33,34] | |
Cellulosic biological sludge | Rich in cellulose, can serve as a substrate for LA fermentation | Variable composition, affects fermentation efficiency | Suitable for the conversion of cellulose into lactic acid | [106] | |
Kitchen waste | High in organic matter and potential sugars | Complex composition, may produce inhibitors during fermentation | Sorting and optimizing processing methods to increase LA production | [86] | |
Fish meal waste | Rich in proteins and oils, unsuitable for lactic acid fermentation | No starch or sugars, very low fermentation efficiency | Not suitable for lactic acid fermentation | [87] | |
Paperboard waste | Rich in cellulose, recyclable for fermentation | No starch, low fermentation efficiency | Suitable for the conversion of cellulose into lactic acid | [107] | |
Bagasse waste | Rich in cellulose, suitable for lactic acid production | Low starch content, byproduct of sugar extraction | Suitable as a fermentation substrate for lactic acid production | [88] | |
Food waste | Vegetables (carrot peels, cabbage, potato peels) | Contains some residual starch and sugars, easy to process | Varied types, potential contaminants | Suitable for efficient lactic acid fermentation from vegetable waste | [92,93] |
Fruits (banana peels, apple peels, and orange peels) | Rich in sugars, suitable for lactic acid fermentation | High moisture content, prone to spoilage | Dried and enzymatically hydrolyzed before lactic acid fermentation | [92,93] | |
Baked fish | Rich in proteins and oils, unsuitable for lactic acid fermentation | No starch or sugars, unsuitable for lactic acid production | Not suitable for lactic acid production | [92,93] | |
Rice | High in starch, suitable for lactic acid fermentation | Requires processing to improve purity | Directly used for lactic acid fermentation | [92,93] | |
Soaked tea | Contains polyphenols, unsuitable for lactic acid fermentation | No starch or sugars, unsuitable for lactic acid production | Not suitable for lactic acid production | [92,93] | |
Dairy products | Yogurt whey | Rich in proteins and lactose, suitable as a medium | No starch or sugars, may limit acid production efficiency | Can be used as a medium for lactic acid bacteria | [95] |
4. Enhancing Lactic Acid Production in Silage Fermentation
4.1. Selecting the Appropriate Lactic Acid-Producing Microorganisms
4.2. Optimizing the Dose and Timing of Inoculation
4.3. Regulation of the Fermentation Environment
4.4. Use of Combined Inoculum
4.5. Genetic Modification Technology
4.5.1. Metagenomics
4.5.2. Genomics
4.5.3. Transcriptomics
4.5.4. Proteomics
4.5.5. Metabolomics
5. Future Prospects and Challenges
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, J.M. Silage and animal health. Nat. Toxins 1999, 7, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tao, X.; Liu, Q.; Zhang, Y.J.; Xu, J.; Zhang, W.; Wang, J.; Zhang, D.; Li, B.; Wang, L.; et al. Succession changes of fermentation parameters, nutrient components and bacterial community of sorghum stalk silage. Front. Microbiol. 2022, 13, 982489. [Google Scholar] [CrossRef] [PubMed]
- Kogo, T.K.; Yegon, R.; Nthiwa, D.; Migose, S.A. Strategies of positive deviants in fodder conservation among smallholder dairy farming systems in highlands and midlands of Kenya. Trop Anim Health Prod. 2024, 56, 345. [Google Scholar] [CrossRef]
- Driehuis, F.; Oude Elferink, S.J. The impact of the quality of silage on animal health and food safety: A review. Vet. Q. 2000, 22, 212–216. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation-updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2020, 128, 966–984. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef]
- Ridwan, R.; Abdelbagi, M.; Sofyan, A.; Fidriyanto, R.; Astuti, W.D.; Fitri, A.; Sholikin, M.M.; Rohmatussolihat; Sarwono, K.A.; Jayanegara, A.; et al. A meta-analysis to observe silage microbiome differentiated by the use of inoculant and type of raw material. Front. Microbiol. 2023, 14, 1063333. [Google Scholar] [CrossRef]
- Mejía-Avellaneda, L.F.; Suárez, H.; Jiménez, H.; Mesa, L. Challenges and opportunities for the production of lactic acid bacteria inoculants aimed for ensiling processes. Crit. Rev. Biotechnol. 2022, 42, 1028–1044. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Huhtanen, P.; Tremblay, G.F.; Bélanger, G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.H.; Blauwiekel, R.; Stokes, M.R. Fermentation and utilization of grass silage. J. Dairy Sci. 1994, 77, 3209–3235. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Wilkinson, J.M.; Jiang, Y.; Ogunade, I.; Adesogan, A.T. Silage review: Animal and human health risks from silage. J. Dairy Sci. 2018, 101, 4093–4110. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, O.C.M.; Ogunade, I.M.; Weinberg, Z.; Adesogan, A.T. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 2018, 101, 4132–4142. [Google Scholar] [CrossRef] [PubMed]
- Aufrère, J.; Graviou, D.; Demarquilly, C. Protein degradation in the rumen of red clover forage at various stages of growth and conserved as silage or wrapped big bales. Reprod. Nutr. Dev. 2002, 42, 559–572. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S.; Cavadini, J.S. Fermentation characteristics and nutritive value of baled grass silages made from meadow fescue, tall fescue, or an orchardgrass cultivar exhibiting a unique nonflowering growth response. J. Dairy Sci. 2020, 103, 3219–3233. [Google Scholar] [CrossRef]
- Alava, E.N.; Alava, E.I.; Welchons, C.A.; Yelich, J.V.; Hersom, M.J. Effect of increased inclusion of dried distillers grain supplement on adaptation, intake, digestibility, and rumen parameters in steers consuming bermudagrass round bale silage. Transl. Anim. Sci. 2019, 3, 29–41. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S. Silage review: Recent advances and future technologies for baled silages. J. Dairy Sci. 2018, 101, 4075–4092. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Ogden, R.K.; Akins, M.S.; Chow, E.A. Nutritive value and fermentation characteristics of alfalfa-mixed grass forage wrapped with minimal stretch film layers and stored for different lengths of time. J. Dairy Sci. 2017, 100, 5293–5304. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Coffey, K.P.; Chow, E.A. Storage characteristics, nutritive value, and fermentation characteristics of alfalfa packaged in large-round bales and wrapped in stretch film after extended time delays. J. Dairy Sci. 2016, 99, 3497–3511. [Google Scholar] [CrossRef]
- Tian, X.; Chen, H.; Liu, H.; Chen, J. Recent Advances in Lactic Acid Production by Lactic Acid Bacteria. Appl. Biochem. Biotechnol. 2021, 193, 4151–4171. [Google Scholar] [CrossRef]
- Poudel, P.; Tashiro, Y.; Sakai, K. New application of Bacillus strains for optically pure l-lactic acid production: General overview and future prospects. Biosci. Biotechnol. Biochem. 2016, 80, 642–654. [Google Scholar] [CrossRef]
- Tian, X.J.; Jiang, A.L.; Mao, Y.Q.; Wu, B.; He, M.X.; Hu, W.; Chen, J.H.; Li, W.J. Efficient l-lactic acid production from purified sweet sorghum juice coupled with soybean hydrolysate as nitrogen source by Lactobacillus thermophilus A69 strain. J. Chem. Technol. Biotechnol. 2019, 94, 1752–1759. [Google Scholar] [CrossRef]
- Gao, Q.; He, J.; Wang, J.; Yan, Y.; Liu, L.; Wang, Z.; Shen, W.; Wan, F. Effects of dietary D-lactate levels on rumen fermentation, microflora and metabolomics of beef cattle. Front. Microbiol. 2024, 15, 1348729. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L.; et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ke, W.; Lu, Q.; Zhang, G. Effects of Bacillus coagulans and Lactobacillus plantarum on the Fermentation Characteristics, Microbial Community, and Functional Shifts during Alfalfa Silage Fermentation. Animals 2023, 13, 932. [Google Scholar] [CrossRef] [PubMed]
- Okano, K.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Biotechnological production of enantiomeric pure lactic acid from renewable resources: Recent achievements, perspectives, and limits. Appl. Microbiol. Biotechnol. 2010, 85, 413–423. [Google Scholar] [CrossRef]
- Zhou, S.; Causey, T.B.; Hasona, A.; Shanmugam, K.T.; Ingram, L.O. Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl. Environ. Microbiol. 2003, 69, 399–407. [Google Scholar] [CrossRef]
- Chang, D.E.; Jung, H.C.; Rhee, J.S.; Pan, J.G. Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl. Environ. Microbiol. 1999, 65, 1384–1389. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, T.; Zhao, J.; Wang, J.; Yan, T.; Xu, L.; Liu, Z.; Garza, E.; Iverson, A.; Manow, R.; et al. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol. Lett. 2012, 34, 2069–2075. [Google Scholar] [CrossRef]
- Zhou, S.; Yomano, L.P.; Shanmugam, K.T.; Ingram, L.O. Fermentation of 10% (w/v) sugar to D: (-)-lactate by engineered Escherichia coli B. Biotechnol. Lett. 2005, 27, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- Dien, B.S.; Nichols, N.N.; Bothast, R.J. Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars. J. Ind. Microbiol. Biotechnol. 2001, 27, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. J. Biotechnol. 2011, 156, 286–301. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Shanmugam, K.T.; Ingram, L.O. Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl. Environ. Microbiol. 2003, 69, 2237–2244. [Google Scholar] [CrossRef]
- Zhu, Y.; Eiteman, M.A.; DeWitt, K.; Altman, E. Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl. Environ. Microbiol. 2007, 73, 456–464. [Google Scholar] [CrossRef]
- Mazumdar, S.; Clomburg, J.M.; Gonzalez, R. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl. Environ. Microbiol. 2010, 76, 4327–4336. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.; Chamu, J.; Shanmugam, K.T. Isolation, characterization and evolution of a new thermophilic Bacillus licheniformis for lactic acid production in mineral salts medium. Bioresour. Technol. 2011, 102, 8152–8158. [Google Scholar] [CrossRef]
- Chen, Y.; Sela, S.; Gamburg, M.; Pinto, R.; Weinberg, Z.G. Fate of Escherichia coli during ensiling of wheat and corn. Appl. Environ. Microbiol. 2005, 71, 5163–5170. [Google Scholar] [CrossRef]
- Yamane, T.; Tanaka, R. Highly accumulative production of L(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J. Biosci. Bioeng. 2013; 115, 90–95. [Google Scholar] [CrossRef]
- Kitpreechavanich, V.; Maneeboon, T.; Kayano, Y.; Sakai, K. Comparative characterization of L-lactic acid-producing thermotolerant Rhizopus fungi. J. Biosci. Bioeng. 2008, 106, 541–546. [Google Scholar] [CrossRef]
- Saito, K.; Hasa, Y.; Abe, H. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J. Biosci. Bioeng. 2012, 114, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Saito, K.; Yamauchi, H.; Mori, M. Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr. Microbiol. 2002, 45, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.; Dalcero, A.M.; Rosa, C.A.; Chiacchiera, S.M.; Cavaglieri, L.R. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Valli, M.; Sauer, M.; Branduardi, P.; Borth, N.; Porro, D.; Mattanovich, D. Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl. Environ. Microbiol. 2006, 72, 5492–5499. [Google Scholar] [CrossRef]
- Osawa, F.; Fujii, T.; Nishida, T.; Tada, N.; Ohnishi, T.; Kobayashi, O.; Komeda, T.; Yoshida, S. Efficient production of L-lactic acid by Crabtree-negative yeast Candida boidinii. Yeast 2009, 26, 485–496. [Google Scholar] [CrossRef]
- Bianchi, M.M.; Brambilla, L.; Protani, F.; Liu, C.L.; Lievense, J.; Porro, D. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Appl. Environ. Microbiol. 2001, 67, 5621–5625. [Google Scholar] [CrossRef]
- Ilmén, M.; Koivuranta, K.; Ruohonen, L.; Suominen, P.; Penttilä, M. Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl. Environ. Microbiol. 2007, 73, 117–123. [Google Scholar] [CrossRef]
- Branduardi, P.; Valli, M.; Brambilla, L.; Sauer, M.; Alberghina, L.; Porro, D. The yeast Zygosaccharomyces bailii: A new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Res. 2004, 4, 493–504. [Google Scholar] [CrossRef]
- Somayeh, S.; Ghasem, N.D.; Maedeh, M. Using Solid State Fermentation (SSF) for Production of Single Cell Protein (SCP). In Proceedings of the First International Comprehensive Competition Conference on Engineering Science in Iran, Anzali, Iran, 8 September 2016; pp. 1–11. [Google Scholar]
- Abedi, E.; Hashemi, S.M.B. Lactic acid production—Producing microorganisms and substrates sources-state of art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef]
- Vink, E.T.; Glassner, D.A.; Kolstad, J.J.; Wooley, R.J.; O’Connor, R.P. ORIGINAL RESEARCH: The eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind. Biotechnol. 2007, 3, 58–81. [Google Scholar] [CrossRef]
- Oh, H.; Wee, Y.J.; Yun, J.S.; Ho Han, S.; Jung, S.; Ryu, H.W. Lactic acid production from agricultural resources as cheap raw materials. Bioresour. Technol. 2005, 96, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.P.; Jin, B.; Lant, P. Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Bioprocess Biosyst. Eng. 2005, 27, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liao, W.; Chen, S. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J. Appl. Microbiol. 2008, 105, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.S.; Wee, Y.J.; Kim, J.N.; Ryu, H.W. Fermentative production of DL-lactic acid from amylase-treated rice and wheat brans hydrolyzate by a novel lactic acid bacterium, Lactobacillus sp. Biotechnol. Lett. 2004, 26, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.; Venkateshwar, M.; Srijana, M.; Reddy, G. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. J. Appl. Microbiol. 2007, 103, 372–380. [Google Scholar] [CrossRef]
- Vishnu, C.; Seenayya, G.; Reddy, G. Direct fermentation of various pure and crude starchy substrates to L(+) lactic acid using “Lactobacillus amylophilus” GV6. World J. Microb. Biot. 2002, 18, 429–433. [Google Scholar] [CrossRef]
- Vishnu, C.; Seenayya, G.; Reddy, G. Direct conversion of starch to L(+) lactic acid by amylase producing “Lactobacillus amylophilus” GV6. Bioprocess Eng. 2000, 23, 155–158. [Google Scholar] [CrossRef]
- Okano, K.; Uematsu, G.; Hama, S.; Tanaka, T.; Noda, H.; Kondo, A.; Honda, K. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch. Biotechnol. J. 2018, 13, e1700517. [Google Scholar] [CrossRef]
- de Oliveira, R.A.; Komesu, A.; Rossell, C.E.V.; Maciel, R. Challenges and opportunities in lactic acid bioprocess design-From economic to production aspects. Biochem. Eng. J. 2018, 133, 219–239. [Google Scholar] [CrossRef]
- Idrees, M.; Adnan, A.; Qureshi, F.A. Optimization of sulfide/sulfite pretreatment of lignocellulosic biomass for lactic acid production. Biomed. Res. Int. 2013, 2013, 934171. [Google Scholar] [CrossRef]
- Azaizeh, H.; Abu Tayeh, H.N.; Schneider, R.; Klongklaew, A.; Venus, J. Production of Lactic Acid from Carob, Banana and Sugarcane Lignocellulose Biomass. Molecules 2020, 25, 2956. [Google Scholar] [CrossRef] [PubMed]
- Hofvendahl, K.; Hahn-Hägerdal, B. Factors affecting the fermentative lactic acid production from renewable resources(1). Enzyme Microb. Technol. 2000, 26, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Wee, Y.J.; Yun, J.S.; Kim, D.; Ryu, H.W. Batch and repeated batch production of L (+)-lactic acid by Enterococcus faecalis RKY1 using wood hydrolyzate and corn steep liquor. J. Ind. Microbiol. Biotechnol. 2006, 33, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, Y.; Zhang, Z.; Xiang, T.; Mei, Y.; Zhao, S.; Liang, Y.; Peng, N. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Bioresour. Technol. 2016, 214, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Guo, X.J.; Xu, L.N.; Shao, L.W.; Zhu, B.C.; Liu, H.; Wang, Y.J.; Gao, K.Y. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep. Animal 2022, 16, 100576. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Ke, W.; Xu, D.; Zhang, P.; Bai, J.; Mudassar, S.; Muhammad, I.; Guo, X. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2019, 282, 211–221. [Google Scholar] [CrossRef]
- Sreenath, H.K.; Moldes, A.B.; Koegel, R.G.; Straub, R.J. Lactic acid production from agriculture residues. Biotechnol. Lett. 2001, 23, 179–184. [Google Scholar] [CrossRef]
- Garde, A.; Jonsson, G.; Schmidt, A.S.; Ahring, B.K. Lactic acid production from wheat straw hemicellulose hydrolysate by “Lactobacillus pentosus” and “Lactobacillus brevis”. Bioresour. Technol. 2002, 81, 217–223. [Google Scholar] [CrossRef]
- Givry, S.; Prevot, V.; Duchiron, F. Lactic acid production from hemicellulosic hydrolyzate by cells of “Lactobacillus bifermentans” immobilized in Ca-alginate using response surface methodology. World J. Microb. Biot. 2008, 24, 745–752. [Google Scholar] [CrossRef]
- Tanaka, T.; Hoshina, M.; Tanabe, S.; Sakai, K.; Ohtsubo, S.; Taniguchi, M. Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 2006, 97, 211–217. [Google Scholar] [CrossRef]
- Jukonyte, R.; Zadeike, D.; Bartkiene, E.; Lele, V.; Cernauskas, D.; Suproniene, S.; Juodeikiene, G. A potential of brown rice polish as a substrate for the lactic acid and bioactive compounds production by the lactic acid bacteria newly isolated from cereal-based fermented products. Lwt-Food Sci. Technol. 2018, 97, 323–331. [Google Scholar] [CrossRef]
- Ohkouchi, Y.; Inoue, Y. Direct production of L(+)-lactic acid from starch and food wastes using “Lactobacillus manihotivorans” LMG18011. Bioresour. Technol. 2006, 97, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Production of fermentable media from vine-trimming wastes and bioconversion into lactic acid by “Lactobacillus pentosus”. J. Sci. Food Agric. 2004, 84, 2105–2112. [Google Scholar] [CrossRef]
- Wang, L.M.; Zhao, B.; Liu, B.; Yu, B.; Ma, C.Q.; Su, F.; Hua, D.L.; Li, Q.G.; Ma, Y.H.; Xu, P. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing “Bacillus” sp strain. Bioresour. Technol. 2010, 101, 7908–7915. [Google Scholar] [CrossRef] [PubMed]
- John, R.P.; Nampoothiri, K.M.; Pandey, A. Simultaneous saccharification and fermentation of cassava bagasse for L-(+)-lactic acid production using “Lactobacilli”. Appl. Biochem. Biotechnol. 2006, 134, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Laopaiboon, P.; Thani, A.; Leelavatcharamas, V.; Laopaiboon, L. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. 2010, 101, 1036–1043. [Google Scholar] [CrossRef]
- de Oliveira, R.A.; Maciel, R.; Rossell, C.E.V. High Lactic Acid Production from Molasses and Hydrolysed Sugarcane Bagasse. In Proceedings of the 2nd International Conference on Biomass (IConBM), Taormina, Italy, 19–22 June 2016; pp. 307–312. [Google Scholar]
- Monllor, P.; Romero, G.; Muelas, R.; Sandoval-Castro, C.A.; Sendra, E.; Díaz, J.R. Ensiling Process in Commercial Bales of Horticultural By-products from Artichoke and Broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef]
- Magklaras, G.; Skoufos, I.; Bonos, E.; Tsinas, A.; Zacharis, C.; Giavasis, I.; Petrotos, K.; Fotou, K.; Nikolaou, K.; Vasilopoulou, K.; et al. Innovative Use of Olive, Winery and Cheese Waste By-Products as Novel Ingredients in Weaned Pigs Nutrition. Vet. Sci. 2023, 10, 397. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Patra, A.K. The sustainable mitigation of in vitro ruminal biogas emissions by ensiling date palm leaves and rice straw with lactic acid bacteria and Pleurotus ostreatus for cleaner livestock production. J. Appl. Microbiol. 2022, 132, 2925–2939. [Google Scholar] [CrossRef]
- Skoufos, I.; Nelli, A.; Venardou, B.; Lagkouvardos, I.; Giannenas, I.; Magklaras, G.; Zacharis, C.; Jin, L.; Wang, J.; Gouva, E.; et al. Use of an Innovative Silage of Agro-Industrial Waste By-Products in Pig Nutrition: A Pilot Study of Its Effects on the Pig Gastrointestinal Microbiota. Microorganisms 2023, 11, 1723. [Google Scholar] [CrossRef]
- Gullón, B.; Yáñez, R.; Alonso, J.L.; Parajó, J.C. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresour. Technol. 2008, 99, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Chan-Blanco, Y.; Bonilla-Leiva, A.R.; Velaázquez, A.C. Using banana to generate lactic acid through batch process fermentation. Appl. Microbiol. Biotechnol. 2003, 63, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H. Lactic acid production from food waste using an open fermentation mode. Res. Environ. Sci. 2008, 21, 48–51. [Google Scholar]
- Zhang, B.; He, P.J.; Ye, N.F.; Shao, L.M. Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes. Bioresour. Technol. 2008, 99, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, D.; Kumar, V. Recent progress on sugarcane-bagasse based lactic acid production: Technical advancements, potential and limitations. Ind. Crops Prod. 2023, 193, 116132. [Google Scholar] [CrossRef]
- Kalinowska, M.; Gołebiewska, E.; Zawadzka, M.; Choińska, R.; Koronkiewicz, K.; Piasecka-Jóźwiak, K.; Bujak, M. Sustainable extraction of bioactive compound from apple pomace through lactic acid bacteria (LAB) fermentation. Sci. Rep. 2023, 13, 19310. [Google Scholar] [CrossRef]
- Derabli, B.; Nancib, A.; Nancib, N.; Aníbal, J.; Raposo, S.; Rodrigues, B.; Boudrant, J. Opuntia ficus indica waste as a cost effective carbon source for lactic acid production by Lactobacillus plantarum. Food Chem. 2022, 370, 131005. [Google Scholar] [CrossRef]
- Tashiro, Y.; Matsumoto, H.; Miyamoto, H.; Okugawa, Y.; Pramod, P.; Miyamoto, H.; Sakai, K. A novel production process for optically pure L-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresour. Technol. 2013, 146, 672–681. [Google Scholar] [CrossRef]
- Kitpreechavanich, V.; Hayami, A.; Talek, A.; Chin, C.F.S.; Tashiro, Y.; Sakai, K. Simultaneous production of L-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity. J. Biosci. Bioeng. 2016, 122, 105–110. [Google Scholar] [CrossRef]
- Tashiro, Y.; Inokuchi, S.; Poudel, P.; Okugawa, Y.; Miyamoto, H.; Miayamoto, H.; Sakai, K. Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system. Bioresour. Technol. 2016, 216, 52–59. [Google Scholar] [CrossRef]
- Martínez-Trujillo, M.A.; Bautista-Rangel, K.; García-Rivero, M.; Martínez-Estrada, A.; Cruz-Díaz, M.R. Enzymatic saccharification of banana peel and sequential fermentation of the reducing sugars to produce lactic acid. Bioprocess Biosyst. Eng. 2020, 43, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Alonso, S.; Herrero, M.; Rendueles, M.; Díaz, M. Residual yoghurt whey for lactic acid production. Biomass Bioenergy 2010, 34, 931–938. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, L.; Zheng, Y.; Han, J.; Xiu, Z. Improvement of 1,3-propanediol production from crude glycerol by co-cultivation of anaerobic and facultative microbes under non-strictly anaerobic conditions. Biotechnol. Biofuels Bioprod. 2022, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Vivek, N.; Hazeena, S.H.; Rajesh, R.O.; Godan, T.K.; Anjali, K.B.; Nair, L.M.; Mohan, B.; Nair, S.C.; Sindhu, R.; Pandey, A.; et al. Genomics of Lactic Acid Bacteria for Glycerol Dissimilation. Mol. Biotechnol. 2019, 61, 562–578. [Google Scholar] [CrossRef]
- Tian, K.; Shi, G.; Lu, F.; Singh, S.; Wang, Z. High-efficiency L-lactate production from glycerol by metabolically engineered Escherichia coli. Sheng Wu Gong Cheng Xue Bao 2013, 29, 1268–1277. [Google Scholar]
- Vaidyanathan, H.; Kandasamy, V.; Gopal Ramakrishnan, G.; Ramachandran, K.; Jayaraman, G.; Ramalingam, S. Glycerol conversion to 1, 3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri. AMB Express 2011, 1, 37. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.J.; Sun, Y.Q.; Xiu, Z.L. Bioconversion of Raw Glycerol From Waste Cooking-Oil-Based Biodiesel Production to 1,3-Propanediol and Lactate by a Microbial Consortium. Front. Bioeng. Biotechnol. 2019, 7, 14. [Google Scholar] [CrossRef]
- Karlsson, J.; Ramin, M.; Kass, M.; Lindberg, M.; Holtenius, K. Effects of replacing wheat starch with glycerol on methane emissions, milk production, and feed efficiency in dairy cows fed grass silage-based diets. J. Dairy Sci. 2019, 102, 7927–7935. [Google Scholar] [CrossRef]
- Hirayama, S.; Ueda, R. Production of optically pure D-lactic acid by Nannochlorum sp. 26A4. Appl. Biochem. Biotechnol. 2004, 119, 71–78. [Google Scholar] [CrossRef]
- Encarnação, T.; Pais, A.A.; Campos, M.G.; Burrows, H.D. Cyanobacteria and microalgae: A renewable source of bioactive compounds and other chemicals. Sci. Prog. 2015, 98, 145–168. [Google Scholar] [CrossRef]
- Lamminen, M.; Halmemies-Beauchet-Filleau, A.; Kokkonen, T.; Vanhatalo, A.; Jaakkola, S. The effect of partial substitution of rapeseed meal and faba beans by Spirulina platensis microalgae on milk production, nitrogen utilization, and amino acid metabolism of lactating dairy cows. J. Dairy Sci. 2019, 102, 7102–7117. [Google Scholar] [CrossRef] [PubMed]
- Phelps, K.J.; Drouillard, J.S.; O’Quinn, T.G.; Burnett, D.D.; Blackmon, T.L.; Axman, J.E.; Van Bibber-Krueger, C.L.; Gonzalez, J.M. Feeding microalgae meal (All-G Rich; CCAP 4067/2) to beef heifers. II: Effects on ground beef color and palatability. J. Anim. Sci. 2016, 94, 4030–4039. [Google Scholar] [CrossRef]
- Romaní, A.; Yáñez, R.; Garrote, G.; Alonso, J.L. SSF production of lactic acid from cellulosic biosludges. Bioresour. Technol. 2008, 99, 4247–4254. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, T.L.; Marques Júnior, J.E.; de Queiroz, L.P.; Ricardo, A.D.S.; Rocha, M.V.P. Polylactic acid production from biotechnological routes: A review. Int. J. Biol. Macromol. 2021, 186, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Fabiszewska, A.U.; Zielińska, K.J.; Wróbel, B. Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: A minireview. World J. Microbiol. Biotechnol. 2019, 35, 76. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.T.; Xu, D.M.; Bai, J.; Li, F.H.; Adesogan, A.T.; Zhang, P.; Yuan, X.J.; Guo, X.S. Characterization and identification of ferulic acid esterase-producing Lactobacillus species isolated from Elymus nutans silage and their application in ensiled alfalfa. J. Appl. Microbiol. 2019, 127, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Saarisalo, E.; Skyttä, E.; Haikara, A.; Jalava, T.; Jaakkola, S. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 2007, 102, 327–336. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, M.; Zhang, J.; Shi, S.; Cai, Y. Characteristics of isolated lactic acid bacteria and their effectiveness to improve stylo (Stylosanthes guianensis Sw.) silage quality at various temperatures. Anim. Sci. J. 2012, 83, 128–135. [Google Scholar] [CrossRef]
- Xu, D.M.; Ke, W.C.; Zhang, P.; Li, F.H.; Guo, X.S. Characteristics of Pediococcus pentosaceus Q6 isolated from Elymus nutans growing on the Tibetan Plateau and its application for silage preparation at low temperature. J. Appl. Microbiol. 2019, 126, 40–48. [Google Scholar] [CrossRef]
- Shah, A.A.; Xianjun, Y.; Zhihao, D.; Junfeng, L.; Shao, T. Isolation and molecular identification of lactic acid bacteria from King grass and their application to improve the fermentation quality of sweet Sorghum. World J. Microbiol. Biotechnol. 2017, 34, 4. [Google Scholar] [CrossRef]
- Ma, H.; Wang, W.; Wang, Z.; Tan, Z.; Qin, G.; Wang, Y.; Pang, H. Microbial Population Succession and Community Diversity and Its Correlation with Fermentation Quality in Soybean Meal Treated with Enterococcus faecalis during Fermentation and Aerobic Exposure. Microorganisms 2022, 10, 530. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Buescher, W.; Maack, C.; Lipski, A.; Acir, I.-H.; Trimborn, M.; Kuellmer, F.; Wang, Y.; Grantz, D.A.; Sun, Y. Dual sensor measurement shows that temperature outperforms pH as an early sign of aerobic deterioration in maize silage. Sci. Rep. 2021, 11, 8686. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [PubMed]
- Okoye, C.O.; Wei, Z.; Jiang, H.; Wu, Y.; Wang, Y.; Gao, L.; Li, X.; Jiang, J. Metagenomics analysis reveals the performance of homo- and heterofermentative lactic acid bacteria in alfalfa silage fermentation, bacterial community, and functional profiles. J. Anim. Sci. 2023, 101, skad163. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Dong, Z.; Wang, D.; Li, B.; Shi, P.; Yan, J.; Zhuang, D.; Shao, T.; Wang, W.; Gu, M. Evaluating the fermentation quality and bacterial community of high-moisture whole-plant quinoa silage ensiled with different additives. J. Appl. Microbiol. 2022, 132, 3578–3589. [Google Scholar] [CrossRef]
- Abbasi, M.; Rouzbehan, Y.; Rezaei, J.; Jacobsen, S.E. The effect of lactic acid bacteria inoculation, molasses, or wilting on the fermentation quality and nutritive value of amaranth (Amaranthus hypochondriaus) silage1. J. Anim. Sci. 2018, 96, 3983–3992. [Google Scholar] [CrossRef]
- Amado, I.R.; Fuciños, C.; Fajardo, P.; Pastrana, L. Pediocin SA-1: A selective bacteriocin for controlling Listeria monocytogenes in maize silages. J. Dairy Sci. 2016, 99, 8070–8080. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Ma, G.; Jiang, X.; Yang, J.; Lv, J.; Zhang, Y. Cellulase Interacts with Lactic Acid Bacteria to Affect Fermentation Quality, Microbial Community, and Ruminal Degradability in Mixed Silage of Soybean Residue and Corn Stover. Animals 2021, 11, 334. [Google Scholar] [CrossRef]
- Liu, X.; Wang, A.; Zhu, L.; Guo, W.; Guo, X.; Zhu, B.; Yang, M. Effect of additive cellulase on fermentation quality of whole-plant corn silage ensiling by a Bacillus inoculant and dynamic microbial community analysis. Front. Microbiol. 2023, 14, 1330538. [Google Scholar] [CrossRef]
- Sáenz, J.S.; Rios-Galicia, B.; Rehkugler, B.; Seifert, J. Dynamic Development of Viral and Bacterial Diversity during Grass Silage Preservation. Viruses 2023, 15, 951. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Usman, S.; Bai, J.; Sheoran, N.; Guo, X. Reducing transmission of high-risk antibiotic resistance genes in whole-crop corn silage through lactic acid bacteria inoculation and increasing ensiling temperature. Sci. Total Environ. 2024, 926, 172114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, Z.; Usman, S.; Zhang, J.; Chen, M.; Guo, X. Metagenomics insights into the effects of lactic acid bacteria inoculation on the biological reduction of antibiotic resistance genes in alfalfa silage. J. Hazard. Mater. 2023, 443, 130329. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Minh, T.T.; Tu, T.T.; Tsuruta, T.; Pang, H.; Nishino, N. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Appl. Microbiol. Biotechnol. 2017, 101, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Rudella, A.; Marzotto, M.; Dellaglio, F. Vector-free cloning of a bacterial endo-1,4-beta-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: Use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie Van Leeuwenhoek 2001, 80, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Karnatam, K.S.; Mythri, B.; Un Nisa, W.; Sharma, H.; Meena, T.K.; Rana, P.; Vikal, Y.; Gowda, M.; Dhillon, B.S.; Sandhu, S. Silage maize as a potent candidate for sustainable animal husbandry development-perspectives and strategies for genetic enhancement. Front. Genet. 2023, 14, 1150132. [Google Scholar] [CrossRef]
- Premnath, A.; Ramalingam, A.P.; Ramasamy, S.P.; Karnatam, K.S.; Ramadoss, B.R. Genome editing and miRNA-based approaches in cereals under abiotic stress. In Sustainable Remedies for Abiotic Stress in Cereals; Springer: Berlin/Heidelberg, Germany, 2022; pp. 647–673. [Google Scholar]
- Eikmeyer, F.G.; Heinl, S.; Marx, H.; Pühler, A.; Grabherr, R.; Schlüter, A. Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing. PLoS ONE 2015, 10, e0134149. [Google Scholar] [CrossRef]
- McAllister, T.A.; Dunière, L.; Drouin, P.; Xu, S.; Wang, Y.; Munns, K.; Zaheer, R. Silage review: Using molecular approaches to define the microbial ecology of silage. J. Dairy Sci. 2018, 101, 4060–4074. [Google Scholar] [CrossRef]
- Amortegui, J.; Rodríguez-López, A.; Rodríguez, D.; Carrascal, A.K.; Alméciga-Díaz, C.J.; Melendez Adel, P.; Sánchez, O.F. Characterization of a new bacteriocin from Lactobacillus plantarum LE5 and LE27 isolated from ensiled corn. Appl. Biochem. Biotechnol. 2014, 172, 3374–3389. [Google Scholar] [CrossRef]
- Mosher, J.J.; Bernberg, E.L.; Shevchenko, O.; Kan, J.; Kaplan, L.A. Efficacy of a 3rd generation high-throughput sequencing platform for analyses of 16S rRNA genes from environmental samples. J. Microbiol. Methods 2013, 95, 175–181. [Google Scholar] [CrossRef]
- Xu, D.; Ding, W.; Ke, W.; Li, F.; Zhang, P.; Guo, X. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri. Front. Microbiol. 2019, 9, 3299. [Google Scholar] [CrossRef]
- Guo, X.S.; Ke, W.C.; Ding, W.R.; Ding, L.M.; Xu, D.M.; Wang, W.W.; Zhang, P.; Yang, F.Y. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri. Sci. Rep. 2018, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Kharazian, Z.A.; Xu, D.; Su, R.; Guo, X. Effects of inoculation and dry matter content on microbiome dynamics and metabolome profiling of sorghum silage. Appl. Microbiol. Biotechnol. 2024, 108, 257. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.; Wang, Y.; Guo, Z.; Wang, G.; Zhang, Y. The performance of plant essential oils against lactic acid bacteria and adverse microorganisms in silage production. Front. Plant Sci. 2023, 14, 1285722. [Google Scholar] [CrossRef] [PubMed]
- Mall, A.K.; Misra, V.; Santeshwari; Pathak, A. D.; Srivastava, S. Sugar Beet Cultivation in India: Prospects for Bio-Ethanol Production and Value-Added Co-Products. Sugar Tech. 2021, 23, 1218–1234. [Google Scholar] [CrossRef]
- Sun, H.; Cui, X.; Li, R.; Guo, J.; Dong, R. Ensiling process for efficient biogas production from lignocellulosic substrates: Methods, mechanisms, and measures. Bioresour. Technol. 2021, 342, 125928. [Google Scholar] [CrossRef]
Silage Crop | Additives | Ferment Effect | Comparison of Lactic Acid Content | Reference |
---|---|---|---|---|
Alfalfa | Lactobacillus brucei PC-C1 + Lactobacillus plantarum YC1-1-4B | It significantly improved carbohydrate metabolism and inhibited the growth of Clostridium, mold, and yeast in alfalfa | Treatment group: 5.35 g/kg CK group: 0.74 g/kg | [117] |
Whole-plant quinoa with high moisture | Lactobacillus + molasses/Lactobacillus + cellulolytic enzymes | The fermentation mode was developed to increase the intensity of lactic acid fermentation, which greatly alleviated the limitation of lactic acid fermentation by the lack of fermentable sugars in WPQ | Treatment group: 60.5 g/kg CK group: 37.0 g/kg | [118] |
Three-colored amaranth | Lactic acid bacteria + 5% molasses | The addition of molasses resulted in increased feed ash and lactic acid concentrations, and also improved the fermentation quality of silage | Treatment group: 69.2 g/kg CK group: 57.0 g/kg | [119] |
Corn | Lactobacillus plantarum/Lactobacillus brucei/Enterococcus faecium + selective bacteriocin (Pediocin SA-1) | It also significantly increased the concentrations of antimicrobial compounds (acetic acid, ethanol, and 1,2-propylene glycol) and enhanced the aerobic stability of maize silage | Treatment group: 40.2 g/kg CK group: 34.9 g/kg | [120] |
Soybean residue + corn stover | Lactic acid bacteria + cellulase | The content of crude protein was significantly higher than that in the control group, the content of lactic acid bacteria was significantly higher than that in other groups, and the contents of undesirable bacteria were significantly lower than in the other treatment groups | Treatment group: 5.45 g/kg CK group: 3.81 g/kg | [121] |
Whole-crop corn | Cellulase + Bacillus sp. | Lactic acid accumulation was significantly higher in the Bacillus inoculant group and the control group; lactic acid bacteria were the most abundant dominant bacteria, and the addition of cellulase increased the bacterial community, leading to significant degradation of neutral detergent fiber (NDF) and acid detergent fiber (ADF) | Treatment group: 6.0 g/kg CK group: 8.3 g/kg | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Sun, Y.; Chang, Z.; Yao, B.; Han, Z.; Wang, T.; Shang, N.; Wang, R. Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. Fermentation 2024, 10, 533. https://doi.org/10.3390/fermentation10100533
Zhao X, Sun Y, Chang Z, Yao B, Han Z, Wang T, Shang N, Wang R. Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. Fermentation. 2024; 10(10):533. https://doi.org/10.3390/fermentation10100533
Chicago/Turabian StyleZhao, Xiaorui, Yu Sun, Zhiyi Chang, Boqing Yao, Zixin Han, Tianyi Wang, Nan Shang, and Ran Wang. 2024. "Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation" Fermentation 10, no. 10: 533. https://doi.org/10.3390/fermentation10100533
APA StyleZhao, X., Sun, Y., Chang, Z., Yao, B., Han, Z., Wang, T., Shang, N., & Wang, R. (2024). Innovative Lactic Acid Production Techniques Driving Advances in Silage Fermentation. Fermentation, 10(10), 533. https://doi.org/10.3390/fermentation10100533